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Abstract: Water surface plastic pollution turns out to be a global issue, having aroused rising attention
worldwide. How to monitor water surface plastic waste in real time and accurately collect and analyze
the relevant numerical data has become a hotspot in water environment research. (1) Background:
Over the past few years, unmanned aerial vehicles (UAVs) have been progressively adopted to
conduct studies on the monitoring of water surface plastic waste. On the whole, the monitored data
are stored in the UAVS to be subsequently retrieved and analyzed, thereby probably causing the loss
of real-time information and hindering the whole monitoring process from being fully automated.
(2) Methods: An investigation was conducted on the relationship, function and relevant mechanism
between various types of plastic waste in the water surface system. On that basis, this study built a
deep learning-based lightweight water surface plastic waste detection model, which was capable
of automatically detecting and locating different water surface plastic waste. Moreover, a UAV
platform-based edge computing architecture was built. (3) Results: The delay of return task data
and UAV energy consumption were effectively reduced, and computing and network resources
were optimally allocated. (4) Conclusions: The UAV platform based on airborne depth reasoning is
expected to be the mainstream means of water environment monitoring in the future.

Keywords: deep learning; edge computing; machine learning; open source unmanned aerial vehicle;
plastic waste detection; remote sensing; water environment protection

1. Introduction

Plastic refers to a type of high polymer compound that is characterized by differing
compositions and shape flexibility. It exhibits several advantages (e.g., impact resistance,
wear resistance, good insulation and low cost), nonetheless, it has significant defects.
Additionally, plastic cannot be effectively recovered through classification. As indicated
from the report of the voice of economy, the industrial ecology team of the University of
California estimated the overall amount of plastics available on Earth. Since it was invented
in 1909, mankind has produced approximately nine billion tons of plastics, equated with
25,000 Empire State buildings in New York and the sum of one billion elephants (e.g.,
plastic bottles, plastic bags and other plastic products). Merely 30% of plastic is recycled,
and 70% of plastic turns out to be garbage, most of which is buried under the land.
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According to the team of California scientists, considerable garbage floats in the ocean.
Plastic is suggested to be not biodegradable. Over time, macro plastic pieces degrade
into increasingly smaller pieces, termed microplastic (less than five millimeters long) [1].
Microplastic can be swallowed by various water surface organisms and then rise through
the food chain, ending up on our dinner tables [2]. Water surface plastic waste pollution
is a major challenge to the global ecology and impacts numerous fields (e.g., economics,
ecology, public health and aesthetics).

The amount of plastic waste in the ocean has reached 150 million tons, nearly one
fifth of the total weight of marine fish [3]. It is estimated that the weight of plastic in
the ocean will exceed that of fish by 2050. The international community has made some
efforts to build a standardized monitoring method, including Oslo and Paris Conventions
(OSPAR) (OSPAR commission, 2020) [4], Commonwealth Scientific and Industrial Research
Organization (CSIRO) [5], National Oceanic and Atmospheric Administration (NOAA) [6],
as well as United Nations Environment Programme/Intergovernmental Oceanographic
Commission (UNEP/IOC) [7]. However, little knowledge has been acquired from the total
quantity and spatial-temporal distribution of water surface plastic waste, and the monitor-
ing method remains in the preliminary stage. Mauro et al. [8] inserted 190 FTIR spectra
of plastic samples in a digital database and submitted those to Independent Component
Analysis (ICA) to extract the “pure” plastic polymers present. In addition, they established
the similarity with unknown plastics by employing the correlation coefficient (r), and the
cross-correlation function (CC). Topouzelis K. et al. [9] adopted worldview-2 images to
examine the optical properties exhibited by wet and dry plastics, as well as assessed the
possibility of multispectral images for floating plastic detection in water. Kyriacos et al. [10]
set seven indices for satellite image processing, which were examined to verify whether
they are capable of detecting plastic waste in water. Furthermore, the authors examined
two novel indices to be applied for processing satellite images, i.e., the Plastics Index (PI)
and the Reversed Normalized Difference Vegetation Index (RNDVI). The novel Plastic
Index (PI) is capable of detecting plastic objects floating on the water surface, and it has
been proven as the most effective index to detect the plastic waste target in the sea. By
mounting the equipment on a C-130 aircraft that surveyed the Great Pacific Garbage Patch,
Shungudzemwoyo et al. [11] captured red, green and blue (RGB) and hyperspectral SWIR
imagery. Furthermore, they explored SWIR spectral information acquired by employing a
SASI-600 imager (950−2450 nm) and then examined the potential of SWIR remote sensing
technology in detecting and quantifying ocean plastic.

