Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems’ Non-Fixed Points Discrete Solution
Abstract
:1. Introduction
2. Problem Description and Non-Fixed Points Discrete Method
2.1. Description of Dynamic Optimization Problem
2.2. Non-Fixed Points Discrete Division Method
3. Beetle Antennae Optimization Search
3.1. Basic Principles
3.2. Performance Analysis
Algorithm 1: BAS Algorithm |
Initialize the position of beetle ; Assign free parameters—the distance between the beetle’s two antennae ; step size ; max iteration ; spatial dimension ; 1. Calculate the fitness of the : ; 2. for = 1 to , 9. End for 10. Update the step size by Equation (5); 11. = the fitness of the best value; 12. Return . |
4. Enhanced Beetle Antennae Optimization Algorithm (EBSO)
4.1. Beetle Swarm
4.2. Balanced Direction Strategy
4.3. Introducing the Spiral Flight Mechanism
Algorithm 2: Enhanced Beetle Antennae Optimization Algorithm (EBSO) |
Input: Establish an objective function ; Output: Optimal search agent and fitness value of optimal position zbestValue; 1. Procedure EBSO 1. Initialize parameters, mainly including , , , , , and initialize beetle positions , where is the number of the population; 2. Randomly generate division points in the time interval; 3. Apply CalculateFitness function to calculate fitness value; 4. Use FindZbest function to find zbest and zbestValue; 15. End for 16. Output global optimal value; 17. End Procedure. 2: Procedure CalculateFitness 1. Initialize spatial dimension , which represents the dimension of problem; 7. return ; 8. End Procedure. 3: Procedure FindZbest 1. zbestValue = ; 8. Return , zbestValue; 9. End Procedure. |
4.4. Benchmark Functions
4.4.1. Parameter Settings
4.4.2. Statistical Result Comparison
5. Application of EBSO Algorithm in Chemical Process Control
5.1. Experimental Process Analysis
- The optimization problem of chemical process control is segmented by the random point method. The number of segments is N.
- We used the Runge–Kutta method to solve each segment after segmentation.
- We used the EBSO algorithm to optimize different chemical reactors.
5.2. Test Case and Analysis
5.2.1. Case 1: Inequality Constrained Optimization
5.2.2. Case 2: Batch Reactor Consecutive Reaction ()
5.2.3. Case 3: Tubular Reactor ()
5.2.4. Case 4: Parallel Reaction Problem of Isothermal Tubular Reactor ()
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, H.J.; Gao, Q.; Wu, Z.G.; Zhong, W.X. A Mixed Variable Variational Method for Optimal Control Problems with Applications in Aerospace Control. Zidonghua Xuebao/Acta Automatica Sinica 2011, 37, 1248–1255. [Google Scholar]
- Sun, Y.; Zhang, M.R.; Liang, X.L. Improved Gauss Pseudospectral Method for Solving Nonlinear Optimal Control Problem with Complex Constraints. Acta Automatica Sinica 2013, 39, 672–678. [Google Scholar] [CrossRef]
- Xu, W.F.; Jiang, A.P.; Wang, H.K.; Jiang, E.H.; Ding, Q.; Gao, H.H. A Grid Reconstruction strategy based on Pseudo Wigner-Ville Analysis for Dynamic Optimization Problem. CIESC J. 2019, 70, 158–167. [Google Scholar]
