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Abstract: In order to better evaluate the effects of ethanol/diesel blends on engine combustion and
emission characteristics, we developed an engine cylinder model using the software CONVERGE
combined with the program CHEMKIN. The model was validated experimentally. A modified
chemical kinetic mechanism was used to calculate the combustion process of diesel fuel and ethanol
for the diesel engine, including 154 reactions and 68 species. Furthermore, the influence of different
ethanol proportions on diesel engine combustion and emission characteristics, including power,
brake specific fuel consumption, brake thermal efficiency, cylinder pressure, cylinder temperature,
nitrogen oxide (NOx), carbon monoxide (CO), and soot emissions, was also investigated. Our results
showed that cylinder pressure and temperature increased with increased ethanol content. When the
ethanol content increased to 20% at 100% load, the cylinder pressure increased by 0.46%, and the
thermal efficiency increased by 3.63%. However, due to the lower calorific value of ethanol, the power
decreased by 4.12%, and the brake specific fuel consumption increased by 4.23%. In addition,
the ethanol/diesel blends significantly reduced CO and soot emissions. Compared with diesel,
soot and CO emissions from the D80E20 at 100% load reduced by 63.25% and 17.24%, respectively.
However, NOx emission increased by 1.39%.

Keywords: diesel engine; ethanol/diesel blended fuel; CONVERGE; combustion and emission
characteristics

1. Introduction

Diesel engines are extensively used in both agriculture and industry due to their
high thermal efficiency [1], good fuel efficiency [2], and higher power [3]. Although the
diesel engine has brought prosperity to the world economy, it also faces more serious
problems such as energy shortages and environmental pollution [4]; this has been a major
scientific research topic for diesel engine researchers seeking ways to save energy and
reduce emissions [5]. In order to reduce human dependence on fossil energy and adapt to
increasingly stringent emission regulations, research on the application of renewable and
clean fuels in energy consumption continues to receive extensive attention [6]. Biomass
fuels represented by ethanol show great potential in reducing diesel consumption and
exhaust gas emission. Some even completely replace fossil fuels and are applied to diesel
engines [7,8].

Ethanol has a certain calorific value and sufficient combustion; it can also be used as a
clean oxygenated fuel [9]. Since it is inexpensive and easy to obtain, ethanol is suitable as
an additional fuel blended with diesel [10]. The combustion flame propagation speed of
ethanol is fast [11], the combustion efficiency is high, the combustion quality is good [12],
and the incomplete combustion products CO and hydrocarbon (HC) are fewer [13]. Com-
pared with diesel, ethanol has a higher latent heat of vaporization. Vaporization can reduce
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the maximum combustion temperature in the cylinder and reduce NOx emission [14].
Simultaneously, the pressure in the cylinder reduces, the air intake and charge coefficient
increase, and the diesel power performance improves [15].

As an alternative fuel to petroleum, ethanol is a hot spot in contemporary research.
Many studies show that [16–21] oxygenated fuel has many advantages over traditional fuel
in optimizing emissions. Ethanol is a typical oxygenated fuel [22]. Ethanol preparation uses
cellulose and other wastes as raw materials that belong to renewable energy. Biofuel ethanol
decreases harmful emissions such as carbon dioxide (CO2) and particles matter (PM), CO,
and HC in motor vehicle exhaust [23], which is conducive to improving the ecological
environment [24]. As an oxygenated renewable fuel, ethanol has been widely studied and
is suitable for improving diesel engine emissions and replacing fossil fuels [25]. Dongle
et al. [26] studied the impact of fuel stratification on the combustion characteristics of
diesel/ethanol dual-fuel engines. Their results showed that ethanol prolonged the ignition
delay period. Pedrozo et al. [27] studied the impact of diesel/ethanol dual fuel on engine
combustion characteristics and emissions. According to their results, the net indicated
that the thermal efficiency of the dual-fuel engine was higher than the traditional diesel
engine, with an average effective pressure range between 0.6 and 2.4 MPa. In addition,
the use of the Miller cycle further improved net efficiency and reduced NOx emissions from
diesel/ethanol dual-fuel engines.

