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Abstract: In this paper, we study the bifurcations of non-linear dynamical systems. We continue
to develop the analytical approach, permitting the prediction of the bifurcation of dynamics. Our
approach is based on implicit (approximate) amplitude-frequency response equations of the form
F(Ω, A; c) = 0, where c denotes the parameters. We demonstrate that tools of differential geometry
make possible the discovery of the change of differential properties of solutions of the equation
F(Ω, A; c) = 0. Such qualitative changes of the solutions of the amplitude-frequency response
equation, referred to as metamorphoses, lead to qualitative changes of dynamics (bifurcations). We
show that the analytical prediction of metamorphoses is of great help in numerical simulation.

Keywords: pendulums; metamorphoses of amplitude curves; bifurcation sets; bifurcations of
dynamics

1. Introduction

Non-linear dynamical systems find important applications in science and technology.
It is thus necessary to analyse and solve non-linear equations governing dynamics of such
systems with high accuracy. Unfortunately, analytical solutions of non-linear systems are
scarce and numerical simulation is the main tool to provide useful solutions. Numerical
simulation is becoming more popular due to enormous progress in computer technology
and computer simulation software; see [1] for the early history of computer simulation
software and [2] for a comprehensive list of the software.

The history of computer simulation dates back to World War II and the Manhattan
Project problems which led John Von Neumann, Stanislaw Ulam and Nicholas Metropolis
to invent the Monte Carlo method to explain the complicated dynamics of neutrons in the
fission process [3,4]. More about the development of computer simulation can be found
in [5]. A typical textbook on computer simulation in physics and engineering is [6]. For a
survey of applications of computer simulation to non-linear science, see [7].

Another large group of numerical methods based on discretization of differential
equations stem from the Leonhard Euler method [8] and the very useful Runge–Kutta
type methodology [9,10]. A competent text on this type of numerical computations with
applications to dynamical systems is [11].

On the other hand, due to the approximate nature of numerical simulation, analytical
tools are demanded. One approach originates from the works of Henri Poincarė on the
three-body problem [12], which led to the theory of chaos; see [11,13,14]. There is also
another body of analytical work based on ideas of René Thom [15], from which Catastrophe
Theory and Singularity Theory were born, as well as a modern theory of bifurcations [16,17].
An interesting application of the Catastrophy Theory to a dynamical problem—the Duffing
equation—was made by Holmes and Rand [18].
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In spite of the progress in finding analytical solutions of non-linear differential equa-
tions (see [19]) approximate analytical tools are also needed. A very interesting approach,
used in this work, to non-linear equations written in a non-dimensional form as:

d2y
dτ2 + Ω2y = ε f

(
y,

dy
dτ

, τ; c
)

, (1)

where ε is a small parameter, c = (c1, c2, . . . , cm) are control parameters, and f is a pe-
riodic function of non-dimensional time τ with period T = 2π

Ω and with polynomial
non-linearities, is based on asymptotic methods; see [20] for a comprehensive survey and
discussion on the applicability of this approach. This class of approximate methods consists
in computing non-linear resonances of the form:

y(τ) = A(Ω) cos(Ωτ + ϕ(Ω)) + εy1(τ) + . . . (2)

where the amplitude A and frequency Ω fulfill the approximate amplitude-frequency
response equation:

F(Ω, A; c) = 0. (3)

Equation (3) defines an implicit function—the amplitude-frequency response curve
(the amplitude profile), which is a two-dimensional planar curve. The form of this curve,
as well as the stability of the solution (2), determine (approximately) the dynamics of
the system.

Equation (1), or a system of such equations, although simple, can successfully model
many real non-linear dynamical systems; see [21] for theoretical as well as experimental
issues.

We have proposed in our earlier papers an analysis of differential properties of so-
lutions of the amplitude-frequency response Equation (3) [22,23]. It turns out that bi-
furcations of dynamics, such as hysteresis and jump phenomenon, related to appear-
ance/disappearance of branches of solutions, as well as more complex bifurcations, such
as, for example, creation/destruction of solutions, follow from changes of differential
properties of solutions of the amplitude-frequency response Equation (3), induced by a
change of the parameters c. Note that, from a mathematical point of view, Equation (3)
defines an implicit 2D curve.