- Mekarapiruk, W.; Luus, R. Optimal Control by Iterative Dynamic Programming with Deterministic and Random Candidates for Control. Ind. Eng. Chem. Res. 2000, 39, 84–91. [Google Scholar] [CrossRef]
- Liu, X.G.; Chen, L.; Hu, Y.Q. Solution of Chemical Dynamic Optimization Using the Simultaneous strategies. Chin. J. Chem. Eng. 2013, 21, 55–63. [Google Scholar] [CrossRef]
- Virginie, M.; Jacques, J.; Girault, H.H. Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study. Anal. Chem. 2002, 74, 4279–4286. [Google Scholar]
- Daszykowski, M.; Kacamarek, K.; Vander Heyden, Y.; Walczak, B. Robust statistics in data analysis—A review: Basic concepts. Chemom. Intell. Lab. Syst. 2007, 85, 203–219. [Google Scholar] [CrossRef]
- Shi, B.; Yin, Y.; Liu, F. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process. CIESC J. 2019, 70, 979–986. [Google Scholar]
- Xu, C.; Mei, C.; Xu, B.; Ding, Y.; Liu, G. Biogeography-based learning particle swarm optimization method for solving dynamic optimization problems in chemical processes. CIESC J. 2017, 68, 3161–3167. [Google Scholar]
- Tabassum, M.F.; Saeed, M.; Akgül, A.; Farman, M.; Akram, S. Solution of chemical dynamic optimization systems using novel differential gradient evolution algorithm. Phys. Scr. 2021, 96, 035212. [Google Scholar] [CrossRef]
- Pham, Q.T. Dynamic Optimization of Chemical Engineering Processes by an Evolutionary Method. Comput. Chem. Eng. 1998, 22, 1089–1097. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, H.; Chen, D. Sequential Optimization of Chemical Dynamic Problems by Ant-Colony Algorithm. J. Chem. Eng. Chin. Univ. 2006, 20, 120–125. [Google Scholar]
- Vicente, M.; Sayer, C.; Leiza, J.R.; Arzamendi, G.; Lima, E.L.; Pinto, J.C.; Asua, J.M. Dynamic. Optimization of Non-Linear Emulsion Copolymerization Systems: Open-Loop Control of Composition and Molecular Weight Distribution. Chem. Eng. J. 2002, 85, 339–349. [Google Scholar] [CrossRef]
- Mitra, T. Introduction to dynamic optimization theory. In Optimization and Chaos; Springer: Berlin/Heidelberg, Germany, 2000; pp. 31–108. [Google Scholar]
- Peng, X.; Qi, R.B.; Du, W.L.; Qian, F. An Improved Knowledge Evolution Algorithm and its Application to Chemical Process Dynamic Optimization. CIESC 2012, 63, 841–850. [Google Scholar]
- Zang, R.L.; Li, S.R.; Ge, Y.L.; Chang, P. An Improved Krill Herd Algorithm for Solving Chemical Dynamic Optimization Problems. J. Syst. Sci. Math. Sci. 2016, 36, 961–972. [Google Scholar]
- Israel, N.O.; Antonio, F.T.; Miguel, A.G.-L. Dynamic Optimization of a Cryogenic Air Separation Unit Using a Derivative-free Optimization Approach. Comput. Chem. Eng. 2017, 109, 1–18. [Google Scholar]
- Peng, T.; Xu, C.; Zhao, W.X.; Du, W.L. Dynamic Optimization of Chemical Processes Using Symbiotic Organisms Search Algorithm. In Proceedings of the Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019. [Google Scholar]
- Xu, L.; Mo, Y.B.; Lu, Y.; Li, J. Improved seagull Optimization Algorithm Combined with an Unequal Division Method to Solve Dynamic Optimization Problems. Processes 2021, 9, 1037. [Google Scholar] [CrossRef]