Unmanned Aerial Vehicles (UAVs) have been demonstrated as an effective low-cost
image-capturing platform capable of accurately monitoring aquatic environments [12,13].
Gil et al. [14] proposed an Unmanned Aerial System (UAS)-based process for automated
water surface litter mapping under a beach-dune system. The very high-resolution or-
thophoto produced from UAS images was automatically screened by the random forest
machine learning method to characterize the water surface litter load on beach and dune
areas. A. Deidun et al. [15] optimized the protocol to monitor the identical litter along
coastal stretches within an MPA in the Maltese Islands through aerial drones, with the aim
of generating density maps for the beached litter. The mentioned process can help detect the
identical litter and mainstream such a methodology in national and regional programs for
monitoring water surface waste. UAVs have been exploited to capture geo-referenced RGB
images in the selected zone of a protected water surface area (the Migliarino, Massacciuccoli
and San Rossore Park near Pisa, Italy) in a long-term (ten month) monitoring program. A
post-processing system based on visual interpretation of the images can be applicable to
localizing and detecting the anthropogenic water surface debris in the scanned area, as well
as estimating their spatial and temporal distributions in different beach zones [16].

Over the past few years, deep learning theory and the practice of theory have been
trailblazing, and the theory has been applied for detecting water surface plastic waste.
The deep learning model can automatically select image features, which is considered an
advantage of the model. VGGNet [17], FCN [18], Faster R-CNN [19], Yolo [20], U-Net [21]
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and other models exhibit the most advanced accuracy in detecting floating plastic waste
in UAV images. Kyriaki et al. [22] proposed a macro plastic recognition model by com-
plying with the convolutional neural network (CNN). When the classifier is trained on
three identical types of plastic water surface garbage (i.e., plastic bottles, plastic buckets
and plastic straws), it is capable of recognizing novel plastic objects well, and the verifi-
cation accuracy reaches approximately 86%. Jun Ichiro et al. [23] explored the method of
exploiting autonomous robots (e.g., commercial UAVs and AUVs) to monitor water surface
environments. Moreover, they adopted the deep learning target detection algorithm Yolov3
to detect underwater water surface organisms and floating debris on the sea, achieving the
respective average accuracies of 69.6% and 77.2%. However, they ignored the top-level
spatial information, thereby causing the lack of accurate positioning and class boundary
characterization. Furthermore, the mentioned methods are primarily offline analysis meth-
ods based on aerial photography data acquired by using UAVs, i.e., UAVs acquire real-time
information from the surrounding environment by turning on the camera or sensor while
synchronously pushing it to the ground station. Subsequently, the ground station transmits
the video or image information acquired to the special image analysis server (workstation)
for subsequent analysis. All the above process is considered a significant resource-intensive
task. The model network is sophisticated with considerable parameters and low efficiency,
and the degree of real-time is largely determined by the bandwidth and stability of the
transmission network.

The strategy of edge computing can address the mentioned problems. Edge computing
decomposes the large-scale services originally processed by the central node and disperses
them to the edge nodes closer to the user terminal equipment. It is capable of expediting
the data processing and sending and reducing the delay. Kang Z. et al. [24] used the flight
points calculated by UAV to fly in turn to cover a convex polygon area. The detailed solving
process of flight point was given, while the programming, simulation and actual flight
experiment of the proposed method were performed. Zhang Z. et al. [25] first used the
deep learning model to preprocess the captured image and extracts useful information.
Subsequently, they transmitted these data to the edge server on the ground for further
analysis. Compared with the direct transmission of the original data, this method is capable
of significantly reducing the communication load.