More precisely, we have demonstrated that the jump phenomenon follows from the
condition (defining a critical point of the curve) ∂F(Ω,A;c)

∂A = 0 [23] (this was first noticed
for the Duffing equation in [24]), while more complicated qualitative changes of these
curves follow from the conditions (defining a singular point of the curve) ∂F(Ω,A;c)

∂Ω = 0,
∂F(Ω,A;c)

∂A = 0 [25]. In all these cases, 2D implicit curves defined by Equation (3) change
their form at critical or singular points of the curve F(Ω, A; c) = 0. Therefore, we have
proposed to call such qualitative changes of curves (3) metamorphoses of these curves [25].

It should be noted that this approach can be generalized for systems of non-linear
equations of the form (1) describing multi-degree-of-freedom systems; see [26].

It seems that the first investigation of metamorphoses of amplitude profiles induced by
a change of parameters was carried out in the framework of Catastrophe Theory in [18] for
the Duffing equation in a non-singular case and without reference to differential properties
of the amplitude profiles. The idea to use the Implicit Function Theorem to “define
and find different branches intersecting at singular points” of amplitude profiles was
described in [27]. Then, it was determined by Kalmár-Nagy and Balachandran that the
metamorphosis described by Holmes and Rand follows from a differential condition [24].
Singular points of amplitude profiles were first investigated in the setting of differential
geometry in [25]. An introduction to differential properties of curves can be found in [28,29].

The prediction of such qualitative changes of the solutions of the amplitude-frequency
response equation referred to as metamorphoses permits the prediction of qualitative
changes of dynamics (bifurcations). Some metamorphoses are often stable in a narrow
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interval of control parameters and are challenging to find numerically. Therefore, analyti-
cal methods permitting the prediction of metamorphoses are of great help in numerical
simulation.

A novel contribution of our work consists of (i) the classification of a wide variety of
metamorphoses of the dynamics of steady-state solutions of non-linear equations due to
changes of the differential properties of the amplitude-frequency response curves; (ii) the
definition and description of the construction of borderline sets, i.e., sets containing param-
eters for which jump phenomena are present; (iii) the computation of numerically exact
bifurcation sets for pendulum systems using a standard asymptotic approach (this is a new
result since pendulums are non-polynomial systems while standard asymptotic methods
can be applied to polynomial systems only); and (iv) the demonstration of bifurcations
corresponding to parameters belonging to the bifurcation set.

In Section 2 we describe our methodology and classify a wide variety of metamor-
phoses; then, in Section 3, we show applications of our approach to two dynamical systems.
Firstly, we consider a damped periodically driven pendulum, applying our results ob-
tained in [23]. Secondly, we study a driven pendulum with van der Pol’s type damping,
generalizing our previous studies [30,31]. Since we compute non-linear resonances (2)
by the Krylov–Bogoliubov–Mitropolsky (KBM) method, which applies to polynomial
non-linearities only, we have to expand the typical pendulum term sin(y), appearing in
the function f

(
y, dy

dτ , τ; c
)

in (1), and consider contributions from terms of the expansion

sin(y) ' ∑n
k=1 cky2k+1 for growing n.

In Section 3, we compute bifurcation sets Dn(c) = 0, where Dn is a non-linear function
of parameters c and n + 1 is the number of terms in the expansion of sin(y). The bifurca-
tion set consists of points in the parameter space (c1, c2 . . . , cn) such that the amplitude-
frequency response Equation (3) has a singular point for every c fulfilling Dn(c) = 0. We
show that, for increasing values of n, the physical values of parameters c belonging to
bifurcation sets Dn(c) = 0 converge quickly, thus providing a good approximation of the
pendulum’s singular points. We summarize our results in the last Section.

2. Analytical Properties of Amplitude-Frequency Response Curves and Bifurcations
of Dynamics

In this Section, we describe differential properties of the implicit curve (3) as well as
metamorphoses of the curve induced by smooth changes of the parameters c. Moreover, we
attempt to classify metamorphoses as well as related bifurcations of dynamics. In Section 3,
we show several examples of changes of differential properties of the amplitude-frequency
curves and the corresponding bifurcations for the pendulum systems.

