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Abstract: This mini-review highlights the recent research trends in designing organic or organic-
inorganic hybrid molecular, biomolecular and macromolecular systems employing intermolecular
Diels–Alder cycloadditions of biobased, furan-containing substrates and maleimide dienophiles. The
furan/maleimide Diels–Alder reaction is a well-known process that may proceed with high efficiency
under non-catalytic and solvent-free conditions. Due to the simplicity, 100% atom economy and
biobased nature of many furanic substrates, this type of [4+2]-cycloaddition may be recognized as a
sustainable “click” approach with high potential for application in many fields, such as fine organic
synthesis, bioorganic chemistry, material sciences and smart polymers development.

Keywords: plant biomass; platform chemicals; biobased furans; maleimides; Diels–Alder reaction;
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1. Introduction

Chemical modification of biomass-derived furanic platform chemicals furfural (FF)
and 5-(hydroxymethyl)furfural (HMF) is a growing area of sustainable chemistry that is
considered one of the general approaches for the replacement of traditional oil-based chem-
ical production by biorefining based on renewable resources [1–5]. The major synthetic
transformations of renewable furans are focused on the production of biofuels, chemicals
and materials, in accordance with the sustainability concept [6–11]. Diels–Alder (DA)
cycloaddition represents an important type of dynamic process that has found wide ap-
plications as a “click” reaction for the production of monomolecular products as well as
for materials development [12–14]. The common mechanism of DA reactions includes
the interaction of the highest occupied molecular orbital (HOMO) of the diene with the
lowest unoccupied molecular orbital (LUMO) of dienophile, resulting in the formation of a
new, six-membered ring. The relation between HOMO and LUMO energies determines
the key characteristics of the DA reactions, such as regio- and diastereoselectivity, which
strongly depend on the chemical structure of used substrates and reaction conditions [15].
The combination of diene and dienophile with opposite electronic characteristics is most
favorable for DA reaction.

Electron-poor dienophiles (particularly maleimides) showed high activity in DA cy-
cloadditions with many biobased furans. Some of these reactions proceed efficiently under
solvent-free and non-catalytic conditions [16]. The DA reaction of a furanic diene and
maleimide dienophile results in the formation of oxabicyclic core (oxanorbornene) as a
single diastereomer or as a mixture of the kinetically favored endo form and the more
thermodynamically stable exo product. The DA cycloadditions of donor-substituted furans
with maleimides are thermodynamically favorable processes, while electron-poor furanic
dienes display lower activity in these reactions [17,18].
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The intermolecular furan/maleimide Diels–Alder (fmDA) reaction is an efficient ap-
proach for the formation of carbon–carbon bonds that was widely used for the construction
of functional cyclic products with aliphatic or aromatic structures. On the other hand,
the reversibility of fmDA cycloadditions that can be initiated by various stimuli (such as
temperature, light, mechanical or magnetic force) is a prominent advantage when designing
dynamic architectures. Due to its high efficiency, excellent selectivity, 100% atom economy
and the biobased nature of most of the furanic substrates, the fmDA reaction may be
considered as a sustainable «click» approach for the production of functional or dynamic
molecular, biomolecular and macromolecular systems (Figure 1).

Processes 2021, 9, x FOR PEER REVIEW 2 of 20 
 

 

thermodynamically stable exo product. The DA cycloadditions of donor-substituted fu-

rans with maleimides are thermodynamically favorable processes, while electron-poor 

furanic dienes display lower activity in these reactions [17,18]. 

The intermolecular furan/maleimide Diels–Alder (fmDA) reaction is an efficient 

approach for the formation of carbon–carbon bonds that was widely used for the con-

struction of functional cyclic products with aliphatic or aromatic structures. On the other 

hand, the reversibility of fmDA cycloadditions that can be initiated by various stimuli 

(such as temperature, light, mechanical or magnetic force) is a prominent advantage 

when designing dynamic architectures. Due to its high efficiency, excellent selectivity, 

100% atom economy and the biobased nature of most of the furanic substrates, the fmDA 

reaction may be considered as a sustainable «click» approach for the production of func-

tional or dynamic molecular, biomolecular and macromolecular systems (Figure 1). 

 

Figure 1. Intermolecular Diels–Alder cycloadditions of biobased furans with maleimides as a sus-

tainable «click» approach towards practically important products. 