In summary, the blending of ethanol and diesel can improve the combustion and
emission characteristics of the engine significantly. In addition, with the development
of computers, numerical engine simulation has become an important means of engine
research and development [28,29]. Currently, widely used simulation software include
ANSYS Fluent, CONVERGE, AVL-Fire, AVL-BOOST, etc. Fan et al. [30] studied the mixing
formation and combustion of direct hydrogen injection and natural gas rotary injection
engines using the software ANSYS FLUENT. Their results showed that with the increase in
injection time, the hydrogen stratification became more apparent. Zhang et al. [31] used
the software CONVERGE to study the influence of different fuel blending ratios on diesel
engine spray, combustion, and emission characteristics. Gong et al. [32] simulated the
effects of injection and ignition timing on engine combustion, in-cylinder formaldehyde,
and unburned methanol emissions during the cold start of a methanol engine using AVL-
Fire. Poorghasemi et al. [33] studied the effects of diesel injection strategy on NG/diesel
RCCI combustion and emission characteristics using CONVERGE. Their results showed
that changing the injection strategy reduces NOx emissions. However, there are few studies
on the effects of low ethanol concentrations in diesel on fuel concentrations using medium-
speed diesel engines combined with detailed chemical kinetic mechanisms [34,35].

In summary, we used the 3D computational fluid dynamics (CFD) software CON-
VERGE combined with the CHEMKIN program to numerically simulate the in-cylinder
combustion process of a diesel engine. Our experiments were performed on a medium-
speed diesel engine, and these experiments verified the validity of the simulation model
under different operating conditions. Finally, the impact of diesel/ethanol blended fuel
on engine combustion and emission characteristics were investigated at different loads
(25%, 50%, and 100%) and blending ratios (D100, D95E5, D90E10, D85E15, and D80E20) on
diesel/ethanol blended fuels with a high ethanol blending ratio.

2. Materials and Methods
2.1. Mathematical Model

The commercial computational fluid dynamics (CFD) software CONVERGE is used to
numerically simulate a diesel engine. CONVERGE automatically generates high-quality
grids and using this software saves time and research costs. CONVERGE has a variety of
geometric, fluid, and chemical solvers and provides a variety of options for important sub-
models such as spray, combustion, turbulence, and emissions. CONVERGE can calculate
the engine combustion and emission performance accurately and numerically simulate
internal combustion engines.
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2.1.1. Turbulence Model

There is a complex turbulent environment inside the cylinder of an internal combustion
engine. The presence of turbulence increases the thickness of the flame and the combustion
and heat release speed [36]. The RNG (Re-normalization group) k-ε model and the wall
function model for turbulent flow were used to numerically predict the heat transfer
through the boundary [37]. The expression is as follows [38]:

∂(ρkt)

∂t
+ div(ρkU) = div[αkµe f f grad kt] + τij · Sij − ρε (1)

∂(ρε)

∂t
+ div(ρεU) = div[aεµe f f grad ε] + C∗1ε

ε

kt
− τij · Sij − C2ερ

ε2

kt
(2)

with
τij = −ρu′iu

′
j = 2µtSij −

2
3

ρktδij (3)

and

µe f f = µ + µt µt = ρCµ
kt

2

ε
(4)

C∗1ε = C1ε −
η(1− η

η0
)

1 + βη3 η =
kt

ε

√
2Sij · Sij (5)

where ρ is the density, g/cm3; kt is the turbulent kinetic energy, m2/s2; U is the fluid
velocity, m/s; Sij is the turbulent source term; ε is the turbulent dissipation rate; and µ is
the molecular viscosity, Pa·s. The Kronecker delta δij is provided by δij =1 if i = j and δij = 0
if I 6= j. C1ε = 1.42, C2ε = 1.68, αk = αε =1.39, Cµ = 0.0845, η0 = 4.377, β = 0.012.