- Kedir, A.K. Numerical Solution of First Order Ordinary Differential Equation by using Runge-Kutta Method. Int. J. Syst. Sci. Appl. Math. 2021, 6, 1–8. [Google Scholar]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. Int. J. Robot. Control 2018, 1, 1–3. [Google Scholar] [CrossRef]
- Avinash, C.P.; Vinay, A.T. Stance Detection Using Improved Whale Optimization Algorithm. Complex Intell. Syst. 2021, 7, 1649–1672. [Google Scholar]
- Van den Bergh, F.; Engelbrecht, A.P. A Cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 225–239. [Google Scholar] [CrossRef]
- Seyedali, M. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar]
- Rajesh, J.; Gupta, K.; Kusumakar, H.S. Dynamic optimization of chemical process using ant colony framework. Comput. Chem. 2001, 25, 583–595. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, P.; Wang, Y.; Liu, X.; Yang, C.; Lu, J.; Gui, W.; Sun, Y. Control Vector Parameterization-Based Adaptive Invasive Weed Optimization for Dynamic Processes. Chem. Eng. Technol. 2018, 41, 946–974. [Google Scholar] [CrossRef]
- Leonard, D.; Van Long, N.; Ngo, V.L. Optimal Control Theory and Static Optimization in Economics; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-33746-1. [Google Scholar]
- Asgari, S.A.; Pishvaie, M.R. Dynamic Optimization in Chemical Processes Using Region Reduction Strategy and Control Vector Parameterization with an Ant Colony Optimization Algorithm. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process. Eng. Biotechnol. 2008, 31, 507–512. [Google Scholar] [CrossRef]
- Qian, F.; Sun, F.; Zhong, W.; Luo, N. Dynamic Optimization of Chemical Engineering Problems Using a Control Vector Parameterization Method with an Iterative Genetic Algorithm. Eng. Optim. 2013, 45, 1129–1146. [Google Scholar] [CrossRef]
- Sun, F.; Zhong, W.M.; Cheng, H.; Feng, Q. Novel Control Vector Parameterization Method with Differential Evolution Algorithm and Its Application in Dynamic Optimization of Chemical Process. Process Syst. Eng. Process Saf. 2013, 21, 64–71. [Google Scholar]
- Liu, Z.Q.; Du, W.L.; Qin, R.B.; Qian, F. Dynamic optimization in Chemical Process using Improved Knowledge-Based Cultural Algorithm. CIESC J. 2010, 61, 2889–2895. [Google Scholar]
- Mo, Y.B.; Zheng, Q.Y.; Ma, Y.Z. Adaptive Cuckoo Search Algorithm and its Application to Chemical Engineering Optimization Problem. Comput. Appl. Chem. 2015, 32, 291–297. [Google Scholar]
- Rendfro, J.G.; Morshedi, A.M.; Asbjornsen, O.A. Simultaneous Optimization and Solution of Systems Described by Differential/Algebraic Equations. Comput. Chem. Eng. 1987, 11, 503–517. [Google Scholar] [CrossRef]
- Zhang, B.; Ch, D.Z.; Zhao, W.X. Iterative Ant-Colony Algorithm and its Application to Dynamic Optimization of Chemical Process. Comput. Chem. Eng. 2005, 29, 2078–2086. [Google Scholar] [CrossRef]
- Jiang, Q.Y.; Wang, L.; Lin, Y.; Hei, X.; Yu, G.; Lu, X. An Efficient Multi-objective Artificial Raindrop Algorithm and its Application to Dynamic Optimization Problems in Chemical Processes. Appl. Soft Comput. 2017, 5, 354–377. [Google Scholar] [CrossRef]