The existing airborne image processing board has limited computing power, so it
cannot easily perform large-scale target solving tasks. As a typical one-stage algorithm,
Yolo series of target detection algorithms exhibit high precision and are fast and lightweight.
According to the latest yolov5, the fast reasoning time of the respective image is up to
0.007 s and 140 frames per second (FPS). Yolov5, an extremely lightweight target recognition
network, solves the problems of low efficiency of the full convolution model network, as
well as the difficulty in ensuring the classification effect. As indicated from the verification
of several public datasets, its accuracy is equivalent to that of EfficientDet and yolov4,
whereas the model size is only one tenth of the latter [26,27]. It is an ideal choice to carry
out edge computing on UAVs, unmanned ships and other platforms.

The rest of this study is organized below. First, in the second section, the research
area of the water surface plastic waste monitoring experiment is introduced, as well as the
photoelectric pod and target detection model applied by the aerial robot. Subsequently,
in the third section, the computer configuration of Aerial Robot and the training method
of target detection model is presented. To solve the problems of River waste monitoring,
this study proposed three optimization strategies, compared and analyzed the models
and discussed the recognition results of different models. Lastly, in the fourth section,
the specific challenges and future development trend of Aerial Robot are summarized for
real-time monitoring of plastic waste on the water surface.
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2. Materials and Methods
2.1. Study Area and UAV Trajectory Planning

The experiment of this study was conducted at the East Zhangwu Wetland Section of
Longhe river in Anci District, Langfang City, Hebei Province. The longitude amplitude of
the research area ranged from 116.69◦ N to 116.80◦ N, while the latitude amplitude was
from 39.41◦ E to 39.48◦ E. Longhe River refers to an interprovincial and intermunicipal
drainage channel, originating from Daxing District of Beijing and entering Yongding River
flooding area via a dike protection road in East Zhangwu of Langfang City. The river
exhibits a total length of 68.42 km and a drainage area of 577.94 km2, of which 256 km2 is
in Beijing and 322 km2 is in Langfang. The Longhe river serves as a vital barrier to protect
the ecological balance of the capital city.

The main water surface environmental protection method in East Zhangwu Wetland
section of Longhe River aims at irregular manual inspections and fishing as assisted by a
diesel-powered fishing boat (Figure 1). As impacted by the long river length, there are often
people picnicking and camping along its shores, so the possibility of sudden plastic waste
pollution is high. The existing salvage vessels have slow speeds (<20 km/h), the number of
operators is small (2 people) and the emergency response ability to sudden pollution is low.
Furthermore, if the number of inspections is extremely frequent, the exhaust gas emitted
by the vessels causes secondary pollution to the wetland environment.
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Figure 1. Salvage vessel for water surface waste inspection on the Longhe River.

The aerial robot can substitute for the salvage vessel to irregularly inspect the river
environment and send the waste detection results to the ground station on the salvage
vessel in real time. When the waste loading [28] reaches a certain degree, the salvage
vessel can perform accurate salvage in accordance with the waste position fed back by the
aerial robot. It is capable of significantly increasing the efficiency of salvage and saving
capital and labor costs while reducing the exhaust pollution attributed to repeated vessel
inspections.

QGroundControl software was adopted to design the flight route of the survey area.
QGroundControl can offer full flight control and the vehicle setup for PX4 or ArduPilot-
powered vehicles. To yield the optimal resolution, numerous experiments were performed,
and the optimal altitude of 7 m was determined. The speed was set at 5 m/s, the course
overlap rate was 80% and the side overlap rate was 75%. The flight route was perpendicular
to the river flow direction (Figure 2).
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Figure 2. Distribution of survey area.