Several recent reviews covered the scientific literature regarding the development of 

functional or dynamic macromolecular systems employing the fmDA approach [19–21]; 

other reviews provided detailed information about the reactivity of biobased furans in 

DA cycloadditions [16,22,23]; however, in the context of fmDA reactions, these coverages 

are not comprehensive or need updating. In this review, we briefly survey recent re-

search trends in the application of the furan/maleimide-based «click» methodology for 

the production of functional or dynamic molecular, biomolecular and macromolecular 

systems. The information provided in this mini-review will be helpful to the scientists in 

many fields, including fine organic synthesis, medical and pharmaceutical research, 

polymers development and material sciences. 

2. Application of fmDA “Click” Reaction for Synthesis of Functional Fine Chemicals 

DA adducts of biobased monomeric furans and maleimide dienophiles have high 

synthetic potential as building blocks in fine organic synthesis. The general routes of ap-

plications include the synthesis of aliphatic or aromatic cyclic products, biologically ac-

tive compounds, monomers and polyfunctional scaffolds. Reductions in the double bond 

in the furan-derived oxanorbornenes is a route to oxanorbornanes, structural analogs of 

the bioactive small molecules cantharidin (natural terpenoid isolated from Spanish fly 

blister beetles) and its synthetic analogs norcantharidin and norcantharimides, which 

Figure 1. Intermolecular Diels–Alder cycloadditions of biobased furans with maleimides as a sustain-
able «click» approach towards practically important products.

Several recent reviews covered the scientific literature regarding the development of
functional or dynamic macromolecular systems employing the fmDA approach [19–21];
other reviews provided detailed information about the reactivity of biobased furans in DA
cycloadditions [16,22,23]; however, in the context of fmDA reactions, these coverages are
not comprehensive or need updating. In this review, we briefly survey recent research
trends in the application of the furan/maleimide-based «click» methodology for the pro-
duction of functional or dynamic molecular, biomolecular and macromolecular systems.
The information provided in this mini-review will be helpful to the scientists in many
fields, including fine organic synthesis, medical and pharmaceutical research, polymers
development and material sciences.

2. Application of fmDA “Click” Reaction for Synthesis of Functional Fine Chemicals

DA adducts of biobased monomeric furans and maleimide dienophiles have high
synthetic potential as building blocks in fine organic synthesis. The general routes of
applications include the synthesis of aliphatic or aromatic cyclic products, biologically
active compounds, monomers and polyfunctional scaffolds. Reductions in the double
bond in the furan-derived oxanorbornenes is a route to oxanorbornanes, structural analogs
of the bioactive small molecules cantharidin (natural terpenoid isolated from Spanish fly
blister beetles) and its synthetic analogs norcantharidin and norcantharimides, which also
possesses strong biological activity (Figure 2) [24–29]. The introduction of a maleimide
group instead of anhydride leads to an increase in the chemical stability of norcatharimides
in comparison to cantharidines, but can lead to decreases in biological activity [30].
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Figure 2. Chemical structures of cantharidin, norcantharidin and norcantharimides.

An important parameter of the fmDA reaction that should be taken into account
in the development of bioactive compounds is diastereoselectivity, because endo and exo
diastereomers can exhibit different biological activity [31]. The literature data on the
diastereoselectivity of the DA reactions between the most common biobased furans and
N-alkyl or N-aryl maleimides are summarized in Tables 1 and 2. Based on these data, some
typical patterns for the furan/alkene DA reaction [16] were also found for DA reactions
with maleimides as dienophiles.

Table 1. Results of the DA reactions of maleimide and N-alkyl maleimides with biobased furans
(selected examples).
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16 Me 2-MF Toluene, 90 ◦C 0:100 92, [37]
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20 Me FA tert-butyl ester CH2Cl2, 23 ◦C 71:29 N.d., [39]
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Table 1. Cont.