- Dadebo, S.A.; Mcauley, K.B. Dynamic Optimization of Constrained Chemical Engineering Problems Using Dynamic Programming. Comput. Chem. Eng. 1995, 19, 513–525. [Google Scholar] [CrossRef]
- Richard, F.; Tobias, J.; George, T. Dynamic Optimization with Simulated Annealing. Comput. Chem. Eng. 2005, 29, 273–290. [Google Scholar]
- Gunn, D.J.; Thomas, W.J. Mass Transport and Chemical Reaction in Multifunctional Catalyst Systems. Chem. Eng. Sci. 1965, 20, 89–100. [Google Scholar] [CrossRef]
- Chen, X.; Hualory, T.; Qi, R.; He, W.; Qian, F. Dynamic Optimization of Industrial Processes with Nonuniform Discretization-Based Control Vector Parameterization. IEEE Trans. Autom. Sci. Eng. 2014, 11, 1289–1299. [Google Scholar] [CrossRef]
- Huang, M.; Zhou, X.; Yang, C.; Gui, W. Dynamic Optimization using Control Vector Parameterization with State Transition Algorithm. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July 2017; pp. 4407–4412. [Google Scholar]
- Angira, R.; Santosh, A. Optimization of dynamic systems: A trigonometric differential evolution approach. Comput. Chem. Eng. 2007, 31, 1055–1063. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.G. Control Parameterization-Based Adaptive Particle Swarm Approach for Solving Chemical Dynamic Optimization Problems. Chem. Eng. Technol. 2014, 37, 692–702. [Google Scholar] [CrossRef]
- Tanartkik, P.; Biegler, L.T. A nested, simultaneous approach for dynamic optimization problems-II: The outer problem. Comput. Chem. Eng. 1997, 21, 735–741. [Google Scholar]
- Biegler, L.T. Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 1984, 8, 243–248. [Google Scholar] [CrossRef]
- Vassiliadis, V. Computational Solution of Dynamic Optimization Problems with General Differential-Algebraic Constraints. J. Guid. Control Dyn. 1993, 15, 457–460. [Google Scholar]
- Banga, J.R.; Seider, W.D. Global optimization of chemical processes using stochastic algorithms. In State of the Art in Global Optimization; Springer: Berlin/ Heidelberg, Germany, 1996; pp. 563–583. [Google Scholar]
- Vassiliadis, V.S.; Sargent, R.W.; Pantelides, C.C. Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints. Ind. Eng. Chem. Res. 1994, 33, 2123–2133. [Google Scholar] [CrossRef]
Benchmark Test Function | Search Interval | Theoretical Value | |
---|---|---|---|
Sphere | [−5.12, 5.12] | 0 | |
Griewank | [–600, 600] | 0 | |
Rotated Hyper-Ellipsoid | [−65.536, 65.536] | 0 | |
Sum Squares | [−10, 10] | 0 | |
Drop-Wave | [−5.12, 5.12] | −1 | |
Ackley | [−32.768, 32.768] | 0 | |
Schaffer n.2 | [−100, 100] | 0 | |
Sum of Different Powers | [−1, 1] | 0 | |
Easom | [−100, 100] | −1 | |
Rastrigin | [−5.12, 5.12] | 0 |
Test Function | Algorithm | Best Value | Worst Value | Average Value |
---|---|---|---|---|
PSO | 3.4405 × 10−9 | 1.5306 × 10−7 | 2.1727 × 10−8 | |
BAS | 5.0383 × 10−6 | 1.7522 × 10−5 | 6.1773 × 10−6 | |
WOA | 1.5911 × 10−22 | 8.3121 × 10−21 | 6.6598 × 10−22 | |
ALO | 7.1305 × 10−15 | 3.8143 × 10−13 | 5.2281 × 10−14 | |
HBSO | 0 | 9.3428 × 10−201 | 1.5928 × 10−204 | |
