
Citation: Zhan, X.; Bai, H.; Yan, H.;

Wang, R.; Guo, C.; Jia, X. Diesel

Engine Fault Diagnosis Method

Based on Optimized VMD and

Improved CNN. Processes 2022, 10,

2162. https://doi.org/10.3390/

pr10112162

Academic Editors: Hongyun So,

Jong-Won Park and Sunghan Kim

Received: 20 September 2022

Accepted: 18 October 2022

Published: 22 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Diesel Engine Fault Diagnosis Method Based on Optimized
VMD and Improved CNN
Xianbiao Zhan, Huajun Bai, Hao Yan, Rongcai Wang, Chiming Guo and Xisheng Jia *

Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China
* Correspondence: xsjia123@sina.com

Abstract: The safe operation of diesel engines performs a vital function in industrial production
and life. Because diesel engines often work in harsh environmental conditions, they are prone to
failure. Therefore, this paper proposes a fault analysis method based on a combination of optimized
variational mode decomposition (VMD) and improved convolutional neural networks (CNN) to
address the necessary need for preventive maintenance of diesel engines. The authentic vibration
sign is first decomposed by using the (VMD) algorithm, then the greatest range of decomposition
layers is decided by using scattering entropy and the useful components are preferentially chosen
for reconstruction. The continuous wavelet transform (CWT) records preprocessing method is then
delivered to radically change the noise-reduced vibration sign into a time-frequency map, which is
fed into the CNN for model coaching and extraction of fault features. Finally, fault classification is
realized by support vector machine (SVM) with excellent classification performance. Through preset
fault experiments on diesel engines, it is established that the technique proposed in this paper can
successfully identify fault states, and the classification accuracy is higher than alternative methods.

Keywords: convolutional neural network; variational mode decomposition; diesel engine fault
diagnosis; continuous wavelet transform; support vector machine

1. Introduction

Diesel engines are widely used in the fields of national defense, agriculture, petro-
chemicals and ships, providing the main power for mechanical equipment. Once a failure
occurs, it may cause system downtime and even lead to major safety incidents [1]. There-
fore, it is of great importance to find out about the fault diagnosis technology of diesel
engines to ensure the protected operation of the diesel engines. The raw vibration signals
cannot directly characterize engine faults, thus they need to be processed in order to extract
features from different domains, which are either calculated by dimensionality reduction or
fed directly into machine learning algorithms for classification. Common signal processing
strategies include: empirical modal decomposition (EMD), short time Fourier transform
(STFT) and wavelet transform (WT) [2]. Traditional machine learning diagnosis methods
include: support vector machine (SVM), decision tree (DT) and naive Bayesian model
(NBM) [3]. Kumar et al. [4] first analyzed the bearing signals using fast Fourier transform
(FFT). Fault features were then extracted and fed into a particle swarm optimization SVM
model for diagnosis and compared with other methods, concluding that the proposed
method outperformed other existing algorithms. Mathew et al. [5] used the fundamental
aspect evaluation algorithm to limit the dimension of the extracted wavelet packet seriously
changed coefficient features, and then used the Bayesian optimization model for classifica-
tion. The experiment proved that this approach can achieve higher diagnostic outcomes
and lower testing time. Yang et al. [6] proposed a fault prognosis approach combining
EMD and SVM. Firstly, the EMD algorithm was once used to decompose the sign and
then input to SVM for classification, which achieved better classification results. However,
EMD [7] has the problem of end-point impact and mode aliasing. Subsequent scholars
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have proposed improved algorithms for the disadvantages of EMD, such as: ensemble
empirical mode decomposition (EEMD) [8], local mean decomposition (LMD) [9] and other
algorithms. EEMD is an improvement of EMD. Although the trouble of modal aliasing is
solved to a certain extent, the calculation efficiency is reduced after adding noise. The LMD
decomposition overcomes the EMD over-decomposition and other problems, but there are
still end-point effects and modal aliasing. In view of this, Konstantin et al. [10] proposed
the variational mode decomposition (VMD) algorithm in 2014. VMD is a non-stationary
and nonlinear signal processing method. It overcomes the shortcomings of EMD, EEMD
and LMD and is widely used in the fields of fault diagnosis and life prediction. Bi et al. [11]
decomposed the authentic vibration signal through VMD, and then classified the char-
acteristic parameters of the intrinsic mode function based totally on the improved fuzzy
C-means clustering algorithm (KFCM). The proposed approach has benefits in phrases of
accuracy and efficiency. Li et al. [12] proposed a method based on VMD and piecewise
Fourier transform for the weak early signal of bearing fault that is difficult to extract, which
can provide effective filtering for fault frequency and help fault diagnosis. Zheng et al. [13]
proposed a fault diagnosis method based on VMD, Hilbert-Huang and generalized learning
models in order to be able to accurately identify the failure modes of bearings, and obtained
a high accuracy rate. The above-mentioned literature using VMD to decompose the original
vibration signal are based on human experience to determine the value of the decomposi-
tion layer k. Although it is relatively simple to determine the k-value through experience,
it is prone to phenomena such as over-decomposition and under-decomposition, and has
certain limitations. Qiao et al. [14] proposed a bearing fault diagnosis method based on
VMD and improved SVM algorithm, which mainly determines the k-value by the center fre-
quency and then calculates the sample entropy of each IMF component as the input feature
of the improved SVM algorithm. Experiments have shown that the method proposed in
this paper has good diagnostic performance. In addition, some other researchers have used
algorithms such as the fruit fly optimization algorithm [15], the sparrow search algorithm
(SSA) [16] and whale optimization (WOA) [17] to determine the optimal number of decom-
position k layers. Although better results were achieved by using various optimization
algorithms to determine the k-value, the optimization algorithms need to determine many
parameters, such as: batching and number of iterations, and the selection of batching and
number of iterations will seriously affect the decomposition efficiency of VMD [18]. In
view of this, this paper uses a VMD method based on scattering entropy improvement to
determine the optimal number of decomposition k layers. The original vibration signal
is decomposed by VMD, and the optimal number of decomposition k layers and useful
components are determined by calculating the scatter entropy of each component, and then
the useful components selected are reconstructed to extract features for classification.