2.1. Critical Points, Vertical Tangencies, Borderline Sets

Critical points of the function Ω = f (A), i.e., vertical tangencies (VTs), which follow

from the Kalmár-Nagy and Balachandran condition
dΩ
dA

= f ′(A) = 0 for the implicit

function F(Ω, A; c) = 0 [24], fulfill an equivalent set of equations expressed in the implicit
functions setting [23]:

F(Ω, A; c) = 0, (4a)
∂F(Ω, A; c)

∂A
= 0

(
∂F
∂Ω
6= 0

)
, (4b)

where we do not have to determine the function Ω = f (A). In critical points of the function
f (A), jump phenomena can be observed in non-linear dynamical systems; see [18,24] for
the Duffing equation and continuation of this Subsection. For example, in Figure 1, a
multi-valued function A = g(Ω) with VTs represented by vertical dashed lines are shown.
Red points indicate critical points of the inverse function Ω = f (A).
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For the sake of an example, we consider the cubic Duffing equation

ÿ + hẏ + y + c3y3 = f cos(Ωτ), (5)

and the corresponding amplitude curve [18,24]:

FD(Ω, A) = A2h2Ω2 + A2
(

3
4 c3 A2 −Ω2 + 1

)2
− f 2 = 0. (6)

Equation (4a,b) for the amplitude function (6) yield critical points (Ω, A) where vector

tangencies occur: X =
9c2

3Y3+12c3Y2+8 f 2

12c3Y2 , while Y is a solution of the equation:

f (Y) = 27c3
3h2Y5 + 36c2

3h2Y4 − 36c2
3 f 2Y3 + 24 f 2c3h2Y2 + 16 f 4 = 0, (7)

where X = Ω2, Y = A2 (obviously, only solutions A > 0 are acceptable).
Let c3 = 1, f = 1. In this case Equation (8) has only complex solutions, while

Equation (9) has one positive solution, h∗ = 0.511 878 853. In Figure 1, several amplitude
curves (6) are shown.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ω

A

Figure 1. Amplitude profiles: critical (blue, h = h∗), with two VTs (dark gray, h = 0.3; solid
line—stable, dashed—unstable), and without VT (sienna, h = 0.65). Red dots show VTs.

Coordinates of critical points (Ω∗, A∗) (red dots), computed from Equation (4a,b), are
(1. 537, 1. 101), (1. 615, 0.905), (1. 857, 1. 782). In critical points, metamorphoses occur—a
number of branches of the asymptotic solutions are changed, and this corresponds to
the vertical tangency of the amplitude-frequency curve and the jump phenomenon for
dynamics of the Duffing equation [18,24].

Equation (7) may have, for some parameter values, double/multiple solutions—
coalescing critical points. This happens when discriminant ∆ of the polynomial f (Y)
is zero and is important because a number of real/complex solutions of (7) change at such
point in the parameter space.

The condition ∆ = 0 is equivalent, for non-zero parameters, to R( f , f ′) = 0, where
R( f , f ′) is a resultant of f (Y) and its derivative f ′ (Y). Computing the resultant of f (Y),
as explained in the Appendix A, we find that the equation R( f , f ′) = 0 factorizes and thus
is satisfied if either of two equations is fulfilled:

48 f 2c3 + 16h2 − 8h4 + h6 = 0, (8)

−1024h6 − 2592c3 f 2h6 − 2592c3 f 2h4 + 243c2
3 f 4 = 0. (9)
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Equations (8) and (9) determine the borderline set— parameter values at which vertical
tangencies (VTs) appear/disappear. Note, for example, that for c3 > 0, Equation (8) has no
real solutions.

To explain the jump phenomenon, consider the dark gray amplitude curve in Figure 1.
Typically, the upper branch as well as the lower branch are stable, while the middle
branch (dashed line) is unstable. Therefore, if a system is on the upper branch, then, for
increasing value of Ω, it must fall down on the lower branch for Ω > 1.857. This is a jump
phenomenon, described in [18] and also in [24], where a differential condition dΩ

dA = 0
was formulated. Note that, as follows from our analysis, for, say, c3 = 1, f = 1 vertical
tangencies appear only for h ≥ h∗.

Finally, we draw the borderline sets determined by Equations (8) and (9), see Figure 2.

Figure 2. Borderline sets: Equation (8)—left, Equation (9)—right. White dot denotes parameters
(1, h∗, 1) of the double critical point and corresponds to the red dot on the blue amplitude profile in
Figure 1.