№ R2 Furan Conditions Endo/Exo Ratio Yield of DA Adducts
(%), Citation

22 Me R1 = Me, R2 = CH2OAc CH2Cl2, 23 ◦C 73:27 N.d., [39]
23 Et 2-MF H2O, 65 ◦C 1.4: 1 100, [41]
24 Et DMF H2O, RT 3:2 100, [41]
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CHCl3, 55 ◦C 100:0 N.d., [42]

28 tBu 2-MF H2O, 65◦C 0:100 100, [41]
29 tBu DMF H2O, RT 1:8 100, [41]
30 tBu FA iso-propyl ester CHCl3, 55 ◦C 51:49 N.d., [42]
31 Bn FA CH3CN, 35 ◦C 70:30 75, [43]
32 Bn FA iso-propyl ester CHCl3, 55 ◦C 44:56 N.d., [42]
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CH3CN, 70 ◦C, 16 h N.d. 69 (endo), 21 (exo), [44]

35 2-Hydroxyethyl FA Benzene, reflux 0:100 86, [45]
36 2-Hydroxyethyl DMF CH3CN, 65 ◦C 1:4 100, [46]
37 2-Carboxyethyl 2-MF CHCl3, 38 ◦C 28:72 100, [46]
38 2-Carboxyethyl DMF CH2Cl2, RT 78:22 100, [46]
39 2-Carboxyethyl DMF CH3CN, 60 ◦C 22:78 100, [46]
40 3-Hydroxypropyl FA Toluene, 80 ◦C 30:70 5 77, [47]
41 Methoxy-2-propyl FA acetate CH2Cl2, 23 ◦C 76:24 N.d., [39]

1 Yield of crude product. 2 One-pot DA/hydrogenation on Pd/C. 3 Determined by NMR. 4 Was obtained as an
inseparable mixture of the endo and exo (2:1) cycloadducts. 5 Slowly transformed to the pure exo isomer over a
period of several months. N.d.—not determined.

A high endo-diastereoselectivity may be reached under kinetic control of the reac-
tion, while exo products are more thermodynamically favorable [16,48]. The nature of
the substituents at the furan ring and N-atom of maleimide have a significant influence
on the efficiency and selectivity of cycloaddition. In some cases, HMF-derived furans
showed higher endo-selectivity in DA reactions with maleimides than furfural-derived
furans (Table 1, entries 4–8, 11–13). N-Aryl maleimides typically showed lower diastere-
oselectivity in cycloadditions with furans than N-alkyl maleimides. However, a high
exo-diastereoselectivity for N-phenyl maleimide was reached by conduction of the DA
reaction with FA under solvent-free conditions at high temperatures (Table 2, entry 5).

A high level of progress was recently achieved for DA reactions with low reactive
acceptor-substituted furans by Bruijnincx and co-workers. They found a significant increase
in the efficiency of the DA reaction of maleimides with furanic aldehydes, furoic acids and
derivatives when water was used as a solvent (the results of these reactions are presented in
Table 3) [17,18]. The impact of water on the efficiency of the DA reaction was multiple and
depended on the nature of the furanic substrates and their physical properties. In the case of
water-soluble substrates (such as fu roic acids), this role can be attributed to the stabilization
of the transition state and DA adduct by H-bonding with water [18]. A hydrophobic effect
and hydrogen bonding with water molecules at the interface may play an activating role
in DA reaction for water-insoluble furanic substrates [18]. Furanic aldehydes react with
maleimides in water due to the possibility of hydration of the aldehyde group that stabilizes
the cycloadducts [17]. DFT calculations showed that the formation of furanic aldehyde–
maleimide adducts is possible if hydration occurs either prior to (which led to an increase
in the rate of the DA reaction) or after the cyclization step (which led to a decrease in the
rate of the retro-DA reaction) [17]. It should be noted that furanic derivatives containing
electron-withdrawing substituents usually showed a high exo-diastereoselectivity in DA
reactions with maleimides (Table 3).
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Table 2. Results of the reactions of N-aryl maleimides with biobased furans (selected examples).
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21 p-Methoxyphenyl 
 

CH3CN, 75 °C, N.d. 61 (endo), <5 (exo) [44] 

22 p-Methoxyphenyl 
 

CH3CN, 75 °C, 8 h N.d. <5 (endo), 63 (exo) [44] 
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30 BMI as dienophile FA iso-propyl ester CHCl3, 55 °C 19:81 N.d., [42] 
1 Reaction was conducted under dynamic enantiomeric crystallization conditions. 