PSO | 0.0074 | 0.0298 | 0.0123 | |
BAS | 1.7232 × 10−6 | 1.1102 × 10−5 | 5.3476 × 10−6 | |
WOA | 1.0814 × 10−2 | 3.4762 × 10−1 | 1.8842 × 10−1 | |
ALO | 8.2277 × 10−2 | 2.9041 × 10−1 | 1.0327 × 10−1 | |
HBSO | 0 | 0 | 0 | |
PSO | 1.7935 × 10−7 | 9.5516 × 10−5 | 5.6821 × 10−6 | |
BAS | 1.0297 × 10−7 | 2.0875 × 10−5 | 1.8439 × 10−6 | |
WOA | 1.1697 × 10−22 | 5.5903 × 10−15 | 6.7422 × 10−21 | |
ALO | 3.2245 × 10−12 | 5.8248 × 10−10 | 9.3217 × 10−11 | |
HBSO | 0 | 3.7692 × 10−198 | 9.2261 × 10−201 | |
PSO | 1.5277 × 10−9 | 3.5208 × 10−7 | 1.5627 × 10−8 | |
BAS | 9.2061 × 10−7 | 1.8449 × 10−5 | 4.3599 × 10−6 | |
WOA | 5.6546 × 10−21 | 1.9977 × 10−19 | 1.0534 × 10−20 | |
ALO | 6.6134 × 10−13 | 1.9892 × 10−11 | 2.3597 × 10−12 | |
HBSO | 7.1755 × 10−200 | 1.3631 × 10−199 | 9.3572 × 10−200 | |
PSO | −1 | −0.9962 | −0.9999 | |
BAS | −0.9323 | −0.5747 | −0.8824 | |
WOA | −0.9362 | −0.9362 | −0.9362 | |
ALO | −1 | −0.9362 | −0.9809 | |
HBSO | −1 | −1 | −1 | |
PSO | 4.2921 × 10−4 | 2.3037 × 10−1 | 2.0335 × 10−3 | |
BAS | 5.0334 × 10−3 | 3.5262 × 10−2 | 2.1812 × 10−2 | |
WOA | 4.8258 × 10−10 | 1.8859 × 10−7 | 1.3449 × 10−9 | |
ALO | 1.1114 × 10−6 | 1.3602 × 10−5 | 8.4639 × 10−5 | |
HBSO | 8.8818 × 10−16 | 4.4409 × 10−15 | 9.3579 × 10−16 | |
PSO | 3.1446 × 10−9 | 1.3792 × 10−8 | 9.3415 × 10−9 | |
BAS | 1.2486 × 10−9 | 6.6837 × 10−3 | 2.0355 × 10−5 | |
WOA | 1.1775 × 10−4 | 3.0943 × 10−3 | 4.6371 × 10−4 | |
ALO | 1.3589 × 10−15 | 2.1957 × 10−13 | 1.5957 × 10−14 | |
HBSO | 0 | 0 | 0 | |
PSO | 1.3672 × 10−13 | 6.5523 × 10−9 | 9.0066 × 10−11 | |
BAS | 2.0241 × 10−6 | 9.1889 × 10−5 | 4.3081 × 10−6 | |
WOA | 3.0748 × 10−33 | 6.6872 × 10−26 | 5.8416 × 10−30 | |
ALO | 3.0309 × 10−12 | 9.3178 × 10−9 | 1.6180 × 10−11 | |
HBSO | 1.1078 × 10−205 | 2.5512 × 10−204 | 4.8596 × 10−205 | |
PSO | −1 | −1 | −1 | |
BAS | −1 | −0.9997 | −0.9999 | |
WOA | −0.9999 | −0.9984 | −0.9993 | |
ALO | −0.9999 | −0.9999 | −0.9999 | |
HBSO | −1 | −1 | −1 | |
PSO | 4.1513 × 10−7 | 1.2533 × 10−4 | 1.4602 × 10−6 | |
BAS | 0.9980 | 7.5814 | 3.9862 | |
WOA | 7.1054 × 10−15 | 1.9996 | 3.0965 × 10−9 | |
ALO | 1.9899 | 4.9748 | 2.9848 | |
HBSO | 0 | 0 | 0 |
Parameter | Represent | Value |
---|---|---|
Beetle population | 50 | |
Spatial dimension | 20 | |
The maximum number of iterations | 100 | |
Correlation coefficient of spiral shape | 0.0001 | |
The distance between the two antennae | 1 | |
Beetle step size | 1 | |
Beetle step size decreasing factor | 0.95 |
Comparison of Other Segment Points | ||
---|---|---|
Methods | Segments | Optimum |
Reference [25] | 4 | 0.76238 |
EBSO | 10 | 0.76240714 |
EBSO | 20 | 0.76188931 |
EBSO | 40 | 0.76135774 |
IWO-CVP [26] | 50 | 0.76159793 |
ADIWO-CVP [26] | 50 | 0.76159417 |
EBSO | 50 | 0.76238 |
ACO-CP [25] | - | 0.761594156 |
OCT [27] | - | 0.761594156 |
IACO-CVP [28] | - | 0.76160 |
IGA-CVP [29] | - | 0.761595 |
Methods | |
---|---|
SACA [12] | 0.6100 |
IKEA [15] | 0.6101 |
IKBCA [31] | 0.6101 |
VSACS [32] | 0.6101 |
Reference [33] | 0.610 |
IACA [34] | 0.6100 |
MOARA [35] | 0.60988 |
AEPF [36] | 0.610070 |
