The Effects of the Acid Treatment of ZrB2 Particles on Their Purity and Aqueous Dispersibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of ZrB2 Particles with Methanol
2.2. Treatment of ZrB2 Particles with Various Acids
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levine, S.R.; Opila, J.E.; Halbig, M.C.; Kiser, J.D.; Singh, M.; Salem, J.A. Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 2002, 22, 2757–2767. [Google Scholar] [CrossRef]
- Wuchina, E.; Opila, E.; Opeka, M.; Fahrenholtz, W.; Talmy, I. UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications. Electrochem. Soc. 2007, 16, 30–36. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Wuchina, E.J.; Lee, W.E.; Zhou, Y. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications; John Wiley & Sons, Inc.: Toronto, ON, Canada, 2014. [Google Scholar]
- Telle, R.; Sigl, L.S.; Takagi, K. Boride-based hard materials. In Handbook of Ceramic Hard Materials; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Guo, S.Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 2019, 29, 995–1011. [Google Scholar] [CrossRef]
- Jung, E.-Y.; Kim, J.-H.; Jung, S.-H.; Choi, S.-C. Synthesis of ZrB2 powders by carbothermal and borothermal reduction. J. Alloys Compd. 2012, 538, 164–168. [Google Scholar] [CrossRef]
- Rangaraj, L.; Divakar, C.; Jayaram, V. Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing. J. Eur. Ceram. Soc. 2010, 30, 129–138. [Google Scholar] [CrossRef]
- Sun, C.N.; Gupta, M.C. Laser Sintering of ZrB2. J. Am. Ceram. Soc. 2008, 91, 1729–1731. [Google Scholar] [CrossRef]
- Shin, J.R.; Kim, B.-G.; Choi, S.-C.; Jung, Y.-G.; An, G.S. Amino Functionalization of Zirconium Diboride for High Dispersion Stability and Solid Loading. J. Nanosci. Nanotechnol. 2020, 20, 6747–6752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.C.; Hilmas, G.E.; Fahrenholtz, W.G. Pressureless Sintering of ZrB2-SiC Ceramics. J. Am. Ceram. Soc. 2007, 91, 26–32. [Google Scholar] [CrossRef]
- Wee, S.-B.; An, G.S.; Han, J.S.; Oh, H.-C.; Choi, S.-C. Co-dispersion behavior and interactions of nano-ZrB2 and nano-SiC in a non-aqueous solvent. Ceram. Int. 2016, 42, 4658–4662. [Google Scholar] [CrossRef]
- Pazhouhanfar, Y.; Sabahi Namini, A.; Shaddel, S.; Ahmadi, Z.; Asl, M.S. Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics. Ceram. Int. 2020, 46, 5773–5778. [Google Scholar] [CrossRef]
- Kashyap, S.K.; Mitra, R. Densification behavior involving creep during spark plasma sintering of ZrB2-SiC based ultra-high temperature ceramic composites. Ceram. Int. 2020, 46, 5028–5036. [Google Scholar] [CrossRef]
- Jung, S.-H.; Oh, H.-C.; Kim, J.-H.; Choi, S.-C.; Lee, S.-H.; Kim, H.-D. Pretreatment of zirconium diboride powder to improve densification. J. Alloys Compd. 2013, 548, 173–179. [Google Scholar] [CrossRef]
- Han, J.S.; Lee, H.S.; Shin, J.R.; Hur, J.U.; Choi, S.-C.; Kim, H.-J.; Kim, Y.J.; An, G.S. Synthesis of nanosized zirconium diboride powder with high purity via simply purified boron carbide. Int. J. Nanotechnol. 2018, 15, 518–527. [Google Scholar] [CrossRef]