2.2. Data Acquisition

The remote sensing images of the study area were captured with an Intel d435i
binocular depth camera on a Feisi x450 UAV (Figure 3a) developed by Beijing Droneyee
Intelligent Technology Co., Ltd., Beijing, China. There were four round holes on the front
of the d435 camera (Figure 3b). From left to right, the first and third were IR stereo cameras,
while the second and the fourth were an IR projector and a color camera, respectively. The
maximal distance of camera capture was 10 m, and the video transmission rate could be
up to 90 FPS. Feisi x450. The UAV is also equipped with a TX2 airborne visual processing
board, capable of performing visual navigation, target recognition and target following.
Other tasks will be introduced in Section 3.1.
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From the UAV survey, 10,000 UAV remote sensing images were selected area as the
sample database, with an image resolution of about 1 cm and a size of 2048 × 1080 pixels.
Of the 10,000 images, 7000 were employed as the training samples, and the remaining 3000
were employed as test samples to verify the recognition results. The data of this research are
available in ScienceDatabank (doi:10.11922/sciencedb.01121). This study used professional
labeling software in the UAV images to mark common plastic waste (e.g., plastic bottles,
plastic bags and plastic foam). The coordinates of the upper left corner and the lower right
corner of the rectangle box were recorded in an XML document.

As impacted by the small amount of plastic waste in the UAV remote sensing image,
to obtain higher training effect, the data were partially downloaded from the public dataset
as a supplement. Moreover, the data were randomly cut, rotated, scaled and flipped
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to generate multiple similar images. Data enhancement is capable of compensating for
incomplete data, effectively reducing the overfitting, making the model more applicable
to novel samples and improving the generalization utility of the model. Lastly, UAV
images were converted into datasets of visual object class format for pretraining of the deep
learning model.

2.3. Overall Research Framework

The overall research framework of this study is shown in Figure 4. First, the model
was pretrained by the open dataset. Subsequently, the model was trained and reasoned by
the labeled (interpretation object) training set. Given the characteristics exhibited by plastic
waste, the deep learning model was regulated to achieve a more effective solution and then
packaged. By building the intelligent analysis platform of edge computing UAV, the encap-
sulated deep learning model was transplanted to the airborne image processing board.
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The UAV processed and analyzed the plastic waste targets while capturing aerial
photos. In addition, it detected and counted the types and quantities of plastic waste
while transmitting the detection results back to the ground workstation on the salvage
vessel via data transmission. The operator decided when to perform the fishing work in
accordance with the quantity and position of plastic waste on the water surface obtained
by the workstation in real time.

2.4. Deep Network

The target detection of a flowing river is significantly challenging. There are many
challenges attributed to continuous plastic movement (e.g., low amount of training data,
high imbalance of dataset, frequent target location and scene changes). This study took
yolov5 as the baseline algorithm and proposed various optimization strategies to address
the problems in target detection. The overall flow chart of the algorithm is presented in
Figure 5.
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In this study, a novel deep learning network for target detection, yolov5, was adopted
to detect the labeled training set image. Yolov5 refers to the network exhibiting the smallest
depth and feature map width in the target detection series, with its accuracy equivalent
to that of yolov4, whereas the model is nearly 90% smaller than that of yolov4. Yolov5 is
considered a prominent lightweight network with fast convergence on multiple datasets
and high customizability. The relevant source code can be referenced from https://github.
com/ultralytics/YOLOv5 accessed on 9 April 2021. Yolov5 was implemented by complying
with the Python framework. Yolov5 operations place a novel focus on changing the image
into a feature map after slicing. Two CSP structures were applied in the backbone extraction
network. With yolov5′s network as an example, a csp1_ X structure was applied to the
backbone network, i.e., another type of csp2. The X structure was used in the neck. The
FPN + pan structure was selected as the neck. The csp2 structure designed by cspnet was
employed to improve the ability of network feature fusion.