2.1.2. Spray Breakup Model

For the spray model, we selected the widely used KH-RT model in diesel spray. The
spray comprises a liquid core area and a gas–liquid mixing area. The KH model describes
the breaking phenomenon of the liquid core area, and the KH and RT models describe the
breaking phenomenon of droplets in the gas–liquid mixing area [39]. The intact core or
breakup length Lb can be specified as [40]:

Lb = Cbl

√
ρl
ρg

d0 (6)

In the range of the broken length Lb, the crushing process is controlled by the KH
crushing model. Outside the range of Lb, it is jointly described by the KH and RT models.
At this point, CONVERGE first uses the RT model to control the droplet breakage; if the
breakage cannot be achieved, the KH model is used [39].

τKH =
B1

U

√
ρ1

ρg
r0 (7)

2.1.3. Combustion Model

CONVERGE contains a variety of classic combustion models. In this article, we
used the SAGE combustion model [41], which uses a set of input files in the CHEMKIN
format to model detailed chemical kinetics. The SAGE combustion mode uses a chemical
reaction mechanism including 68 species and 154 reactions. These 68 species contain species
related to ethanol composition (including ethanol), and the 154 reaction species contain the
oxidation reaction involved in ethanol. Different chemical mechanisms can describe the



Processes 2022, 10, 173 4 of 20

combustion of different fuels. According to Turns [42], a multi-step elementary reaction
mechanism can be expressed as:

M

∑
m=1

v′m,ixm =
M

∑
m=1

v′′m,ixm for i = 1, 2, . . . , I (8)

where v′m,i and v′′m,i are the stoichiometric coefficients for the reactants and products for
species m and reaction i, respectively; I is the total number of reactions; and xm is the
chemical symbol for species m. The net production rate of species ωm is provided by:

.
ωm =

I

∑
i=1

vm,iqi for m = 1, 2, . . . , M (9)

where M is the total number of species and

vm,i = v′′m,i − v′m,i (10)

The reaction rate parameter qi of the ith reaction is

qi = ki, f

M

∏
m=1

[Xm]

v′m,i

− ki,r

M

∏
m=1

[Xm]

v′′m,i

(11)

where [Xm] is the molar concentration of species m, and ki,f and ki,r are the forward and
reverse rate coefficients for reaction i. In SAGE, the forward rate coefficient is expressed in
the Arrhenius form as:

ki, f = AiTβi exp
(
−Ei
RT

)
(12)

where Ai is the pre-exponential factor; βi is the temperature exponent; Ei is the activation
energy, cal/mol; R is the ideal gas constant; and T is the temperature, K. In addition,
the reverse rate coefficient can be specified in an analogous fashion as in Equation (12),
or calculated from the equilibrium coefficient Ki,c as:

Ki,c =
ki, f

ki,r
(13)

The equilibrium coefficient Ki,c is determined by thermodynamic properties,

Ki,c = Ki,p

(
Patm

RT

)∑M
m=1 um,i

(14)

where Patm is the atmospheric pressure, Pa. The equilibrium constant Ki,p is obtained via

Ki,p = exp

(
∆S1

i
R
−

∆H1
i

RT

)
(15)

The ∆ refers to the change that occurs in passing completely from reactants to products
in the ith reaction, specifically

∆S1
i

R
=

M

∑
m=1

um,i
S1

m
R

(16)

∆H1
i

RT
=

M

∑
m=1

um,i
H1

m
RT

(17)

where Sde denotes entropy, J/(mol·K); and Hde denotes enthalpy, kJ/mol.
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2.1.4. NOx Model

According to the working process characteristics of the internal combustion engine
cylinder, it is generally believed that thermal NO is the main source of NOx. The classic
thermodynamic NO generation mechanism is the Zeldovich mechanism [43]. Afterward,
a reaction path of a hydroxyl group reacting with a nitrogen atom to generate NO is added
to form an extended Zeldovich mechanism. This mechanism is expressed by the following
three reactions:

O + N2 ⇔ NO + N (18)

O2 + N⇔ NO + O (19)

OH + N⇔ NO + H (20)

2NO + O2 ⇔ 2NO2 (21)

2.1.5. Soot Model

Hydrocarbon fuel undergoes a series of physical and chemical processes under high
temperature and oxygen deficiency conditions to form soot particles; however, most of
the soot will be oxidized before the exhaust valve opens. Developed according to the
cylinder’s soot generation and oxidation characteristics, a simple empirical model has been
successfully used in predicting soot emission from internal combustion engines. This soot
model was used in CONVERGE as a semiempirical two-step model. The net generation
rate of soot is described as [44]:

dMsoot

dt
=

dMae

dt
− dMso

dt
(22)

where Msoot is the total amount of soot, kg; Mae is the amount of soot generation, kg; and
Mso is the amount of soot oxidation, kg. The soot generation rate model is shown as
follows [44]:

dMs f

dt
= A f p0.5

p exp(−Eae

RT
) ·M f v (23)

where Af refers to the former factor; pp is the pressure; Eae is the activation energy; and
Mfv is the quality of fuel vapor. Acetylene (C2H2), the precursor of soot, is generally used
instead of fuel vapor when the chemical reaction mechanism simulates the ignition and
combustion process [44].

2.2. Establishment of Simulation Model

In this study, the one-dimensional simulation verification of the engine was conducted
using AVL-BOOST to determine the initial conditions of the engine. The three-dimensional
CFD model of the diesel engine was created in CONVERGE according to the actual shape
of the diesel engine. The 3-D CFD simulation model of cylinder is shown in Figure 1.
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Figure 1. The geometric model of the combustion chamber in CONVERGE environment.

2.3. Computational Mesh

According to the geometry of the four-cylinder four-stroke Marine diesel engine block,
a dynamic mesh is generated by the symmetrical distribution of eight nozzle holes. Fine
mesh partitioning ensures that the model can accurately predict droplet breakage and
evaporation. Figure 2 shows the cylinder pressure generated by three grid models when
pure diesel is fully loaded. There is no significant difference in-cylinder pressure between
the thin and medium grilles. Since the intermediate grid guarantees calculation accuracy
and saves calculation time, the optimal intermediate grid was selected. The intermediate
grid was considered the best solution for this study.
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3. Experimental Cases and Engine Setup
3.1. Fuel Properties

Diesel and ethanol were used in this study. Diesel/ethanol blended fuels were formed
by blending different ratios of ethanol into diesel fuel, and their combustion and emission
characteristics were analyzed. The fuel properties are shown in Table 1. In this article, D100
represents pure diesel, D95E5 represents 95% diesel and 5% ethanol, D90E10 represents
90% diesel and 10% ethanol, D85E15 represents 85% diesel and 15% ethanol, and D80E20
represents 80% diesel and 20% ethanol.

Table 1. The properties of diesel/ethanol blended fuel.

Fuel Diesel Ethanol

Chemical formula - C2H5OH
Boiling temperature (◦C) 190–280 64.7

Oxygen volume fraction (%) 0.0 34.7
Density (g/m3, at 20 ◦C) 0.82–0.86 0.79

Viscosity (MPa·s, at 20 ◦C) 3.0–8.0 1.2
Flash point (◦C) 65–88 13–14

Cetane number (CN) 45–65 8
Low calorific value (MJ·kg−1) 42.5–42.8 26.8

3.2. Engine Specifications

The test was conducted on a marine medium-speed diesel engine. The main parame-
ters of the diesel engine are shown in Table 2. The schematic diagram of the experimental
system is shown in Figure 3.
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Table 2. Engine specifications and boundary conditions.