BMI—4,4’-bis(maleimido)diphenylmethane. N.d.—not determined. 
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(%), Citation

1 Ph 2-MF H2O, 65 ◦C 1.6:1 100, [41]

2 Ph 2-MF 4:1 toluene/benzene,
RT, 1.1 GPa 1.66:1 85, [49]

3 Ph 2-MF CDCl3, 60 ◦C Exo with traces
of endo 90, [50]

4 Ph 2-MF
Hexane or heptane,
TFA, glass beads,
80 ◦C, 5–8 days 1

(−)-Exo, 86–90 ee 80, [50]

5 Ph FA Neat, 140 ◦C, 8 min Exo 82, [51]
6 Ph FA RT, 12 h 71:29 66, [51]
7 Ph FA allyl ester Toluene, 50 ◦C, 24 h N.d. 26 (exo), [40]
8 Ph FA acetate CH2Cl2, 23 ◦C 65:35 N.d., [39]
9 Ph FA vinyl ester Et2O, 22–24 ◦C 1:2.8 47, [52]

10 Ph FA vinyl ester Toluene, 80 ◦C 4:1 66, [52]
11 Ph DMF H2O, RT 1.3:1 100, [41]
12 p-Tolyl DMF toluene, 60 ◦C, 3 h Exo 50, [53]
13 p-Tolyl DMF Neat, 94 ◦C, 1 h Exo 60, [54]
14 m-Tolyl FA iso-butyl ester CHCl3, 55 ◦C 67:33 N.d., [42]
15 PhF5 2-MF Neat, reflux Exo 50, [55]
16 4-Hydroxyphenyl FA Acetone, 55 ◦C Exo 71, [56]
17 4-Hydroxyphenyl FA CH3CN, 35 ◦C 80:20 N.d., [56]
18 p-Methoxyphenyl FA CH3CN, 35 ◦C, 18 h N.d. >85 (endo), [44]
19 p-Methoxyphenyl FA acetate CH2Cl2, 23 ◦C 67:33 N.d., [39]
20 p-Methoxyphenyl DMF Neat, 94 ◦C, 1 h 17:83 25, [54]

21 p-Methoxyphenyl
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crease in the efficiency of the DA reaction of maleimides with furanic aldehydes, furoic 

CH3CN, 80 ◦C N.d. <5 (endo), 31 (exo) [44]

29 BMI as dienophile FA Toluene, 75–80 ◦C, two
days Mostly exo 92, [57]

30 BMI as dienophile FA iso-propyl ester CHCl3, 55 ◦C 19:81 N.d., [42]
1 Reaction was conducted under dynamic enantiomeric crystallization conditions. BMI—4,4’-
bis(maleimido)diphenylmethane. N.d.—not determined.

Acid- or base-catalyzed dehydration of the furan-derived oxanorbornenes is an impor-
tant approach to access a renewable aromatics [15,22,23]. In the case of furan–maleimide-
derived oxanorbornenes, this reaction led to the formation of renewable phtalimides
(Scheme 1). The few examples of this reaction are presented in the scientific literature
involving oxanorbornenes obtained from DMF [53] or furoic acid [18]. However, in the
case of FF- or HMF-derived dimethyl hydrazones reacting with maleimides, aromatiza-
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tion proceed without any catalysts via spontaneous ring-opening/aromatization process
(Scheme 1b) [58] and led to adducts in a high yields using green solvents such as water [59]
or ionic liquids [60].

Table 3. The results of water-mediated DA cycloadditions of acceptor-substituted furans with
maleimides.
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27 4 R = CHO, R1 = OH Me NaOH, H2O, 50 °C, 16 h <10/N.d. endo/exo trace:~5 