This work (EBSO) | 0.610558922 |
Methods | |
---|---|
SACA [12] | 0.6104 |
IKEA [15] | 0.610426 |
IKBCA [31] | 0.610454 |
VSACS [32] | 0.610454 |
IACA [34] | 0.6104 |
AEPF [36] | 0.610453 |
This work (EBSO) | 0.61064758 |
Comparison of Other Segment Points | ||
---|---|---|
Methods | Segments | |
Reference [25] | 4 | 0.61045 |
EBSO | 4 | 0.61047235 |
PSO-CVP [8] | 25 | 0.6105359 |
AEPF [36] | 25 | 0.610535 |
EBSO | 25 | 0.61055712 |
AEPE [36] | 50 | 0.610708 |
Reference [37] | 50 | 0.6107 |
EBSO | 50 | 0.61071215 |
CVP-DE [30] | 60 | 0.6173 |
EBSO | 60 | 0.61744916 |
AEPF [36] | 80 | 0.610775 |
EBSO | 80 | 0.61078114 |
Methods | |
---|---|
IKEA [15] | 0.475 |
VSACS [32] | 0.473630 |
ndCVP-HGPSO [39] | 0.47363 |
STA [40] | 0.47363 |
GA [40] | 0.47363 |
PSO [40] | 0.47363 |
This work (EBSO) | 0.47502183 |
Methods | |
---|---|
PWV-CVP [3] | 0.4752719 |
IKEA [15] | 0.4757 |
IKBCA [31] | 0.4753 |
VSACS [32] | 0.475272 |
AEPF [36] | 0.475272 |
ndCVP-HGPSO [39] | 0.47527 |
DE [41] | 0.475269 |
TDE [41] | 0.475269 |
This work (EBSO) | 0.47627191 |
Comparison of Other Segment Points | ||
---|---|---|
Methods | Segments | |
ndCVP-HGPSO [39] | 5 | 0.47260 |
STA [40] | 5 | 0.47260 |
GA [40] | 5 | 0.47260 |
PSO [40] | 5 | 0.47260 |
EBSO | 5 | 0.47426117 |
UD-CVP [3] | 15 | 0.47363 |
PWV-CVP [3] | 15 | 0.47363 |
ndCVP-HGPSO [39] | 15 | 0.47363 |
STA [40] | 15 | 0.47453 |
GA [40] | 15 | 0.47453 |
PSO [40] | 15 | 0.47453 |
EBSO | 15 | 0.46011742 |
AEPF [36] | 40 | 0.476946 |
DE [41] | 40 | 0.476827 |
TDE [41] | 40 | 0.476826 |
EBSO | 40 | 0.47697288 |
Comparison of Other Segment Points | ||
---|---|---|
Methods | Segments | |
Reference [25] | 4 | 0.57284 |
EBSO | 4 | 0.57296913 |
AEPF [36] | 10 | 0.572241 |
EBSO | 10 | 0.57317785 |
AEPF [36] | 20 | 0.57330 |
EBSO | 20 | 0.57342901 |
AEPF [36] | 40 | 0.57348 |
Equal Division (ISOA) [19] | 40 | 0.573073 |
Unequal Division (ISOA) [19] | 40 | 0.573535 |
EBSO | 40 | 0.57412271 |
AEPF [36] | 80 | 0.57353 |
CP-APSO [42] | - | 0.573544 |
CP-PSO [42] | - | 0.573543 |
Reference [43] | - | 0.5738 |
CVP [44] | - | 0.56910 |
CVI [44] | - | 0.57322 |
Reference [45] | - | 0.57353 |
MCB [46] | - | 0.57353 |
CPT [47] | - | 0.57353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Mo, Y.; Lu, Y.; Liu, R. Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems’ Non-Fixed Points Discrete Solution. Processes 2022, 10, 148. https://doi.org/10.3390/pr10010148
Lyu Y, Mo Y, Lu Y, Liu R. Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems’ Non-Fixed Points Discrete Solution. Processes. 2022; 10(1):148. https://doi.org/10.3390/pr10010148
Chicago/Turabian StyleLyu, Yucheng, Yuanbin Mo, Yanyue Lu, and Rui Liu. 2022. "Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems’ Non-Fixed Points Discrete Solution" Processes 10, no. 1: 148. https://doi.org/10.3390/pr10010148
APA StyleLyu, Y., Mo, Y., Lu, Y., & Liu, R. (2022). Enhanced Beetle Antennae Algorithm for Chemical Dynamic Optimization Problems’ Non-Fixed Points Discrete Solution. Processes, 10(1), 148. https://doi.org/10.3390/pr10010148