Modes of Occurrence of Chromium and Their Thermal Stability in Low-Rank Coal Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials Analysis
2.3. SEM-EDX Analysis
2.4. Concentration Analysis of Cr and Cl
2.5. SCE
2.6. TG Analysis
2.7. Pyrolysis
2.8. Release Ratio and Extraction Ratio of Cr
2.9. Thermochemical Equilibrium Simulation
3. Results and Discussion
3.1. Modes of Occurrence of Cr
3.2. Pyrolysis Experiment
3.2.1. Pyrolysis in Thermogravimetric Analyzer
3.2.2. Pyrolysis in Fixed-Bed Reactor
3.3. Release Behavior of Cr in Raw Coal
3.4. Release Behavior of Cr in SCS
3.4.1. Release Behavior of Cr in HCl/HNO3/H2O2-Sample Pyrolysis
3.4.2. Release Behavior of Cr in HCl/HF/H2O2-Sample Pyrolysis
3.4.3. Release Behavior of Cr in HCl/HF/HNO3-Sample Pyrolysis
3.5. Thermochemical Equilibrium Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, L.; Zhang, G.; Zhang, L.; Klinger, D.; Meyer, B. Effects of Contact Conditions between Particles and Volatiles during Co-Pyrolysis of Brown Coal and Wheat Straw in a Thermogravimetric Analyzer and Fixed-Bed Reactor. Processes 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, Q.; Bai, X.; Deng, J.; Hu, Y. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017. Minerals 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Vejahati, F.; Xu, Z.; Gupta, R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization—A review. Fuel 2010, 89, 904–911. [Google Scholar] [CrossRef]
- Baruthio, F. Toxic effects of chromium and its compounds. Biol. Trace Elem. Res. 1992, 32, 145–153. [Google Scholar] [CrossRef]
- Dang, J.; Xie, Q.; Liang, D.; Wang, X.; Dong, H.; Cao, J. The Fate of Trace Elements in Yanshan Coal during Fast Pyrolysis. Minerals 2016, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, S.; Niu, Q.; Chen, S.; Meng, X.; Zhang, D.; Li, M.; Liang, P. Mercury distribution in Guizhou bituminous coal and its releasing behavior during mild pyrolysis process. Fuel Process. Technol. 2019, 185, 38–45. [Google Scholar] [CrossRef]
- Sotiropoulou, R.E.P.; Serafidou, M.; Skodras, G. Thermal mercury removal from coals: Effect of pyrolysis conditions and kinetic analysis. Fuel 2019, 238, 44–50. [Google Scholar] [CrossRef]
- Guo, R.; Yang, J.; Liu, D.; Liu, Z. The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis. J. Anal. Appl. Pyrolysis 2003, 70, 555–562. [Google Scholar] [CrossRef]
- Guo, R.; Yang, J.; Liu, Z. Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor. Fuel 2004, 83, 639–643. [Google Scholar] [CrossRef]
- Guo, R.; Yang, J.; Liu, Z. Thermal and chemical stabilities of arsenic in three Chinese coals. Fuel Process. Technol. 2004, 85, 903–912. [Google Scholar] [CrossRef]
- Khare, P.; Baruah, B.P. Chemometric analysis of trace elements distribution in raw and thermally treated high sulphur coals. Fuel Process. Technol. 2010, 91, 1691–1701. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, G.; Cai, Y.; Li, L.; Li, H. The volatilization of trace elements during oxidative pyrolysis of a coal from an endemic arsenosis area in southwest Guizhou, China. J. Anal. Appl. Pyrolysis 2012, 98, 184–193. [Google Scholar] [CrossRef]
- Wu, H.; Glarborg, P.; Frandsen, F.J.; Dam-Johansen, K.; Jensen, P.A.; Sander, B. Trace elements in co-combustion of solid recovered fuel and coal. Fuel Process. Technol. 2013, 105, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Querol, X.; Fernández-Turiel, J.; López-Soler, A. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 1995, 74, 331–343. [Google Scholar] [CrossRef]
- Frandsen, F.; Dam-Johansen, K.; Rasmussen, P. Trace elements from combustion and gasification of coal—An equilibrium approach. Prog. Energy Combust. Sci. 1994, 20, 115–138. [Google Scholar] [CrossRef]
- Chen, C.; Luo, Z.; Yu, C. Release and transformation mechanisms of trace elements during biomass combustion. J. Hazard. Mater. 2019, 380, 120857. [Google Scholar] [CrossRef]
- Miller, B.; Dugwell, D.R.; Kandiyoti, R. The Influence of Injected HCl and SO2 on the Behavior of Trace Elements during Wood-Bark Combustion. Energy Fuels 2003, 17, 1382–1391. [Google Scholar] [CrossRef]