- An, G.S.; Han, J.S.; Hur, J.U.; Choi, S.-C. Synthesis of sub-micro sized high purity zirconium diboride powder through carbothermal and borothermal reduction method. Ceram. Int. 2017, 43, 5896–5900. [Google Scholar] [CrossRef]
- Naraparaju, R.; Maniya, K.; Murchie, A.; Fahrenholtz, W.G.; Hilmas, G.E. Effect of moisture on the oxidation behavior of ZrB2. J. Am. Ceram. Soc. 2020, 104, 1058–1066. [Google Scholar] [CrossRef]
- Ortiz, A.L.; Zamora, V.; Rodríguez-Rojas, F. A study of the oxidation of ZrB2 powders during high-energy ball-milling in air. Ceram. Int. 2012, 38, 2857–2863. [Google Scholar] [CrossRef]
- Monticelli, C.; Zucchi, F.; Pagnoni, A.; Colle, M.D. Corrosion of a zirconium diboride/silicon carbide composite in aqueous solutions. Electrochim. Acta 2005, 50, 3461–3469. [Google Scholar] [CrossRef]
- Jung, S.H.; Choi, S.-C. Effects of particle size and oxygen contents on ZrB2 powder for densification. J. Korean Cryst. Growth Cryst. Technol. 2012, 22, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Fahrenholtz, W.G.; Hilmas, G. Effect of Starting Particle Size and Oxygen Content on Densification of ZrB2. J. Am. Ceram. Soc. 2011, 94, 429–435. [Google Scholar] [CrossRef]
- Boch, P.; Niepce, J.-C. Ceramic Materials Processes, Properties and Applications; ISTE Ltd.: Arlington, VA, USA, 2007. [Google Scholar]
- Monticelli, A.B.C.; Colle, M.D. Electrochemical Behavior of ZrB2 in Aqueous Solutions. J. Electrochem. Soc. 2004, 151, 331–339. [Google Scholar] [CrossRef]
- Giagloglou, K.; Payne, J.L.; Crouch, C.; Gover, R.K.B.; Connor, P.A.; Irvine, J.T.S. Zirconium Trisulfide as a Promising Cathode Material for Li Primary Thermal Batteries. J. Electrochem. Soc. 2016, 163, A3126–A3130. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Badoni, R.P.; Singhal, S.; Agarwal, S.; Tripathi, A.R. Synthesis and characterization of zirconia-based catalyst for the isomerization of n-hexane. Chem. Eng. Commun. 2017, 205, 92–101. [Google Scholar] [CrossRef]
- Kalinnikov, G.V.; Vinokurov, A.A.; Kravchenko, S.E.; Dremova, N.N.; Nadkhina, S.E.; Shilkin, S.P. Oxidation Behavior of Zirconium Diboride Nanoparticles. Inorg. Mater. 2018, 54, 550–557. [Google Scholar] [CrossRef]
Materials | Oxygen Contents (%) | Standard Deviation (%) |
---|---|---|
Methanol-treated ZrB2 | 1.23 | 0.09 |
HCl-treated ZrB2 | 0.56 | 0.06 |
HNO3-treated ZrB2 | 0.54 | 0.04 |
H2SO4-treated ZrB2 | 15.04 | 1.46 |
HF-treated ZrB2 | 12.66 | 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; An, G.S. The Effects of the Acid Treatment of ZrB2 Particles on Their Purity and Aqueous Dispersibility. Processes 2022, 10, 18. https://doi.org/10.3390/pr10010018
Choi J, An GS. The Effects of the Acid Treatment of ZrB2 Particles on Their Purity and Aqueous Dispersibility. Processes. 2022; 10(1):18. https://doi.org/10.3390/pr10010018
Chicago/Turabian StyleChoi, Jinuk, and Gye Seok An. 2022. "The Effects of the Acid Treatment of ZrB2 Particles on Their Purity and Aqueous Dispersibility" Processes 10, no. 1: 18. https://doi.org/10.3390/pr10010018
APA StyleChoi, J., & An, G. S. (2022). The Effects of the Acid Treatment of ZrB2 Particles on Their Purity and Aqueous Dispersibility. Processes, 10(1), 18. https://doi.org/10.3390/pr10010018