2.2. Singular Points

In singular points, neither the function A = g(Ω) nor Ω = f (A) are single-valued.
According to the differential geometry of curves [28,29], an implicit curve changes its form
at singular points which fulfill the following equations:

F(Ω, A; c) = 0, (10a)

∂F(Ω, A; c)
∂Ω

= 0, (10b)

∂F(Ω, A; c)
∂A

= 0. (10c)

Solutions of Equation (10a–c), if they exist, are of the form Ω = Ω∗, A = A∗, c = c∗.
Accordingly, the amplitude response curve F(Ω, A, c∗) = 0 changes its differential proper-
ties at a singular point (Ω∗, A∗). Such changes, referred to as metamorphoses, can be very
complicated and of various natures.

2.3. Classification of Singular Points and Corresponding Bifurcations: Basic Cases

There are several generic cases of singular points which can be classified with the help
of higher derivatives of F(Ω, A; c) in a singular point (Ω∗, A∗). In what follows, we shall
use the following notation F11 = ∂2F

∂Ω2 (Ω∗, A∗), F12 = ∂2F
∂Ω∂A (Ω∗, A∗), F22 = ∂2F

∂A2 (Ω∗, A∗) for
elements of the matrix of second derivatives (Hessian).
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2.3.1. Isolated Points

In the case of an isolated point, a new branch of solution (stable or unstable) is created.
In an isolated point, we have

F11F22 − F2
12 > 0. (11)

The corresponding amplitude curves are shown, for example, in Figure 3 in [22] (blue-
green curve) and in Figure 3 in [23] (red curve). The isolated point indicates the birth of a
new branch of solutions, often stable. This is shown in bifurcation diagrams in Figure 9
in [22] or in Figure 4 in [23].

2.3.2. Self-Intersections

The condition for the self-intersection reads:

F11F22 − F2
12 < 0. (12)

Such an amplitude curve is shown in Figure 4, and two curves just before and just
after metamorphosis are shown in Figure 6 in [22]; see also Figures 5 and 6 in [23]. In this
case, an existing branch of stable solution is disrupted; see bifurcation diagrams, Figure 7
in [22] or Figure 7 in [23].

2.3.3. Degenerate Points: A Cusp

A necessary condition for the cusp is:

F11F22 − F2
12 = 0. (13)

In the neighborhood (in the parameter space) of the cusp, there are infinitely many
isolated points and self-intersections [23,32]. Therefore, small changes of control parameters
lead to qualitative changes of dynamics [23,32].

2.3.4. Higher-Order Degenerate Points

There are singular points which fulfill:

F11 = F12 = F22 = 0. (14)

The classification of such points requires information about higher-order derivatives.
In the neighborhood (in the parameter space) of degenerate points, infinite families of
singular points exist [33], and thus various forms of dynamics are possible [33].

2.4. Bifurcation Sets

In many cases, it is possible to compute a bifurcation setM—a set of parameters c,
such that F(Ω, A; c) has a singular point (Ω∗, A∗) for c = (c1, c2, . . . , cm) ∈ M.

Assume that Equation (10a,b) can be solved in the form:

Ω = p(A; c), (15)

q(A; c) = 0, (16)

where p and q are polynomials.
Note that Equation (10b) excludes the existence of a single-valued function Ω = f (A).

To obtain a condition for a singular point, we now need an alternative to Equation (10c)
which excludes the existence of a single-valued function A = g(Ω). It follows that it
suffices to demand that Equation (16) has multiple roots. Therefore, the formula for the
bifurcation setM is [22]:

(c1, c2, . . . , cm) ∈ M : R
(
q, q ′

)
= 0 = D(c1, c2, . . . , cm), (17)
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where R(q, q ′) is the resultant (A1) of q(A; c) and its derivative q ′(A; c) = dq(A;c)
dA , and the

polynomial D(c) is a normalized resultant (see Equation (A2)).

3. Examples of Applications

In this Section we apply the formalism described in Section 2 to two important pendu-
lum systems. Models of this kind are idealized yet extensively studied [21]. We consider
a damped periodically driven pendulum, applying our results obtained in [23]. Then we
study a driven pendulum with van der Pol’s type damping, generalizing our previous
studies [30,31]. We show how changes of differential properties of asymptotic solutions
are related to changes of existence and stability of dynamical states. We thus obtain new
information on the dynamical behavior of these systems.