CSP structure divides the feature map into two parts, and then merges it through the
proposed cross stage hierarchy. By splitting the gradient flow, the gradient flow propagates
through different network paths. It can greatly reduce the amount of calculation and
improve the reasoning speed and accuracy. Two CSP structures, csp1, are used in yolov5
network_ X for backbone feature extraction network, csp1_ X uses the residual structure
module to speed up the backbone feature extraction and network feature extraction capa-
bility. CSP2_ X is used for the neck network, FPN + pan structure is selected as the neck,
and csp2 is used_ X structure to improve the ability of network feature fusion.

Yolo, a highly typical target detection algorithm, refers to a single-stage algorithm
integrating target proposal stage and classification stage, and its detection rate is higher
than that of the two-stage RNN algorithm. Yolov5 is regarded as the latest version of the
Yolo architecture. Yolov5 architecture comprises four architectures, i.e., Yolov5s, Yolov5m,
Yolov5l and Yolov5x. To prevent the model from being extreme and overfitting, this study
selected Yolov5s with a relatively simple structure as the baseline model.

On the whole, Yolov5s framework comprises three parts (i.e., backbone network,
neck network and detection network). The backbone network aims to aggregate different

https://github.com/ultralytics/YOLOv5
https://github.com/ultralytics/YOLOv5
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convolutional neural network images, as an attempt to form image features. To be specific,
the first layer of the backbone network is the focus module. First, the respective input
UAV image fell to four slices, and the slice operation was used to reduce the amount of
model calculation and increase the training speed without image loss. Second, the four
parts were deeply connected by concat operation to output the size of the characteristic
graph. Subsequently, the results were outputted to the next layer via the convolution layer
(conv2d + BN + leakyrelu activation function, CBL) composed of 32 convolution cores.

The third layer of the backbone network refers to the BottleNeckCSP module used
to more effectively extract the deep features of the image. The Bottleneck CSP module
primarily consists of the bottleneck module. It connects the 1 × 1 CBL and 3 × 3 residual
network architecture of CBL. The ninth layer of the backbone network is the SPP module
(spatial pyramid pooling), converting any size feature map into a fixed size feature vector
to optimize the receptive field of the network. First, the neck network is the feature map
output after the convolution layer. The feature map is linked to the sub sampling depth of
the output feature map via three parallel maxpooling layers. The output feature map is
capable of retrieving the final output feature map via a convolution layer.

The neck network, a series of hybrid feature aggregation layer image features, is largely
exploited to generate a feature pyramid network and subsequently transmit the output
feature map to the detection network. The feature pyramid network structure optimizes
the bottom-up path, improves the transmission of low-level features and facilitates the
detection of floating plastic waste at different scales. Thus, the same target object with
different sizes and scales can be accurately detected. The detection network was primarily
applied for the last detection part of the model. The anchor box was applied into the feature
map output on the neck network, and a vector was outputted (e.g., the category probability
of the target object, the score of the object and the position of the bounding box around the
object). The detection network of Yolov5s architecture comprises three detection layers,
which are adopted to detect image objects of different sizes. Lastly, the respective detection
layer outputted a vector while generating and marking the prediction boundary box and
category of the target in the original image to detect plastic waste in the UAV image.

To increase the accuracy of water surface garbage detection, the original model was
converted to the modified Yolov5:

1. Modifying anchor structure

Anchor structure, a vital part of the Yolo series target detection algorithm, produces
suggestions for predicting potential objects. The original anchor structure exhibits high
performance in detecting various objects in the dataset (e.g., coco). However, the size of
these anchors is not applicable to small objects. The average size of plastic waste in the UAV
image here was less than 30 cm, and the total area of the image was only approximately
1% of the overall image area. In small target detection, setting a small anchor scale is
considered a feasible solution to solve the mentioned problem. However, it is arbitrary to
assess the performance of the model by comparing the anchor size and sample size, and the
model is also capable of finding a more appropriate size by the bounding box regression.
To select the appropriate anchor size, the anchor size selection setting was optimized by a
K-means clustering algorithm and then set experimentally [45,62; 25,20; 16,28], [13,9; 31,44;
10,26], [24,54; 15,21; 23,30]. Three groups of anchor structures were tested for the target
(Figure 6).
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2. Modify step size