Type Value Type Value

Bore × stroke (mm) 190 × 210 Compression ratio 14
Number of cylinders 4 Head temperature (K) 553
Engine speed (rpm) 2000 Piston temperature (K) 423

Effective power (kW) 220 Wall temperature (K) 433
Nozzle radius (mm) 0.26 Temperature at IVC (K) 341
Fuel injection holes 8 Pressure at IVC (bar) 1.97

Cylinder diameter (MPa) 2.05 Turbulent kinetic energy (m2/s2) 62.0271
Connecting rod (mm) 410 Turbulent dissipation (m2/s3) 17,183.4

Total uncertainty of experiment = Square root of [(uncertainty of pressure sensor)2

+ (uncertainty of BSFC)2 + (uncertainty of BTE)2 + (uncertainty of Brake power)2+
(uncertainty of NOx emission)2 + (uncertainty of CO emission)2 + (uncertainty of

Soot emission)2] = Square root of [(1.5%)2 + (1.7%)2 + (0.53%)2 + (0.3%)2 + (0.53%)2 +
(0.32%)2 + (2.8%)2] = 3.706%

3.3. Uncertainty Analysis

Generally, experimental measurement results contain some errors and uncertain-
ties [45]. The uncertainty of experimental results is caused by the selection, observation,
and calibration of sensors. The measurement results are used to calculate the required
experimental results. The uncertainty percentage of parameters such as BSFC, BTE, and
NOx can be obtained from Equation (24). The R in Equation (25) is a function of the inde-
pendent variables I1, I2, . . . , In. In Equation (24), u1, u2, . . . , un represents uncertainty in
the independent variable and UR represents uncertainty in the result.

UR =
{
[(∂R/∂I1)u1]

2 + [(∂R/∂I2)u2]
2 + · · ·+ [(∂R/∂In)un]

2
}1/2

(24)

R = {I1, I2, I3, · · · In} (25)

The measuring range and accuracy of the measuring equipment we used in this article
are shown in Table 3. The following equation was used to calculate the total experimental
uncertainty.

Table 3. Uncertainty of measured parameters.

Measurements. Measuring Range Accuracy Uncertainty (%)

Engine speed 1–2000 rpm ±0.2% ±0.24
Pressure sensor 0–25 MPa ±10 kPa ±0.5

Exhaust gas temperature 0–1000 ◦C ±1 ◦C ±0.25
NOx emission 0–5000 ppm ±10 ppm ±0.53
CO emission 0–10% vol ±0.03% ±0.32
Soot emission 0–9 FSN ±0.1 FSN ±2.8

BSFC - ±5 g/kW·h ±1.5
BTE - ±0.5% ±1.7

Brake power - ±0.03 kW ±0.3
Air flow rate 0–33.3 kg/min ±1% ±0.5
Fuel flow rate 0.5–100 L/h ±0.04 L/h ±0.5

3.4. Model Validation

In order to verify the accuracy of the model, the simulation results were compared
to the experimental results. During the experiment, an exhaust gas analyzer (Horiba
MEXA-1600) was used to measure the generated nitrogen oxide with an error of 1%. A fuel
consumption meter (FCMM-2) was used to measure the brake specific fuel consumption.
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A combustion analyzer (DEWE-2010CA) was used to monitor the diesel engine’s com-
bustion. An Opacimeter (AVL Dismoke-4000) was used to measure the smoke generated.
The EFS-IFR600 was used to measure the fuel injection rate with a measurement error
of 0.5%. A hydraulic dynamometer was used to measure the load of the diesel engine.
An electronic control unit (ECU) system was used to control the electronically controlled
diesel engine. In addition, appropriate sensors were used to measure temperature, flow,
and pressure. Detailed specifications for the main measuring instruments are shown in
Table 4.

Table 4. Specifications of main measuring instruments.

