Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acellular Hemoglobin Preparation
2.2. Cell Cultures
2.3. Cell Assays
2.4. Semi-Quantitative RT-PCR Assay
2.5. Statistical Analysis
3. Results
3.1. Porcine Hemoglobin Modifies Viability of Mesenchymal Cells
3.2. Porcine Hemoglobin Modifies PB-MSCs’ Clonogenic Potential and Cell Cycle
3.3. Porcine Hemoglobin Modifies Migratory Capacity of Mesenchymal Cells
3.4. Porcine Hemoglobin Modifies Differentiation Capacity of Mesenchymal Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alayash, A. Hemoglobin-based blood substitutes: Oxygen carriers, pressor agents, or oxidants? Nat. Biotechnol. 1999, 17, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Steffen, A.; Andreas, K.; Müller, S.; Sternberg, N.; Georgieva, R.; Bäumler, H. Hemoglobin-Based Oxygen Carrier Microparticles: Synthesis, Properties, and In Vitro and In Vivo Investigations. Biomacromolecules 2012, 13, 3292–3300. [Google Scholar] [CrossRef]
- Bialas, C.; Moser, C.; Sims, C. Artificial oxygen carriers and red blood cell substitutes: A historic overview and recent developments toward military and clinical relevance. J. Trauma Acute Care Surg. 2019, 87, S48–S58. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Bai, S.; Li, L.; Li, S.; Zhang, Y.; Munir, M.; Qiu, H. Human Hemoglobin Subunit Beta Functions as a Pleiotropic Regulator of RIG-I/MDA5-Mediated Antiviral Innate Immune Responses. J. Virol. 2019, 93, e00718–e00719. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Yu, W.; Gao, D.; You, G.; Li, P.; Zhang, S.; Zhang, J.; Hu, T.; Zhao, L.; et al. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier. Biotechnol. Prog. 2016, 33, 252–260. [Google Scholar] [CrossRef]
- González-Rosendo, G.; Polo, J.; Rodríguez-Jerez, J.; Puga-Díaz, R.; Reyes-Navarrete, E.; Quintero-Gutiérrez, A. Bioavailability of a Heme-Iron Concentrate Product Added to Chocolate Biscuit Filling in Adolescent Girls Living in a Rural Area of Mexico. J. Food Sci. 2010, 75, H73–H78. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.; Brün, B.; Larsson, M.; Moraeus, L.; Hulthén, L. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition 2013, 29, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Y.; Li, Z.; Li, X.; Jin, Q.; Ji, J. Hemoglobin as a Smart pH-Sensitive Nanocarrier To Achieve Aggregation Enhanced Tumor Retention. Biomacromolecules 2018, 19, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Yan, X.; Duan, L.; Cui, Y.; Yang, Y.; Li, J. Glucose-Sensitive Microcapsules from Glutaraldehyde Cross-Linked Hemoglobin and Glucose Oxidase. Biomacromolecules 2009, 10, 1212–1216. [Google Scholar] [CrossRef]
- Arenberger, P.; Engels, P.; Arenbergerova, M.; Gkalpakiotis, S.; García Luna Martínez, F.J.; Villarreal Anaya, A.; Jimenez Fernandez, L. Clinical results of the application of a hemoglobin spray to promote healing of chronic wounds. GMS Krankenh. Interdiszip. 2011, 6, Doc05. [Google Scholar] [CrossRef]
- Elg, F.; Hunt, S. Hemoglobin spray as adjunct therapy in complex wounds: Meta-analysis versus standard care alone in pooled data by wound type across three retrospective cohort controlled evaluations. SAGE Open Med. 2018, 6, 205031211878431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallet, V.; Dutheil, D.; Polard, V.; Rousselot, M.; Leize, E.; Hauet, T.; Goujon, J.; Zal, F. Dose-Ranging Study of the Performance of the Natural Oxygen Transporter HEMO2Life in Organ Preservation. Artif. Organs 2014, 38, 691–701. [Google Scholar] [CrossRef]
- Zal, F.; Rousselot, M. Extracellular hemoglobins from Annelids, and their potential use in biotechnology. In Outstanding Marine Molecules, 1st ed.; La Barre, S., Kornprobst, J.-M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 361–376. [Google Scholar] [CrossRef]