Between the convolution layer and the aggregation layer of deep learning in the
network, several layers have steps larger than 1, thereby performing the down-sampling
operation and generating a series of smaller feature maps. The category and location of
small objects are difficult to predict in large step down-sampling. A simple and effective
method can be used to reduce the feature step for tackling down the down-sampling
problem in the small target detection. The 16strides was modified to 8strides to make
the feature extraction network accurately extract the plastic garbage in the UAV network
(Figure 7).
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3. Mechanism of increasing attention

The spatial information of river plastic waste is changeable, and the target is difficult to
detect. To detect river plastic waste, an attention mechanism was introduced efficiently and
accurately into the model, thereby ignoring irrelevant information and stressing localized
effective information. Common attention mechanism modules consist of the se module
and CBAM module, among others. This study introduced the Yolov5 model into the
CBAM module. The CBAM module is lightweight, with the structural features presented
in Figure 8. Given an intermediate feature graph, this study inferred the attention weight
by complying with the two dimensions of space and channel, and then multiplied it with
the original feature graph to adaptively regulate the feature. Since CBAM is a lightweight
general module, it can be seamlessly integrated to any CNN architecture, and the extra
overhead is negligible. Moreover, it can be trained end-to-end with basic CNN, and



Processes 2022, 10, 131 10 of 16

the results can make the model more sensitive to channel and spatial features, and the
performance can be enhanced with a small amount of computation.
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3. Results
3.1. Experimental Platform

The airborne image processing board applied experimentally was a TX2 embedded
platform for unmanned intelligent field launched by NVIDIA company (Figure 4). It
was a modular AI supercomputer, with the GPU of NVIDIA Pascal™ Architecture with
256 CUDA cores. Its CPU covers six cores, consisting of a dual-core denver2 processor
and a four-core arm cortex-a57. TX2 is powerful in performance and small in shape. It is
significantly applicable to intelligent edge equipment (e.g., a robot, a UAV and an intelligent
camera). After training the Yolov5 model on a virtual machine, the model was imported
into the TX2 processing board via an SD card. Through the corresponding path of the
trained model, the processing results were yielded.

3.2. Model Training Results

In this study, the Pascal VOC matrix reported by Everingham et al. [29] was used as
the evaluation protocol to verify false positives (FP), true positives (TP) and false negatives
(FN). When a predicted bounding box corresponds to a unique real bounding box, it is
counted as a TP when it has the largest IOU with a specific real bounding box and reaches
the IOU threshold (0.8). Otherwise, the predicted bounding box is considered a FP. When
the real bounding box cannot be combined with the predicted bounding box when the IOU
reaches the IOU threshold (0.8), it is considered a FN. The prediction of plastic waste in our
study is evaluated based on recall (R) and precision (P), which are defined as follows:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Recall provides insight into the predicted coverage of plastic floating waste, while
accuracy evaluates the accuracy of the predicted total. Since the recall rate and precision
only reflect one aspect of the model’s performance, the average precision (AP) and F1 score
were used to comprehensively evaluate the results. AP can be simply regarded as the area
under the accurate recall curve or expressed mathematically as:

AP = Σn
i=1Precisioni(Recalli − Recalli−1), withRecalli=0 = 0 (3)

The average accuracy of the whole class represents the average value of the whole
class mAP, it shows the ability of the target detection model to distinguish different floating
plastic wastes.

mAP = Σn
i=1AP/n (4)

The score threshold of the algorithm was set to 0.8 to suppress low score prediction.
High score predictions were compared with surface facts to yield a set of TP, FP, FN,
precision, recall and AP, mAP.