Item Content Accuracy Uncertainty (%)

Electric dynamometer NIDY S22-2/0525-1BV-1 Torque: ±0.5% F.S; Speed: ±1 r/min ±0.2
Dynamometer control system PUMA OPEN1.4.1 ±0.5% F.S ±0.2

Air flowmeter TOCEIL 20N125 ±1% ±0.15
Diesel flowmeter TOCEIL CMFG010 0.11% ±0.15

Temperature sensor Thermojunction type ±0.5 ◦C ±0.15
Pressure sensor Piezoresistance type ±0.5% F.S ±0.5

Emissions analyzer AVL AMAi60 ±1.0% F.S ±0.25
Combustion analyzer DEWE-2010CA / ±0.25
Injection measuring

instrument EFS-IFR600 ±0.5% ±0.5

The experiment was conducted on a four-cylinder four-stroke diesel engine. Tests
were conducted at 200 rpm for 50% and 100% loads, respectively. The diesel engine was
fueled with D90E10 blended fuel. The experimental results and simulation results are
shown in Figure 4. As seen in Figure 4, the error between the experimental results and the
simulation results is minor at less than 5%. Therefore, the model can accurately predict the
combustion and emission characteristics of diesel engines.
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Figure 4. Comparison between experimental and simulation results of engine cylinder pressure and 
heat release rate. 
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4. Results and Discussion
4.1. Engine Combustion Performance
4.1.1. Cylinder Pressure

Figure 5 shows the effects of diesel/ethanol blended fuel with different blending ratios
on the engine’s cylinder pressure at different loads (including 100% load (see Figure 5a),
50% load (see Figure 5b), 25% load (see Figure 5c)). The cylinder pressure of D80E20 is the
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highest, followed by D85E15, D90E10, D95E5, and D100. As the ethanol ratio increases
in the blended fuel, the cylinder’s maximum combustion pressure increases gradually.
For example, when the ethanol ratio in the blended fuel increases to 20%, the cylinder
pressure increases by 0.46% because the cetane number of ethanol is low, leading to the
extension of the mixed fuel’s ignition delay period, the delay of the ignition time, and
the increase in the mixture amount formed during the ignition delay period. In addition,
ethanol is an oxygenated fuel that provides more oxygen while participating in the in-
cylinder combustion reaction and effectively promotes combustion. Therefore, the pressure
in the cylinder increases. Similar conclusions were drawn by Liang et al. [15] and Chen
et al. [7].
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Figure 5. Effects of diesel/ethanol blended fuels with different blending ratios on cylinder pressure
under different loading conditions.

4.1.2. Cylinder Temperature

Figure 6 shows the effects of diesel/ethanol blended fuel with different blending ratios
on the engine’s cylinder temperature at different loads (including 100% load (see Figure 6a),
50% load (see Figure 6b), 25% load (see Figure 6c)). As the ratio of ethanol in the blended
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fuel increases, the maximum cylinder temperature also increases. When the ethanol ratio in
the blended fuel increases to 5%, 10%, 15%, and 20%, the peak temperature of the cylinder
becomes 0.28%, 0.52%, 0.65%, and 0.94% higher than diesel, respectively; the main reason
for this is that ethanol is an oxygenated fuel. As the ethanol ratio increases, the oxygen
content of blended fuel also increases, and the decrease in viscosity can better facilitate
the atomization of fuel into the combustion chamber. Simultaneously, the higher oxygen
content increases the combustion rate of blended fuel, improving the intensity of premixed
combustion, and sufficient combustion. Therefore, the cylinder temperature increases.
Zhang et al. [35] drew similar conclusions.
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Figure 6. Effects of diesel/ethanol blended fuels with different blending ratios on temperature under 
different loading conditions. 
Figure 6. Effects of diesel/ethanol blended fuels with different blending ratios on temperature under
different loading conditions.