- Le Pape, F.; Bossard, M.; Dutheil, D.; Rousselot, M.; Polard, V.; Férec, C.; Leize, E.; Delépine, P.; Zal, F. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line. Artif. Cells Nanomed. Biotechnol. 2015, 43, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Le Pape, F.; Cosnuau-Kemmat, L.; Richard, G.; Dubrana, F.; Férec, C.; Zal, F.; Leize, E.; Delépine, P. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media. Artif. Organs 2017, 41, 359–371. [Google Scholar] [CrossRef]
- Stančić, A.; Drvenica, I.; Obradović, H.; Bugarski, B.; Ilić, V.; Bugarski, D. Native bovine hemoglobin reduces differentiation capacity of mesenchymal stromal cells in vitro. Int. J. Biol. Macromol. 2020, 144, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Kostić, I.; Ilić, V.; Đorđević, V.; Bukara, K.; Mojsilović, S.; Nedović, V.; Bugarski, D.; Veljović, Đ.; Mišić, D.; Bugarski, B. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization. Colloids Surf. B Biointerfaces 2014, 122, 250–259. [Google Scholar] [CrossRef]
- Drvenica, I.; Stancic, A.; Kalusevic, A.; Markovic, S.; Dragisic-Maksimovic, J.; Nedovic, V.; Bugarski, B.; Ilic, V. Maltose-mediated long-term stabilization of freeze- and spray- dried forms of bovine and porcine hemoglobin. J. Serb. Chem. Soc. 2019, 84, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Trivanovic, D.; Kocic, J.; Mojsilovic, S.; Krstic, A.; Ilic, V.; Okic-Djordjevic, I.; Santibanez, J.; Jovcic, G.; Terzic, M.; Bugarski, D. Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly. Srp. Arh. Celok. Lek. 2013, 141, 178–186. [Google Scholar] [CrossRef]
- Kocić, J.; Santibañez, J.F.; Krstić, A.; Mojsilović, S.; Djordević, I.O.; Trivanović, D.; Ilić, V.; Bugarski, D. Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2. Biochim. Biophys. Acta-Mol. Cell Res. 2012, 1823, 838–849. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.; Lane, M. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA 1980, 77, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Winter, J.C.F. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 2013, 18, 10. [Google Scholar] [CrossRef]
- Bunn, H. Evolution of mammalian hemoglobin function. Blood 1981, 58, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Coates, C.; Decker, H. Immunological properties of oxygen-transport proteins: Hemoglobin, hemocyanin and hemerythrin. Cell. Mol. Life Sci. 2016, 74, 293–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamm, V.; Lanthier, D.; Stephenson, E.; Smith, G.; Harauz, G. In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biochim. Biophys. Acta 2015, 1852, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loomis, Z.; Eigenberger, P.; Redinius, K.; Lisk, C.; Karoor, V.; Nozik-Grayck, E.; Ferguson, S.; Hassell, K.; Nuss, R.; Stenmark, K.; et al. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS ONE 2017, 12, e0171219. [Google Scholar] [CrossRef] [PubMed]
- Aliakbari, F.; Haji Hosseinali, S.; Khalili Sarokhalil, Z.; Shahpasand, K.; Akbar Saboury, A.; Akhtari, K.; Falahati, M. Reactive oxygen species generated by titanium oxide nanoparticles stimulate the hemoglobin denaturation and cytotoxicity against human lymphocyte cell. J. Biomol. Struct. Dyn. 2019, 37, 4875–4881. [Google Scholar] [CrossRef]
- Kamaljeet; Bansal, S.; SenGupta, U. A Study of the Interaction of Bovine Hemoglobin with Synthetic Dyes Using Spectroscopic Techniques and Molecular Docking. Front. Chem. 2017, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, Z.; Liao, T.; Tuo, X. Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117306. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Liu, B.; Chong, B.; Cao, S. Interaction of Cefpiramide sodium with bovine hemoglobin and effect of the coexistent metal ion on the protein-drug association. J. Lumin. 2013, 142, 155–162. [Google Scholar] [CrossRef]