№ Furanic Substrate R2 Conditions Conversion 1/
Isolated Yield Selectivity 1

1 R = R1 = H H H2O, 60 ◦C, 16 h 38 2 endo/exo 8:30,
endo’/exo’ 0:0

2 R = R1 = H Me H2O, 60 ◦C, 16 h 63 2 endo/exo 18:40,
endo’/exo’ 1:3

3 R = R1 = H Et H2O, 60 ◦C, 16 h 43 2 endo/exo 8:28,
endo’/exo’ 1:6

4 R = R1 = H nPr H2O, 60 ◦C, 16 h 20 2 endo/exo 1:7,
endo’/exo’ 1:11

5 R = R1 = H Ph H2O, 60 ◦C, 16 h 7 2 endo/exo 0:1,
endo’/exo’ 1:5

6 R = Me, R1 = H Me H2O, 60 ◦C, 16 h 14 2 endo/exo 3:8,
endo’/exo’ 0:3

7 R = CH2OH, R1 = H Me H2O, 60 ◦C, 16 h 50 2 endo/exo 37:13,
endo’/exo’ 0:0

8 R = CH2OMe, R1 = H Me H2O, 60 ◦C, 16 h 18 2 endo/exo 7:5,
endo’/exo’ 3:3

9 R = H, R1 = CH3 Me H2O, 60 ◦C, 16 h 32/32 endo/exo trace:32
10 R = H, R1 = OH H NaOH, H2O, 50 ◦C, 16 h 95/68 endo/exo trace:95
11 R = H, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h 98/92 endo/exo 1:97
12 R = H, R1 = OH nPr NaOH, H2O, 50 ◦C, 16 h 96/72 endo/exo 3:93
13 R = H, R1 = OH Ph NaOH, H2O, 50 ◦C, 16 h 51/21 endo/exo trace:51
14 R = H, R1 = OH Cy NaOH, H2O-MeOH, 50 ◦C, 16 h 56/31 endo/exo 3:53
15 R = H, R1 = OMe H H2O, 50 ◦C, 16 h 67/43 endo/exo 2:65
16 R = H, R1 = OMe Me H2O, 50 ◦C, 16 h 70/52 endo/exo 5:65
17 R = H, R1 = OMe Et H2O, 50 ◦C, 16 h 65/47 endo/exo 4:61
18 R = H, R1 = OEt Me H2O, 50 ◦C, 16 h 63/29 endo/exo 4:59
19 R = H, R1 = OiPr Me H2O, 50 ◦C, 16 h 54/26 endo/exo 4:50
20 R = H, R1 = OtBu Me H2O, 50 ◦C, 16 h 54/25 endo/exo 3:51
21 R = H, R1 = NH2 Me H2O, 50 ◦C, 16 h 94/77 endo/exo 3:91
22 R = H, R1 = NMe2 Me H2O, 50 ◦C, 16 h 81/41 endo/exo 4:77
23 R = H, R1 = NHOH Me H2O, 50 ◦C, 16 h 92/69 endo/exo 16:76
24 R = Me, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h 93/75 endo/exo 5:88
25 R = CH2OH, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h 91/51 3 endo/exo 19:72
26 R = CH2OH, R1 = OH Ph NaOH, H2O, 50 ◦C, 16 h 28/11 endo/exo trace:28

27 4 R = CHO, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h <10/N.d. endo/exo trace:~5
28 4 R = COOH, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h 20/N.d. endo/exo 0:20
29 4 R = COOH, R1 = OH Me NaOH, H2O, 50 ◦C, 16 h 56/N.d. endo/exo 0:56

1 Determined by NMR. 2 Products were not isolated. 3 After hydrogenation on Pd/C. 4 Extensive hydrolysis
of N-substituted maleimide to maleic acid. N.d.—not determined. Data for entries 1–9 were obtained from
reference [17]. Data for other entries were obtained from reference [18].
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Scheme 1. (a) Synthesis of renewable phtalimides by dehydration of oxanorbornenes. Reaction
conditions: N-(p-tolyl)-maleimide, p-TsOH, toluene, 80 ◦C, 16 h, 100% yield for dehydration of
oxanorbornene 1; N-Me-maleimide, HBr in AcOH, RT to 60 ◦C, 66% yield for dehydration of ox-
anorbornene 2. (b) General scheme for the synthesis of renewable phtalimides starting from FF- or
HMF-derived dimethyl hydrazones by spontaneous DA/dehydration reactions.