Figure 7 shows the distribution field of the temperature in-cylinder at 100% load.
Compared with D100, diesel/ethanol blended fuel produces more high-temperature areas
because ethanol’s lower density and surface tension promote fuel atomization and sufficient
combustion.
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4.1.3. Heat Release Rate

Figure 8 shows the effects of diesel/ethanol blended fuel with different blending ratios
on the engine’s heat release rate(HRR) at different loads(including 100% load (see Figure 8a),
50% load (see Figure 8b), 25% load (see Figure 8c)). The overall HRR of diesel/ethanol
blended fuel increases as the ethanol blending ratio increases because of the low cetane
number and high latent heat of vaporization in ethanol, which leads to a longer ignition
delay period of the blended fuel, increases the amount of combustible mixture formed in
the premixing stage, improves the engine combustion conditions, and allows the blended
fuel to burn fully. Liu et al. [46] evaluated the effects of E0, E10, and E20 on the engine.
Their conclusion also confirmed that HRR increases with the increase in ethanol ratio.

4.2. Economic Performance
4.2.1. Brake Specific Fuel Consumption

Brake specific fuel consumption (BSFC) is an important index for measuring the eco-
nomic performance of an engine [47]. Figure 9a shows the effects of diesel/ethanol blended
fuel with different blending ratios on the engine’s BSFC at different loads. The diesel
engine’s fuel consumption gradually as the ethanol ratio increases in blended fuel. For
example, when pure diesel is used at 25% load, the fuel consumption of the engine is
810.79 g/(kW·h). As the ethanol content in the blended fuel increases to 5%, 10%, 15%, and
20%, the fuel consumption increases to 820.22/(kW·h), 831.88/(kW·h), 842.76/(kW·h), and
853.91/(kW·h), respectively; this is because the calorific value of diesel fuel (42.5 MJ/kg) is
higher than the calorific value of ethanol (26.8 MJ/kg), as shown in Table 1. An increase in
the ratio of ethanol in blended fuel reduces the total calorific value of blended fuel, leading
to an increase in BSFC.
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4.2.2. Brake Power

Figure 9b shows the effects of diesel/ethanol blended fuel with different blending
ratios on the engine’s brake power at different loads. The engine’s power decreases
gradually as the ethanol ratio increases in the blended fuel. Moreover, the higher the
ethanol ratio is in the blended fuel, the more apparent the reduction in engine power.
Compared with D100, the power of D95E5, D90E10, D85E15, and D80E20 blended fuel
reduces by 0.96%, 1.97%, 2.99%, and 4.12%, respectively; this is because the calorific value
of ethanol/diesel blended fuel is lower than D100, resulting in lower combustion power
than diesel.
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4.2.3. Brake Thermal Efficiency

Figure 9c shows the effects of diesel/ethanol blended fuel with different blending
ratios on the engine’s brake thermal efficiency (BTE) at different loads. BTE decreases with
increased ethanol content at low loads and increases as the ethanol ratio increases at high
loads because the increase in ethanol ratio in diesel/ethanol blended fuel improves the
spray characteristics of the blended fuel. Since ethanol is an oxygenated fuel, it increases
the oxygen content of the blended fuel, improving the combustion characteristics of the
fuel, and further improving the BTE of the engine. Han et al. [48] investigated the dynamic
characteristics of diesel/ethanol dual fuel engines and reached similar conclusions. They
confirmed that the combustion efficiency and BTE of ethanol decreased under low load
conditions in the dual fuel mode and increased under medium and high load conditions.

4.3. Emission Performance
4.3.1. NOx Emission

Figure 9 shows the effects of diesel/ethanol blended fuel with different blending
ratios on NOx emission at different loads (including 100% load (see Figure 9a), 50% load
(see Figure 9b), 25% load (see Figure 9c)). NOx emission increases with increased engine
load; because the increase in engine load leads to increased peak temperature, which
improves the emission level of NOx. In addition, the engine’s NOx emission increases as
the ethanol ratio increases in the blended fuel; this is because ethanol has low density, low
viscosity, and high oxygen content characteristics, which improve combustion in the engine
cylinder and produce more NOx in the local high-temperature area. Compared with the
cylinder temperature cloud diagram in Figure 10, NOx generation is mainly affected by
the temperature in the cylinder. The higher the temperature is, the more NOx emissions
is, particularly in the concentrated temperature area. In addition, the cetane number of
diesel/ethanol blended fuel is lower than D100, which leads to the extension of the ignition
delay period, the increase of in-cylinder fuel injection, and premixed combustion, thereby
increasing NOx emission. Similar conclusions were drawn by Sayin et al. [49] and Alptekin
et al. [50].
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under different loading conditions.