- Zhu, X.; Chu, W.; Fan, D.; Dan, N.; Chen, C.; Wang, T.; Wang, F. Variations in Dominant Antigen Determinants of Glutaraldehyde Polymerized Human, Bovine and Porcine Hemoglobin. Artif. Cells Blood Substit. Biotechnol. 2007, 35, 518–532. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, S.; Elashry, M.; Klymiuk, M.; Wenisch, S. Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int. J. Biol. Macromol. 2019, 123, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Fodor, E.; Mot, A.; Deac, F.; Arkosi, M.; Silaghi-Dumitrescu, R. Towards hemerythrin-based blood substitutes: Comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells. J. Biosci. 2011, 36, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Elmer, J.; Harris, D.; Huntley, J.; Palmer, A.; Nelson, T.; Johnson, J.; Xue, R.; Lannutti, J.; Viapiano, M. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol. Prog. 2014, 30, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Ortegon, D.; Davis, M.; Dixon, P.; Smith, D.; Josephs, J.; Mueller, D.; Jenkins, D.; Kerby, J. The Polymerized Bovine Hemoglobin-Based Oxygen-Carrying Solution (HBOC-201) Is Not Toxic to Neural Cells in Culture. J. Trauma. 2002, 53, 1068–1072. [Google Scholar] [CrossRef]
- Lara, F.; Kahn, S.; Fonseca, A.; Bahia, C.; Pinho, J.; Graca-Souza, A.; Houzel, J.; de Oliveira, P.; Moura-Neto, V.; Oliveira, M. On the Fate of Extracellular Hemoglobin and Heme in Brain. J. Cereb. Blood Flow Metab. 2009, 29, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Kim, H.A.; Kang, B.Y.; Kim, K.H. Hemoglobin induces colon cancer cell proliferation by release of reactive oxygen species. World J. Gastroenterol. 2006, 12, 5644. [Google Scholar] [CrossRef]
- Chen, G.; Palmer, A. Hemoglobin Regulates the Metabolic, Synthetic, Detoxification, and Biotransformation Functions of Hepatoma Cells Cultured in a Hollow Fiber Bioreactor. Tissue Eng. Part A 2010, 16, 3231–3240. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, J.; Sun, Y.; Xue, Y.; Zhang, Z.; Gong, A.; Wang, B.; Zhong, Z.; Cui, Z.; Xi, Z.; et al. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ. 2018, 25, 1870–1884. [Google Scholar] [CrossRef] [Green Version]
- Bo, J.; Guan, Y.; Guo, Y.; Xie, S.; Zhang, C.; Zhang, H.; Chen, Z.; Lu, J.; Meng, Q. Impairment of Endothelial Cell Function Induced by Hemoglobin A1c and the Potential Mechanisms. Exp. Clin. Endocrinol. Diabetes 2015, 123, 529–535. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Zhang, H.; Yang, H.; Li, Y.; Jiang, Y. Bovine Hemoglobin Derived Peptide Asn-Phe-Gly-Lys Inhibits Pancreatic Cancer Cells Metastasis by Targeting Secreted Hsp90α. J. Food Sci. 2017, 82, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.; Ludeman, M.; Cheng, K.; Hayami, T.; Lotz, J.; Kapila, S. Chondrogenic Differentiation of Human Mesenchymal Stem Cells in Three-Dimensional Alginate Gels. Tissue Eng. Part A 2008, 14, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, N.; Thorfve, A.; Brantsing, C.; Junevik, K.; Baranto, A.; Barreto Henriksson, H. Cell Viability and Chondrogenic Differentiation Capability of Human Mesenchymal Stem Cells After Iron Labeling with Iron Sucrose. Stem Cells Dev. 2014, 23, 2568–2580. [Google Scholar] [CrossRef]
- Roeder, E.; Henrionnet, C.; Goebel, J.; Gambier, N.; Beuf, O.; Grenier, D.; Chen, B.; Vuissoz, P.; Gillet, P.; Pinzano, A. Dose-Response of Superparamagnetic Iron Oxide Labeling on Mesenchymal Stem Cells Chondrogenic Differentiation: A Multi-Scale In Vitro Study. PLoS ONE 2014, 9, e98451. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Q.; Zhu, R.J.; Liu, K.Y. Osteogenic and adipogenic differentiation of bone marrow multipotent mesenchymal stem cells in the mice with hemorrhagic anemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014, 22, 177–182. (In Chinese) [Google Scholar] [CrossRef]
- Bruderer, M.; Richards, R.; Alini, M.; Stoddart, M. Role and regulation of RUNX2 in osteogenesis. Eur. Cells Mater. 2014, 28, 269–286. [Google Scholar] [CrossRef]