- Zhang, J.; Han, C.-L.; Xu, Y.-Q. The release of the hazardous elements from coal in the initial stage of combustion process. Fuel Process. Technol. 2003, 84, 121–133. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Qin, S.; Panchal, B.; Sun, Y.; Niu, H. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants. Fuel 2019, 258. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Q.; Wang, Y.; Wang, J.; Zhang, Y.; Pan, W.-P. Arsenic release and transformation in co-combustion of biomass and coal: Effect of mineral elements and volatile matter in biomass. Bioresour. Technol. 2020, 297, 122388. [Google Scholar] [CrossRef]
- Kolker, A.; Huggins, F.E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B. Mode of occurrence of arsenic in four US coals. Fuel Process. Technol. 2000, 63, 167–178. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.; Zhang, S.; Chen, Y. Modes of Occurrence and Abundance of Trace Elements in Pennsylvanian Coals from the Pingshuo Mine, Ningwu Coalfield, Shanxi Province, China. Minerals 2016, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Rajabzadeh, M.A.; Ghorbani, Z.; Keshavarzi, B. Chemistry, mineralogy and distribution of selected trace-elements in the Parvadeh coals, Tabas, Iran. Fuel 2016, 174, 216–224. [Google Scholar] [CrossRef]
- Luo, G.; Ma, J.; Han, J.; Yao, H.; Xu, M.; Zhang, C.; Chen, G.; Gupta, R.; Xu, Z. Hg occurrence in coal and its removal before coal utilization. Fuel 2013, 104, 70–76. [Google Scholar] [CrossRef]
- Xiong, Y.; Xiao, T.; Liu, Y.; Zhu, J.; Ning, Z.; Xiao, Q. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China. Ecotoxicol. Environ. Saf. 2017, 144, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. Int. J. Coal Geol. 2002, 53, 55–64. [Google Scholar] [CrossRef]
- Luo, G.; Yao, H.; Xu, M.; Gupta, R.; Xu, Z. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proc. Combust. Inst. 2011, 33, 2763–2769. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Niu, X.; Gao, L.; Cao, Y.; Wei, X.-X.; Li, X. Mercury release characteristics during pyrolysis of eight bituminous coals. Fuel 2018, 222, 250–257. [Google Scholar] [CrossRef]
- Guo, S.; Yang, J.; Liu, Z. Characterization of Hg in Coals by Temperature-Programmed Decomposition–Atomic Fluorescence Spectroscopy and Acid-Leaching Techniques. Energy Fuels 2012, 26, 3388–3392. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, H.; Chu, M.; Chang, Z.; Wang, X.; Zhang, G.; Gong, Y.; Qu, Y. Eeffects of occurrence mode of Cd in low rank coal on its volability during pyrolysis process. J. China Coal Soc. 2019, 44, 323–331. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, L.; Guo, H.; Wang, X.; Chu, M.; Zhang, G.; Zhang, L. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis. Int. J. Coal Sci. Technol. 2019, 6, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.-C.; Zhang, N.; Peng, C.; Cong, L.; Ouyang, C.; Han, R. Arsenic in Coal: Modes of Occurrence, Distribution in Different Fractions, and Partitioning Behavior during Coal Separation—A Case Study. Energy Fuels 2016, 30. [Google Scholar] [CrossRef]
- Steel, K.M.; Besida, J.; O’Donnell, T.A.; Wood, D.G. Production of Ultra Clean Coal: Part I—Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids. Fuel Process. Technol. 2001, 70, 171–192. [Google Scholar] [CrossRef]
- Steel, K.M.; Patrick, J.W. The production of ultra clean coal by chemical demineralisation. Fuel 2001, 80, 2019–2023. [Google Scholar] [CrossRef]
- Riley, K.W.; French, D.H.; Farrell, O.P.; Wood, R.A.; Huggins, F.E. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 2012, 94, 214–224. [Google Scholar] [CrossRef]
- Wenfeng, W.; Yong, Q.I.N.; Bo, J.; Xuehai, F.U. Modes of Occurrence and Cleaning Potential of Trace Elements in Coals from the Northern Ordos Basin and Shanxi Province, China. Acta Geol. Sin.-Engl. Ed. 2010, 78, 960–969. [Google Scholar] [CrossRef]
- Wang, J.; Sharma, A.; Tomita, A. Determination of the Modes of Occurrence of Trace Elements in Coal by Leaching Coal and Coal Ashes. Energy Fuels 2003, 17, 29–37. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yan, X.; Ji, D.; Yang, Y.; Hu, L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Zhang, G. Mineral Matter Behavior during Co-Gasification of Coal and Biomass. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2014. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa-154413 (accessed on 2 November 2021).