3.1. Damped Driven Pendulum

The damped driven pendulum is a very interesting non-linear dynamical system
exhibiting chaotic dynamics [34–38] and fractal basin boundaries [13,39]. The pendulum
equation with friction and external periodic force in nondimensional variables is [14]:

d2y
dτ2 + h

dy
dτ

+ sin y = f cos(Ωτ). (18)

Equation (18) can be considered a special case of the generalized Duffing equation:

ÿ + hẏ + c0y + c1y3 + c2y5 + . . . + cny2n+1 = f cos(Ωτ), (19)

in the limit n −→ ∞, where overdots denote derivatives with respect to τ, with

cn =
(−1)n

(2n + 1)!
, n = 0, 1, 2, . . . , (20)

since sin y =
∞
∑

n=0
cny2n+1.

In [23], we have determined the asymptotic solution (2) of Equation (19) by computing
the amplitude-frequency response equation. It follows that the amplitude function for the
pendulum is:

L(X, Y; f , h) = h2XY + Y(X− p(Y))2 − f 2 = 0,
(

X ≡ Ω2, Y ≡ A2
)

(21)

where

p(Y) =
∞

∑
n=0

dnY2n+1, (22)

dn = (−2)−n (2n + 1)!!
(n + 1)!

cn, n = 0, 1, 2, . . . . (23)

Note that |dn| = 2−n 1
(n + 1)!(2n)!!

; therefore, the series defining function p(Y) con-

verges very rapidly. Similar computations were performed for the unforced generalized
Duffing equation ( f = 0) for an arbitrary n in [40] and within another formalism for a
driven generalized Duffing oscillator in [41]. Moreover, the authors of [40] documented
convergence of their approximate solution to the exact numerical solution for n = 0, 1, 2, 3.
We have obtained, for the function p(Y), the same formula as obtained earlier in [40].

We can now compute approximations of the bifurcation set. To this end, we define:

Lm(X, Y) = h2XY + Y(X− pm(Y))
2 − f 2, pm(Y) =

m

∑
k=0

dkYk, (24)
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and, as explained in Section 2.4, solve equations:

Lm(X, Y) = h2XY + Y(X− pm(Y))
2 − f 2 = 0, (25)

∂Lm(X, Y)
∂X

= 0, (26)

obtaining a solution for X and a polynomial equation for Y:

X = − 1
2 h2 + pm(Y), (27)

wm(Y) = h2Ypm(Y)− 1
4 h4Y− f 2 =

=
m

∑
k=0

h2dkYk+1 − 1
4 h4Y− f 2 = 0. (28)

Finally, the condition for bifurcation setsMm, m = 1, 2, . . . is:

( f , h) ∈ Mm : R
(
wm, w ′m

)
= 0 = Dm( f , h), (29)

where R(wm, w ′m) is a resultant of wm and w ′m; see the Appendix A.
For example,

M1 : D1 = h6 − 8h4 + 16h2 − 8 f 2 = 0 (30a)

M2 : D2 =
(

2h5 + 6h4 − 8h2 + 3 f 2
)(

2h5 − 6h4 + 8h2 − 3 f 2
)
= 0 (30b)

M3 :
{
D3 = 243h14 − 1728h12 + 2592h10 − 2376 f 2h8

−+ 6912h6576
(

f 2 + 6
)

f 2h4 + 432 f 4h2 − 64 f 6 = 0.
(30c)

Note that points ( f∗, h∗) ∈ Mm are exactly the same as in singular solutions
(X∗, Y∗, f∗, h∗) of equations:

Lm(X, Y) = 0,
∂Lm(X, Y)

∂X
= 0,

∂Lm(X, Y)
∂X

= 0. (31)

For any real f there are 6 + 4(m− 1) values of h lying onMm, mostly complex. For
f < fcr = 1.1637 . . . there are three real h > 0 onMm (m = 3, 4, . . .); there are thus three
branches in the plots, while for f > fcr there is only one real h > 0. Although the number
of solutions increases, we note that for increasing m, solutions of the equation Dm = 0
converge rapidly. To show this we have computed a family of singular points for f = 0.5,
see Table 1, converging from the dashed line (m = 1) to the green line (m = 7) in Figure 3:

Table 1. A family of singular points, f = 0.5.

m h

1 0.365 789 198 161

2 0.320 100 600 265

3 0.326 927 238 987

4 0.326 411 735 282

5 0.326 436 070 491

6 0.326 435 269 057

7 0.326 435 288 885

8 0.326 435 288 503
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Since the convergence is fast, it is meaningful to consider the limitM∞ = limk→∞Mk
defining the bifurcation set for the pendulum. It follows thatM7 approximatesM∞ very
exactly (at least for real (physical) singular points).