Deep learning models (i.e., Fast-RCNN, YOLOv5 and modified YOLOv5) were adopted
to train three types of plastic waste datasets (i.e., plastic bottles, plastic bags and foam
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plastics), respectively, on GTX 1080. The data were annotated through 100 iterations of
100 models, and the Yolov5 model P, R, AP and mAP curves were modified (Figure 9).
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converged in the iteration to 75 generations. The accuracy of AP and mAP remained more
than 80%, which shows that the model converged and the detection effect was good.

a. Performance Evaluation

1. Recognition results

Given the training results, three types of marine plastic waste were detected, and the
results are illustrated in Figure 10.

Because the garbage target was smaller, the local part was enlarged, the yellow border
was detected as a plastic bottle, green was plastic foam, purple was plastic bag, the three
plastic waste scores were all above 0.8 and the detection results were more accurate.

2. Accuracy comparison

All experimental models were migrated to the development board for experimental
comparison. As assisted by FPS (frames per second), AP, mAP and size of model, a
comparison was drawn for the accuracy of the detection results generated by Fast RCNN,
SDD, Yolov3, Yolov5 and the modified Yolov5 model (Table 1). After the modified Yolov5
model was transferred to the TX2 development board, FPS could reach 45, and mAP
was 94.55%, which indicated optimal overall performance. Thus, the requirements of
users to obtain the analysis results of the deep learning model in real time could be more
effectively met.
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Table 1. Detection results of the dataset.

Network FPS P R APbottle APbag APpolyfoam mAP Size of Model

Faster-CNN 10.24 0.88 0.87 0.82 0.88 0.86 0.85 345 MB
SSD 26.24 0.69 0.65 0.62 0.68 0.65 0.65 35.6 MB

Yolov3 35.62 0.73 0.76 0.71 0.73 0.75 0.73 236 MB
Yolov5 46.37 0.80 0.82 0.81 0.82 0.80 0.81 14.5 MB

Modified Yolov5 43.63 0.86 0.89 0.80 0.89 0.87 0.86 15.2 MB

4. Discussion

The Yolov5 network acts as a prominent lightweight network structure. The Yolov5
network’s far better performance is primarily attributed to focus structure slice pictures,
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extract features of cspnet and optimization strategies of giou using output. Although the
fast RCNN detection accuracy was equated with that of the optimized Yolov5, FPS was only
about 10 due to the calculation burden attributed to its two-stage structure, so it could not
easily meet the real-time requirements of data analysis. By modifying the original Yolov5,
the three optimization strategies had different degrees and exerted different effects on the
plastic detection classification. The adjustment of the anchor frame and the step length of
the anchor frame primarily aimed to address the problem of difficult recognition of small
target river waste by adopting the K-means clustering algorithm. The algorithm placed
its focus on the plastic waste target in the UAV image more efficiently by introducing an
attention detection layer while integrating the information of the plastic waste. Although
the optimized Yolov5 increased the model parameters and calculation amount, only 3 FPS
were lost, whereas the model’s accuracy was elevated by nearly 5%, thereby satisfying
the real-time performance and improving the reliability of the results. Furthermore, as
verified by the experimentally achieved results, the optimized Yolov5 outperformed other
detection algorithms.

The high-precision detection model increased the accuracy in the detection of marine
plastic waste, though some plastic waste was not detected due to the influence of the photo
environment and angle. On the whole, the recognition accuracy of plastic foam and plastic
bags was high, and the recognition accuracy of plastic bottles was slightly lower. The
former primarily resulted from the single recognition type and being easy to distinguish,
while the latter was largely attributed to the large number of shapes, colors and types,
which limited the recognition accuracy. Accordingly, the model could be further optimized
by increasing the scale of the dataset and collecting data from different environments.