- Huang, Z.; Nelson, E.; Smith, R.; Goodman, S. The Sequential Expression Profiles of Growth Factors from Osteroprogenitors to OsteoblastsIn Vitro. Tissue Eng. 2007, 13, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Wafer, R.; Tandon, P.; Minchin, J. The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: Applying Knowledge from the Fish Aquaculture Industry to Biomedical Research. Front. Endocrinol. (Lausanne) 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Puri, N.; Sodhi, K.; Haarstad, M.; Kim, D.; Bohinc, S.; Foglio, E.; Favero, G.; Abraham, N. Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes. J. Cell. Biochem. 2012, 113, 1926–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gesta, S.; Tseng, Y.; Kahn, C. Developmental Origin of Fat: Tracking Obesity to Its Source. Cell 2007, 131, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Hardison, R. Evolution of Hemoglobin and Its Genes. Cold Spring Harb. Perspect. Med. 2012, 2, a011627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stančić, A.; Drvenica, I.; Bugarski, B.; Ilić, V.; Bugarski, D. Extracellular xenogeneic hemoglobin suppresses the capacity for C2C12 myoblast myogenic differentiation. Arch. Biol. Sci. 2020, 72, 379–391. [Google Scholar] [CrossRef]
- Casado-Díaz, A.; Santiago-Mora, R.; Dorado, G.; Quesada-Gómez, J. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: Potential implication in osteoporosis. Osteoporos. Int. 2012, 24, 1647–1661. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, S.; Oh, S.; Lee, H.; Ryu, J.; Han, H. Oleic acid enhances the motility of umbilical cord blood derived mesenchymal stem cells through EphB2-dependent F-actin formation. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1905–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojour, M.; Ebrahimi-Barough, S.; Kouchesfehani, H.; Jalali, H.; Ebrahim, M. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. J. Chem. Neuroanat. 2017, 79, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, Y.; Lee, S.; Park, Y. Trans-10,cis-12 Conjugated linoleic acid promotes bone formation by inhibiting adipogenesis by peroxisome proliferator activated receptor-γ-dependent mechanisms and by directly enhancing osteoblastogenesis from bone marrow mesenchymal stem cells. J. Nutr. Biochem. 2013, 24, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riera-Heredia, N.; Lutfi, E.; Gutiérrez, J.; Navarro, I.; Capilla, E. Fatty acids from fish or vegetable oils promote the adipogenic fate of mesenchymal stem cells derived from gilthead sea bream bone potentially through different pathways. PLoS ONE 2019, 14, e0215926. [Google Scholar] [CrossRef]
- Yanting, C.; Yang, Q.; Ma, G.; Du, M.; Harrison, J.; Block, E. Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes. J. Dairy Sci. 2018, 101, 1601–1615. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, L.; Hu, L.; Chen, D.; Yu, L.; Li, X.; Chen, H.; Zhu, J.; Chen, C.; Luo, Y.; et al. Stearic acid methyl ester promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. J. Orthop. Translat. 2020, 22, 81–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stančić, A.Z.; Drvenica, I.T.; Ilić, V.L.; Bugarski, B.M.; Bugarski, D.S. Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin. Processes 2022, 10, 32. https://doi.org/10.3390/pr10010032
Stančić AZ, Drvenica IT, Ilić VL, Bugarski BM, Bugarski DS. Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin. Processes. 2022; 10(1):32. https://doi.org/10.3390/pr10010032
Chicago/Turabian StyleStančić, Ana Z., Ivana T. Drvenica, Vesna Lj. Ilić, Branko M. Bugarski, and Diana S. Bugarski. 2022. "Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin" Processes 10, no. 1: 32. https://doi.org/10.3390/pr10010032
APA StyleStančić, A. Z., Drvenica, I. T., Ilić, V. L., Bugarski, B. M., & Bugarski, D. S. (2022). Modulation of Functional Characteristics of Mesenchymal Stromal Cells by Acellular Preparation of Porcine Hemoglobin. Processes, 10(1), 32. https://doi.org/10.3390/pr10010032