In Figure 3, we show for real values of f , h the bifurcation setsM1 andM7 (note
that the setM3 already provides quite a good approximation ofM∞). The corresponding
amplitude profile with self-intersection is shown in Figure 4.

More exactly, for f = 0.5 we compute numerically from the equation D7(0.5, h) = 0
the singular value h∗ = 0.326 435 . . .. It is a self-intersection, and we also show in Figure 4 a
metamorphosis of the amplitude profile L7

(
Ω2, A2; f , h∗

)
= 0 for f < 0.5, f = 0.5, h > 0.5.

In bifurcation diagrams in Figure 5, we show that a stable branch is disrupted at a
singular point (blue and green colours in Figure 5 correspond to blue and green colours in
Figure 4).

In a numerical simulation for the damped driven pendulum (18), the bifurcation
occurs not at f∗ = 0.5 but at 0.5204 < f < 0.5206, and it follows that the KBM method’s
error is about 4%, yet the character of the bifurcation is in agreement with our prediction.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

1

2

3

f

h

Figure 3. The bifurcation sets:M1(Duffing)—dashed,M7—green (physical self-intersections), blue
(unphysical self-intersections), magenta (unphysical isolated points).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

1

2

3

4

A

Ω

Figure 4. Metamorphosis of the amplitude profile. Singular (red)—h = 0.326 435, fcr = 0.5, green—
h = 0.326 435, f = 0.49 < fcr, blue—h = 0.326 435, f = 0.51 > fcr.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-2

-1

0

1

2 A

Ω

Figure 5. Bifurcation diagrams: h = 0.3264, f = 0.5206—left, h = 0.3264, f = 0.5204—right.

3.2. Driven Pendulum with van der Pol’s Type Damping

A driven pendulum with van der Pol’s type damping is a more complicated pendulum
dynamical system [42–44]. A non-dimensional equation describing a driven pendulum
with van der Pol damping is:

d2y
dτ2 − µ

(
1− νy2

) dy
dτ

+ sin y = G sin Ωτ. (32)

Equation (32) and Equation (3) of [31] are compatible (but, of course, not equivalent)
for ν = 1 and λ = − 1

6 , and we obtain Equation (18) for ν = 0, µ = h, and G = f .
The amplitude equation was computed by the Krylov–Bogoliubov–Mitropolsky method as:

Lm(X, Y, µ, ν, G) = µ2XY
(

1− 1
4 νY

)2
+ Y(X− pm(Y))

2 − G2, (33)

where

pm(Y) =
m

∑
k=0

dkYk, (34)

and the coefficients dk are given in Equation (23).
To compute the bifurcation set, we solve equations (cf. Section 2.4):

Lm(X, Y, µ, ν, G) = 0 (35)
∂Lm(X, Y, µ, ν, G)

∂X
= 0 (36)

obtaining

X = − 1
32

µ2(νY− 4)2 + pm(Y), (37)

wm(Y) = −64µ2Y(νY− 4)2 pm(Y) + +µ4Y(νY− 4)4 + 1024G2 = 0. (38)

The bifurcation setsMm consist of such parameter values for which the polynomi-
als wm(Y) have multiple roots. Accordingly, conditions for the bifurcation sets are (see
Equation (A2)): {

(µ, ν, G) ∈ Mm : R(wm, w′m) = 0 = Dm(µ, ν, G)

Dm(µ, ν, G) = G2dm(µ, ν, G)
(39)

where Dm and dm are high-order polynomials of the variables µ, ν, G.
In the Table 2, we show for µ = 1, ν = 1 the convergence of physical (real) solutions of

equation d5(µ, ν, G) = 0 for growing values of m:
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Table 2. Solutions of equation d5(µ, ν, G) = 0 for growing values of m; µ = 1, ν = 1.

m G1 G2

1 0.532 423 0.654 807

2 0.658 654 0.984 427

3 0.658 549 0.892 667

4 0.658 551 0.900 030

5 0.658 551 0.899 594

We note that the convergence is fast. We show the bifurcation setM3 (i.e., d3 = 0,
G = 0) in Figure 6.

1.5

0.5

1.0

ν

1.5

0.0
1.5

0.0

0.5

1.0

G
0.5

0.0

1.0

µ

Figure 6. The bifurcation setM3. Surface d3 = 0 (yellow and light red) and is part of the plane G = 0
(blue and green).