4.3.2. CO Emission

Figure 11 shows the effects of diesel/ethanol blended fuel with different blending
ratios on the engine’s CO emission at different loads. Compared with pure diesel, CO
emission increases with increased ethanol content at a low load. At high loads, CO emission
decreases with increased ethanol content; this is because at low load, the anal temperature
is low, and the latent vaporization heat of ethanol is higher than diesel, resulting in more
heat absorption in the combustion process of blended fuel, difficult complete combustion,
and increased CO emission (see Figure 12). There are large amounts of fuel injection per
cycle at high loads and higher temperatures in the cylinder. As an oxygenated fuel, ethanol
can provide additional oxygen during combustion, effectively improving the problem
of insufficient oxygen in the cylinder, creating sufficient combustion, and inhibiting the
generation of CO. This observation is consistent with the conclusion of Le et al. [14].
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4.3.3. Soot Emission

Figure 13 shows the effects of diesel/ethanol blended fuel with different blending
ratios on engine soot emissions at different loads (including 100% load (see Figure 13a),
50% load (see Figure 13b), 25% load (see Figure 13c)). Soot emission increases as the engine
load increases because the oxygen in the cylinder is insufficient at higher loads and large
amounts of soot form in the high-temperature anoxic area. In addition, soot emission
decreases as the ethanol ratio increases in blended fuel. For example, under 100% load
conditions, soot emission increases by 4.77%, 9.08%, 13.51%, and 17.24% when the ethanol
content in blended fuels increases to 5%, 10%, 15%, and 20%, respectively. This increase is
mainly because the combustion temperature in the cylinder is higher at high loads, and
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the oil supply per cycle increases, enabling the formation of an over-concentrated mixture.
At this time, the mitigation effects of ethanol on the local over-concentrated area in the
cylinder and the combustion promotion effects of additional oxygen are more apparent
and effectively reduce the soot emission under high load conditions.
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5. Conclusions

Due to the global energy crisis [51–56] and environmental problems [57–61], the devel-
opment of diesel engines is also facing great challenges. In this paper, our main conclusions
are as follows:

(1) Diesel/ethanol blended fuels improve the brake thermal efficiency of the engine.
Since ethanol is an oxygenated fuel, the oxygen content of the blended fuel increases, and
the brake thermal efficiency of the engine improves. For example, when the ethanol content
in the blended fuel increases to 20%, the cylinder pressure increases by 0.46%. In addition,
compared with D100, the engine power of D80E20 reduces by about 4.12%; this is because
ethanol has a high oxygen content and low calorific value;

(2) Diesel/ethanol blended fuel increases BSFC and reduces power. The blended
fuels of D95E5, D90E10, D85E15, and D80E20 decrease by 0.96%, 1.97%, 2.99%, and 4.12%,
respectively; this is mainly due to the low calorific value of ethanol. However, the BTE of
the engine improves due to the increase in oxygen content;
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(3) Diesel/ethanol blended fuel will lead to increase of the soot, the carbon monoxide,
and the NOx emissions. Compared with D100, the CO and soot emissions of D80E20
increase by 63.25% and 17.24%, respectively. As the oxygen content of the blended fuel
increases, the combustion is more sufficient, and the soot emission reduces.

In conclusion, adding ethanol to diesel engines can improve combustion and emission
characteristics. This trend is worth studying. Further research is needed to obtain more
accurate results.
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