3. Application of a fmDA “Click” Approach for the Development of Dynamic
Molecular, Biomolecular and Organic-Inorganic Hybrid Systems

The reversibility of the fmDA cycloadditions used to link diverse chemical, biochemical
and inorganic scaffolds was widely applied in the design of dynamic molecular, biomolec-
ular and organic–inorganic hybrid architectures. The DA reaction of an FA or FA ester
3 with maleimides containing aromatic amine groups led to cycloadducts 6 or 7, which
exhibit fluorescent behavior and decompose back into non-fluorescent furan and maleimide
upon heating (Scheme 2a) [61,62]. Thus, DA cyclization promotes fluorescence in these
systems, and thermally induced rDA reaction quenches it. Cycloadduct 7 displays am-
phiphilic properties due to the presence of hydrophobic maleimide moiety and hydrophilic
oxanorbornene fragment [62].
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If the fluorescent molecule remains close to the surface of the aurum nanoparticles
(Au-NPs), the fluorescence emission from the dye molecule is efficiently quenched by
Au-NPs [63]. The photothermal rDA reaction of non-fluorescent conjugate 8 led to the
release of dye 9 from the nanoparticle surface, providing fluorescence that was turned
“On” (Scheme 2b) [63]. The use of one diastereomer was advantageous for this dynamic
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photothermally induced dye-emission system. Isomer 8-endo decomposed in 63% yield after
5 h compared to 45% after 8 h for its exo counterpart. Monomolecular or hybrid dynamic
light-emitting systems have high potential in sensor applications or molecular imaging.

An important application of fmDA “click” methodology is designing organic or hy-
brid conjugate systems for drug-delivery purposes [64]. The targeted delivery of bioactive
molecule can be carried out using fmDA conjugation of functionalized drug with biocom-
patible support such as carbohydrate [65–67] or metal nanoparticles [68,69] (Scheme 3). The
controllable release of drugs in vitro can be realized by the introduction of enzymatically
active linkers. Some conjugates of Doxorubicin with furan-containing oligosaccharides
(glyco-prodrugs) were synthesized by DA conjugation with maleimide-functionalized
Doxorubicin containing enzymatically cleavable linkers [67]. In vitro experiments demon-
strated an efficient, controllable release of the cytotoxic Doxorubicin-containing molecule
from glyco-prodrug upon enzymatic cleavage. An alternative approach to drug release
is thermally induced rDA cleavage, which has been efficiently demonstrated for hybrid
systems containing drug and magnetically active NPs [68].
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Thermo-responsive non-wetting surfaces were prepared using the fmDA reaction of
hydrophobic maleimides or polyfluorinated furan with DA counterparts attached to a glass
slides and capillaries (Scheme 4) [70]. However, attempts to demonstrate a self-purging
capillary were unsuccessful due to the incomplete surface functionalization or surface
rearrangement. As suggested by the authors, residual functional groups such as amines,
amides, esters or ethers were most likely involved in H-bonding, resulting in a residual
H2O layer that inhibits the self-purging phenomenon [70].
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4. Application of fmDA Cycloaddition for the Preparation of Functional or Dynamic
Polymers

Some oxanorbornenes, obtained by the DA reaction of C2-alkyl furans with maleimides,
showed high reactivity in Ru-catalyzed ring-opening metathesis polymerization
(ROMP) [37,38,71]. It is important to note that endo end exo oxanorbornenes can exhibit
different reactivity in ROMP. For example, exo oxanorbornene, formed from 2-alkyl furans
and N-methyl maleimide, underwent efficient homo-polymerization in the presence of G3
catalyst, while the endo isomer could not be polymerized [72].

The combination of several types of dienic structures with different reactivities in
DA reactions with maleimides could provide sequence-controlled polymerization and
self-assembly. Sun and co-workers described the topological transformations of a linear
amphiphilic fmDA block co-polymer or a segmented hyperbranched polymer into various
macromolecular architectures via the diene (furan or anthracene) displacement reaction
(Scheme 5) [73]. Han et al. reported a one-shot, sequence-controlled copolymerization of
styrene with several maleimides using differences in the temperature of rDA deprotection
in corresponding endo and exo fmDA adducts [74].

The reversibility of the fmDA reaction allows for dynamic polymers (dynamers) char-
acterized by interesting properties such as self-healing or shape memory effects. The low
activity of acceptor-substituted furans in the fmDA reaction explains its low applicability in
the development of fmDA-based dynamic materials. Dynamic polymers containing furanic
ester [75,76] amide [77] or oxime [78] functionalities showed only moderate self-healing
efficiency. Endo/exo isomerism is a major concern in the development of dynamers because
the low diastereoselectivity of fmDA polymerization or cross-linking may influence the
physical properties of resulting dynamers [42,79].