This surface has a richer structure than the bifurcation set for the Duffing–van der Pol
equation (i.e.,M1), cf. Figure 1 in [31]. We note that the surface d3 = 0 (sienna) consists
of several patches intersecting one another along some lines and intersected by the plane
G = 0 (blue and green).

In this work, we make a preliminary exploration of the bifurcation set. More precisely,
we have found up to now that physical (corresponding to real Ω, A) points lying on the
surface d3 = 0 are self-intersections, while points belonging to the plane G = 0 correspond
to pairs of isolated points; see the Section 3.2.2 on isolated points below. It is interesting
that some points on the surface d3 = 0 correspond to two self-intersections of the amplitude
profiles—they lie on some self-intersections of the surface d3 = 0; see the Section 3.2.1 below.

3.2.1. Two Self-Intersections

Singular points—points belonging to the self-intersection of the surface D5(µ, ν, G) =
0—can be computed numerically. It follows from Figure 6 that for some µ = µ0 there
are self-intersections of the surface d3(µ, ν, G) = 0. Therefore, a point (ν0, G0) on the
intersection curve can be computed from the following equations [31]:
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∂D5(µ0, ν, G)

∂G
= 0, (40a)

∂D5(µ0, ν, G)

∂ν
= 0. (40b)

For example, for µ0 = 1.1, we get from Equation (40a,b) ν0 = 0.797 754, G0 = 0.777 016,
and from equations defining a singular point, L5(X, Y, µ, ν0, G0) = 0, ∂L5(X,Y,µ,ν0,G0)

∂X =

0, ∂L5(X,Y,µ,ν0,G0)
∂Y = 0, we obtain again µ0 = 1.1, and two singular points (Ω0, A0) =

(0.242 040, 2.836 903), (Ω0, A0) = (0.729 602, 1.264 283) corresponding to a pair of self-
intersections of the amplitude profile (note that X = Ω2, Y = A2); see Figure 7. Bifurcation
diagrams are shown in Figure 8.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1

2

3

4
A

Ω

Figure 7. Amplitude profile with two intersections, (µ0, ν0, G0) = (1.1, 0.797 754, 0.777 016).

Lef top and right top figures show the disruption of the bifurcation curve due to
metamorphosis at the left self-intersection in Figure 7 while the left bottom and right bottom
curves show, for an inverted time flow, analogous bifurcation due to metamorphosis at the
right self-intersection in Figure 7. Green and blue colours in Figure 8 correspond to green
and blue colours in Figure 7.

3.2.2. Two Isolated Points

Isolated points lie on the plane G = 0. Moreover, these are always pairs of isolated
points, since the resultant is proportional to G2, Dm(µ, ν, G) = G2dm(µ, ν, G), and hence,
there is always a double solution of the equation Dm(µ, ν, G) = 0. It follows that the
implicit function Lm(Ω, A; µ, ν, G) = 0 contracts locally to two isolated points for G → 0
and arbitrary µ and ν. This result simplifies our analysis for the Duffing–van der Pol
equation (m = 1) [31] and generalizes if for an arbitrary m.
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-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

A Ω

0.1 0.2 0.3 0.4 0.5

-3.0

-2.9
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-2.7

-2.6

-2.5

A Ω

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

A Ω

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

A Ω

Figure 8. µ0 = 1.1, ν0 = 0.7978, G = 0.593—left top, G = 0.592—right top, µ0 = −1.1 (time
inversion), ν0 = 0.7978, G = 0.778—left bottom, G = 0.779—right bottom.

In Figure 9, we show, for two different sets of values of parameters µ, ν, two examples
of local contractions of the amplitude profiles to two isolated points for G → 0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0

1

2

3

4

5 A

Ω

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0

1

2

3

4

5 A

Ω

Figure 9. Two metamorphoses. Left figure: µ = 0.75, ν = 1, G = 0.05—red, 0.2—green, 0.4—magenta,
0.6—blue, 0.8191—black. Right figure: µ = 0.85, ν = 0.5, G = 0.1—red, 0.2—gray, 0.3—green,
0.3445—black, 0.4—sienna, 0.5—blue, 0.6—navy.

Bifurcation diagrams for the left amplitude profiles in Figure 9 are shown in Figure 10
(colours of stable branches correspond to colours of amplitude profiles in the left Figure 9).
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

-3

-2

-1

0

1

2 A

Ω

Figure 10. Bifurcation diagrams: µ = 0.75, ν = 1, G = 0.05—red, G = 0.6—blue.