Sample | Crd (μg/g) | Cld (μg/g) | Proximate Analysis (wt%) | Ultimate Analysis (wt%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | FCdaf | Cdaf | Hdaf | Odaf | Ndaf | St,daf | |||
NMH | 5.22 | 60 | 9.16 | 9.95 | 52.76 | 47.24 | 77.41 | 6.60 | 13.23 | 2.16 | 0.60 |
GL | 14.56 | 910 | 10.13 | 12.13 | 38.49 | 61.51 | 76.72 | 5.07 | 15.39 | 0.81 | 2.01 |
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | MgO | K2O | SO3 |
---|---|---|---|---|---|---|---|---|
NMH | 39.35 | 16.64 | 5.88 | 23.30 | 2.95 | 1.23 | 0.38 | 8.83 |
GL | 32.57 | 14.03 | 10.11 | 17.00 | 0.57 | 6.43 | 0.42 | 17.84 |
Stage | Power (W) | Ramp (min) | Temperature (°C) | Hold (min) |
---|---|---|---|---|
1 | 1600 | 8 | 120 | 4 |
2 | 1600 | 8 | 160 | 5 |
3 | 1600 | 5 | 185 | 25 |
4 | Cooldown |
Step | Reagent | Time/h | Temperature/℃ | Occurrence Modes |
---|---|---|---|---|
1 | 5 mol/L HCl | 6 | 60 | Bound to carbonate |
2 | 40% HF | 6 | 60 | Bound to aluminosilicate |
3 | 5 mol/L HNO3 | 6 | 45 | Bound to disulfide |
4 | 30% H2O2 | 6 | 85 | Bound to organic matter |
Element | Mass/g | Ash Composition | Mass/g | ||
---|---|---|---|---|---|
NMH | GL | NMH | GL | ||
C | 77.41 | 76.72 | SiO2 | 3.92 | 3.95 |
H | 6.60 | 5.07 | Al2O3 | 1.66 | 1.70 |
O | 13.23 | 15.39 | CaO | 2.32 | 2.06 |
N | 2.16 | 0.81 | SO3 | 0.88 | 2.16 |
S | 0.60 | 2.01 | MgO | 0.12 | 0.78 |
Cr | 5.22E-4 | 1.46E-3 | K2O | 0.04 | 0.05 |
Cl | 6.00E-3 | 9.10E-2 | Na2O | 0.29 | 0.07 |
Fe2O3 | 0.59 | 1.23 |
Char Yield/% | 400 °C | 500 °C | 600 °C | 700 °C | 800 °C |
---|---|---|---|---|---|
NMH | 73.06 | 64.33 | 59.24 | 56.45 | 55.72 |
GL | 78.65 | 68.31 | 66.01 | 62.83 | 61.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhou, L.; Zhu, S.; Zheng, H.; Ma, Y.; Liu, Y.; Jia, C.; Zhou, C.; Bie, L.; Zhang, G. Modes of Occurrence of Chromium and Their Thermal Stability in Low-Rank Coal Pyrolysis. Processes 2022, 10, 15. https://doi.org/10.3390/pr10010015
Wang X, Zhou L, Zhu S, Zheng H, Ma Y, Liu Y, Jia C, Zhou C, Bie L, Zhang G. Modes of Occurrence of Chromium and Their Thermal Stability in Low-Rank Coal Pyrolysis. Processes. 2022; 10(1):15. https://doi.org/10.3390/pr10010015
Chicago/Turabian StyleWang, Xiaobing, Lingmei Zhou, Shuquan Zhu, Hao Zheng, Yue Ma, Yuchen Liu, Chenxin Jia, Changjiang Zhou, Lijuan Bie, and Guanjun Zhang. 2022. "Modes of Occurrence of Chromium and Their Thermal Stability in Low-Rank Coal Pyrolysis" Processes 10, no. 1: 15. https://doi.org/10.3390/pr10010015
APA StyleWang, X., Zhou, L., Zhu, S., Zheng, H., Ma, Y., Liu, Y., Jia, C., Zhou, C., Bie, L., & Zhang, G. (2022). Modes of Occurrence of Chromium and Their Thermal Stability in Low-Rank Coal Pyrolysis. Processes, 10(1), 15. https://doi.org/10.3390/pr10010015