The broad investigations describing the synthesis of various dynamic polymeric
materials and composites using DA reactions (such as structural materials, supramolecular
systems, hydrogels, coatings with tunable adhesion), which have promising potential for
biomedical applications or smart materials development, were highlighted in some recent
reviews [80–83]. Dynamers with many different structural types can be synthesized using
the fmDA approach depending on the structure and ratio of the initial components. The
application of furan- and maleimide-functionalized bifunctional monomers or end-capped
linear pre-polymers provides the formation of linear dynamic polymers and co-polymers,
while the incorporation of three or more furanic or maleimide functionalities into the
structure of monomers leads to the formation of branched, hyperbranched or cross-linked
architectures [20,81]. Several types of dendritic compound were also prepared using the
fmDA approach [20,84].
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Below, we have covered the general approaches to the preparation of dynamers using
the fmDA “click” methodology. The selection predominantly includes representative
examples and most recent investigations dedicated to the synthesis of linear and three-
dimensional polymeric structures.

4.1. Synthesis of Dynamic Linear Polymers Using the fmDA “Click” Reaction

Polycondensation by fmDA reaction using bifunctional linear monomers (bis-furans
and bis-maleimides) or polymerization of maleimide-substituted furans was applied in
the development of various linear dynamers [85–88], including polymers with switchable
optical properties [89,90] or magnetically active conjugates [91]. A significant limitation
of this approach is the low degrees of polymerization by fmDA reaction (Table 4). Other
approaches that may be used for the synthesis of high-molecular-weight linear polymers
include the DA polymerization of linear oligomers or pre-polymers end-capped with the
furan- or maleimide functional groups [92–95], or co-polymerization of bifunctional fmDA
adducts [96].

4.2. Synthesis of Cross-Linked Dynamers Using the fmDA “Click” Reaction

The synthesis of dynamic cross-linked polymers, the so-called covalent adaptable
networks (CANs), has been paid significant attention in recent years due to the relatively
low decoupling energy provided through the retro-DA reaction, providing the possibility
of the easy thermal reprocessing and chemical recycling of CANs compared to traditional
covalently crosslinked thermosets [82]. Several approaches were used for the synthesis of
CANs using fmDA reaction. The synthesis of highly reprocessable cross-linked polymers
may be carried out using monomolecular substrates containing three or more furanic
and/or maleimide functional groups [99–101]. Depending on the structure and ratio
of the monomers, polycondensation by fmDA reaction can lead to branched or cross-
linked polymers [102]. One of the most studied types of CANs is dynamic thermoset
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polymers containing classical non-dynamic covalent polymers cross-linked by dynamic
oxanorbornene groups. Two general pathways used for the preparation of such polymers
include the cross-linking of functionalized pre-polymers (Scheme 6a,b) or polycondensation
of bifunctional fmDA adducts (Scheme 6c).

Table 4. Synthesis of linear polymers using the fmDA polycondensation.
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The preparation of dynamers by cross-linking functionalized pre-polymers using the
fmDA “click” reaction usually contains several steps: synthesis of pre-polymer and cross-
linker (monomolecular or polymeric), functionalization or the end-capping of pre-polymer
by a furanic or maleimide groups and thermally induced cross-linking. Synthesis of the
functionalized pre-polymers may be carried out by co-polymerization with a furan- or
maleimide containing monomers. These approaches were widely used in recent investi-
gations for the preparation of cross-linked polyurethanes [103], polyacrylates [42,104,105]
(including photoactive polymers [106,107]), cross-linked polysaccharides [108], and other
types of CANs. Linear polymers containing C2,C5-disubstituted furans as repeated units
also can undergo cross-linking with bis-maleimides [109–113]. Although disubstituted
furans might have a lower reactivity for the fmDA reaction than monosubstituted FF-
derived analogs, the presence of additional functionality at the furan ring provides addi-
tional opportunities for the synthesis of cross-linked CANs using HMF-derived monomers.
Thus, Chang and co-workers reported the preparation of self-remendable polyurethane by
cross-linking the linear fmDA bridged pre-polymer (obtained by the reaction of a difuran
containing hydroxymethyl groups at the furan rings with BMI) with bis-isocyanate [114].
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of pre-polymers with bis-maleimides (a,b) or with bifunctional fmDA adducts (c).