The blue bifurcation diagram of Figure 10 shows two stable branches corresponding to
two disjoint parts of the blue amplitude profile in Figure 9. In the case of the red bifurcation
diagram of Figure 10, we see that only the right red amplitude profile shown in the left
Figure 9 is stable.

Note a qualitative agreement of the red and blue bifurcation diagrams of Figure 10
with the red and blue amplitude profiles shown in the left Figure 9.

4. Discussion and Conclusions

This work has described critical points of the function Ω = f (A), given by Equa-
tion (4a,b), and classified singular points of the amplitude-frequency response function,
defined by Equation (10a–c). It should be noted that both conditions are expressed in terms
of the known implicit function F(Ω, A; c) (computed by an asymptotic method) and thus
can be easily tackled analytically or numerically. Furthermore, we have described how
dynamics change at critical or singular points of F(Ω, A; c), providing several examples.

We have applied this methodology to the damped driven pendulum and driven
pendulum with van der Pol’s type damping, predicting several metamorphoses of the
amplitude profile F(Ω, A; c) and related bifurcations of dynamics.

More precisely, we have computed bifurcation sets c ∈ Mn : Dn(c) = 0, where Dn is a
non-linear function of parameters c and n + 1 is the number of terms in the expansion of the
pendulum term sin(y). The bifurcation setMn consists of parameters c = (c1, c2, . . . , cn),
for which the function Fn(Ω, A; c) has a singular point. It turns out that for both pendulum
systems considered, for growing values of n, the bifurcation setsMn converge fast. In
conclusion, the computed bifurcation sets Mn provide quite good information about
pendulum bifurcation setsM∞.

We have confirmed our predictions of bifurcations of dynamics by numerical simula-
tion of pendulums dynamics, documenting bifurcations of dynamics of predicted character.
Deviations of the computed singular parameter values from parameter values for which a
bifurcation of dynamics occurred in dynamical systems, as in (18) and (32), can be attributed
to inaccuracies of the computed amplitude profiles Fn(Ω, A; c) due to the approximate
nature of the asymptotic method (the Krylov–Bogoliubov–Metropolsky approach) used in
our work.
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Appendix A. Discriminants and Resultants of Polynomials

A necessary and sufficient condition for a polynomial f (x) to have multiple roots is
that its discriminant ∆ vanishes [45,46]. In case a polynomial has a multiple root, then f
and its derivative f ′ = d f

dx have a common root. It thus follows that a discriminant ∆ can be
computed as a resultant of a polynomial f (x) and its derivative f ′(x), denoted as R( f , f ′),
with a normalizing factor.

More generally, polynomials f and g have a common root if and only if their resultant
R( f , g) is zero [45,46]. The resultant R( f , g) of two polynomials, f (x) = anxn + . . . + a1x +
a0, g(x) = bmxm + . . . + b1x + b0, an 6= 0, bm 6= 0, can be computed as a determinant of the
(m + n)× (m + n) Sylvester matrix, which has m rows involving ai and n rows involving
bj—see, for example, Equation (1) in [46] (or the equivalent Equation (1.12), Chapter 12
in [45]) or Equation (A1) below.

R( f , g) = det



an an−1 an−2 . . . 0 0 0
0 an an−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0

bm bm−1 bm−2 . . . 0 0 0
0 bm bm−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0



. (A1)

It follows that the resultant R( f , g) is [45,46]:

R( f , g) = am
n bn

m

n

∏
i=1

m

∏
j=1

(
ξi − ηj

)
≡ am

n bn
mD(a, b), (A2)

where ξ1, ξ2, . . . ξn are roots of f and η1, η2, . . . ηm are roots of g. Note that D(a, b) is a
high-order polynomial of variables a = (a0, a1, . . . , an), b = (b0, b1, . . . , bm).

Appendix B. Computational Details

Non-linear polynomial equations were solved numerically using the computational
engine Maple 4.0 from the Scientific WorkPlace 4.0. Figures were plotted with the com-
putational engine MuPAD 4.0 from Scientific WorkPlace 5.5. Curves shown in bifurca-
tion diagrams in Figures 5, 8 and 10 were computed by numerically integrating Equa-
tions (18) and (32) running DYNAMICS, a program written by Helena E. Nusse and James
A. Yorke [11], and our own programs written in Pascal.
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