As indicated from the experimentally achieved results, modified Yolov5 outperformed
other target detection methods. High-speed garbage detection can process images in real
time and offer floating garbage information for UAV in time in a changeable and complex
water environment. Although the fast RCNN achieves high accuracy, it cannot achieve
real-time performance due to the computational burden of a two-stage network, and the
model size is 345 mb. The huge model hinders the deployment of a UAV algorithm.
Yolov5 adopts the focus structure to slice the image, thereby improving the model detection
speed without image information loss. The model size is 14.5 mb, meeting the real-time
requirements. High-precision plastic detection can help the UAV platform complete the
task more accurately, reliably and stably. SSD and Yolov3 are far less accurate than the
Yolov5 network. The backbone feature extraction network exerts a certain effect on the
performance of the target detection model. The backbone feature extraction network of SSD
refers to the classic vgg16 and res101 network, the backbone feature extraction network of
Yolov3 is Darknet, and the backbone feature extraction network of Yolov5 is BottleNetCSP.
The performance of BottleNetCSP is noticeably better than that of conventional vgg16,
res101 and other networks. Its performance is equated with that of the Darknet classifier,
yet it has fewer floating-point operations and faster speed, thereby satisfying the practical
needs of speed and accuracy.

Yolov5 is prominent in accuracy and speed, so the rising space will not be significant
when improving. Accordingly, our goal is to achieve high speed while at least improving
the original accuracy. The anchor box reclustered by the K-means clustering algorithm will
be more applicable to three types of micro water surface garbage monitoring. Reducing the
step size can make the Yolov5 model find water surface plastic garbage better. Introducing
a CBAM attention detection layer enabled the target detection algorithm to focus on the
plastic garbage targets in UAV images more quickly. The three strategies improved the
accuracy of Yolov5. The optimized Yolov5 increased the model parameters and complicated
the calculation, and the model size was 15.2 mb; the FPS lost was only 3, whereas the model
accuracy increased by about 5%. It was also verified that the performance of the optimized
Yolov5 was better than that of other detection algorithms.

Some plastic wastes were not detected by the modified Yolov5 due to the influence of
photographing environment and angle. On the whole, the detection accuracy of plastic foam
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and plastic bag was high, and the recognition accuracy of plastic bottles was slightly lower.
The former was mainly due to the single recognition type and being easy to distinguish,
while the latter was primarily attributed to more shapes, colors and types, which limited
the recognition accuracy. Accordingly, the model could be further optimized by increasing
the scale of the dataset and collecting data from different environments.

The Yolov5 network comprises different sizes of four architectures (i.e., Yolov5s,
Yolov5m, Yolov5l and Yolov5x). Users can select specific models with appropriate sizes for
development and application. In the present study, the selection and design of the recogni-
tion algorithm largely considered its application environment in surface garbage, i.e., the
application deployment of detection algorithm on UAV, as an attempt to recognize plastic
floating garbage targets in real time. The advantages of light weight (very small model
size) and high detection speed of the Yolov5s network will downregulate the deployment
cost of the detection model, which shows that the detection model based on the optimized
Yolov5s has great potential to be deployed in the edge computing equipment of UAV, and
the algorithm can be built by training and strategy selection by complying with different
task requirements.

5. Conclusions

In this study, the optimized Yolov5 was used to detect three types of common surface
plastic waste. As indicated from the experimentally achieved results, the accuracy was
further improved compared with that of the original structure though three optimization
strategies (i.e., regulating the anchor frame, increasing the detection layer and shortening
the step length) that also made the FPS slightly lower. The accuracy of the fast CNN
model was equated with that of the Yolov5 model, but the FPS was low and inefficient. In
addition, by transferring the trained Yolov5 model to the UAV platform equipped with a
TX2 development board, the average accuracy was 86%, and the FPS was 35%. Compared
with the existing methods, the method adopted in this study could avoid the significant
occupation of network bandwidth attributed to the return video and the lack of information
attributed to the analysis delay. In addition, it could effectively achieve the real-time
detection and result feedback of all types of water surface plastic waste while significantly
increasing monitoring efficiency. The high-intelligence UAV platform is expected to be the
mainstream means of water environment monitoring in the future.
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