An alternative strategy for the synthesis of CANs with a high degree of cross-linking
is the application of bifunctional fmDA adducts for the synthesis of linear or cross-linked
pre-polymers [115–117], or as co-monomers [47,104,118]. Recently reported representa-
tive examples of the bifunctional adducts and types of obtained CANs are presented
in Table 5. Depending on the nature of functional groups involved in adducts, various
common dynamers were obtained, including polyacrylates, polyurethanes, epoxy resins
and silicones.

The relatively high temperature of polymerization and cross-linking and the low gap
between coupling and decoupling temperatures (typically, coupling begins at 50–60 ◦C
and decoupling at 100–120 ◦C) are significant limitations in the practical application of
dynamic polymers based on fmDA reaction. A possible means of overcoming these
limitations is the combination of slowly exchanging covalent dynamic DA bonds with
weakly supramolecular cross-links, such as Van-der-Waals interactions or H-bonding. The
presence of H-bonding in polymeric molecules reduces the temperature of rDA decoupling,
used for the development of room-temperature-remendable materials. In these materials,
supramolecular cross-links provided partial healing at room temperature and showed an
almost complete recovery at elevated temperatures [104,105,119,120].

Besides thermal initiation, rDA reaction in CANs can be driven by other stimuli,
such as light [107], mechanical [138] or magnetic force [139]. Light-responsive CANs
based on a photocontrolled DA reaction could be obtained by the introduction of the
fluorescent fragment into diene or dienophile [107,140,141]. Mechanochemical activation
originating in the overlap of dynamic bonds in furan-derived oxanorbornene fragment
with the force vector was used in the development of smart force-responsive materials and
devices [142–146]. A comparison of the rate of coupling for some fmDA adducts has shown
that the efficiency of thermal and mechanical activation is not equal and depends on the
regio- and stereo structure of the adducts: some diastereomers can be mechano-resistant
due to misalignment of the dynamic DA bonds with the force vector providing ineffective
mechanochemical interactions [147].
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Table 5. Examples of the bifunctional fmDA adducts and types of prepared CANs.

№ Type of Bifunctional Adduct R, R1 Type of Prepared CAN, Citation
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5. Conclusions

The recent trend towards sustainable development provided an increased number of
research articles related to the application of bioderived substrates as sources to practically
important products. The fmDA “click” cycloadditions involving biobased substrates is a
valuable approach used for the production of various smart systems, with high potential
in many fields, including fine organic synthesis, biochemistry, or materials development.
The easy functionalization of many different types of substrates by furan and maleimide
moieties, and the ability to fine-tune the reaction parameters of furan/maleimide DA and
rDA reactions, provides wide opportunities for the creation of monomolecular, polymeric
or hybrid architectures combining the properties of both clickable scaffolds. Thus, fmDA
conjugation of lipophilic and hydrophilic components could lead to the formation of
amphiphilic systems.

The increased number of publications and emergence of the novel fmDA “click”
methodologies indicate the rapid progress in these fields. However, many important areas,
including the development of room-temperature self-remendable polymers, application
of acceptor-substituted furans for the synthesis of fine chemicals and materials, need
further study. Moreover, new, industrially relevant technologies towards the production of
biobased smart molecular systems, materials and devices based on fmDA “click” approach
are required.
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2-MF 2-methylfuran
BAMF 2,5-bis(acetoxymethyl)furan
BHMF 2,5-bis(hydroxymethyl)furan
BMI 4,4’-bis(maleimido)diphenylmethane
Bn benzyl
CAN covalent adapfigure network
DA Diels–Alder
DFT density functional theory
DMF 2,5-dimethylfuran
FA furfuryl alcohol
FF furfural
fmDA furan/maleimide Diels–Alder
HMF 5-(hydroxymethyl)furfural
HOMO highest occupied molecular orbital
LUMO lowest unoccupied molecular orbital
N.d. not determined
NMR nuclear magnetic resonance
NP nanoparticle
PDI polydispersity index
rDA retro-Diels–Alder
ROMP ring-opening metathesis polymerization
RT room temperature
TFA trifluoroacetic acid
THF tetrahydrofuran
Ts tosyl
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