The aforementioned scholars have done a lot of research on signal processing in the
early stages, and good signal preprocessing has laid a good foundation for subsequent
extraction of weak fault features and classification. Traditional fault feature extraction meth-
ods mainly extract the features of the time-frequency domain, but such feature extraction
methods are prone to cause errors and poor generalization. In addition, traditional shallow
machine learning algorithms are not effective in learning the non-linear relationships of the
system [19]. In current years, with the upward trend of deep learning, the use of convolu-
tional neural networks (CNN) and other algorithms to extract fault feature information has
gradually become a research hotspot [20]. Because the CNN has terrific feature extraction
ability, it can automatically extract high-dimensional information features. Through visual
displays such as t-SNE, it can be viewed that with the increase of the variety of community
layers, the feature expression ability and classification capacity are also improved layer by
layer. Houssem et al. [21] applied the VMD algorithm to process the vibration signal, and
then used CNN for classification and diagnosis. Furthermore, verified on public datasets,
the results show that the algorithm can reduce redundant information, have better diagno-
sis results and lower diagnosis delay. Wang et al. [22] used a multi-sensor fusion approach.
Features are first extracted from the vibration and sound indicators of the bearings sepa-
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rately. Then they are input into CNN for fusion and classification. By examining the loss
characteristic and accuracy underneath extraordinary signal-to-noise ratios, it is concluded
that the fault features of this paper combining vibration and sound signals are richer and
more beneficial for fault diagnosis, and its diagnosis accuracy is higher. Gong et al. [23]
proposed an improved CNN algorithm for fault diagnosis of CNN networks, which are
prone to overfitting and computational time-consumption. This method abandoned the
preceding utterly-connected layer and replaced it with a world common pooling layer; the
experimental outcomes exhibit that this approach can reap higher classification effect and
reduce the risk of overfitting.

The models studied by the above scholars all use the one-dimensional CNN network
model, but CNN has more advantages in processing two-dimensional data, and it is easier
to extract feature information from images [24,25]. Therefore, researchers began to convert
the authentic sign into a picture for fault diagnosis. Xiao et al. [26] proposed a fault
diagnosis method based on the combination of improved variational mode decomposition
(IVMD) and CNN, where IVMD mainly refers to the optimization of VMD by determining
the optimal k-value of VMD decomposition based on the decomposition of the traditional
VMD method and then using the Pearson correlation coefficient principle. The processed
signal is fed into the CNN for classification by obtaining a two-dimensional time-frequency
map through continuous wavelet transform (CWT). The method not only removes the
redundant interference in the signal and retains the main features of the fault, but also
has a high accuracy rate. Nishat et al. [27] used the EMD algorithm to decompose the
accumulated vibration signals, and then performed spectrum analysis. Finally, the received
spectrum was first compressed and input into the CNN classification network for coaching
and classification in order to confirm the generalization and classification of the proposed
method. To enhance the anti-noise ability, white noise is delivered to the unique signal. The
experimental outcomes show that the proposed approach nevertheless has an excessive
accuracy. Liang et al. [28] combined WT and CNN without delay to use the raw vibration
sign of the gearbox for end-to-end fault diagnosis, and used two instances for experimental
verification. The outcomes exhibit that the proposed hybrid approach for analysis is
higher than other strategies in the literature. The method has greater precision and greater
stability. Although the use of CNN models has achieved many successful applications in
the diagnostic field, there are still some problems:

1. Because diesel engines frequently work under complex environmental conditions,
the fault vibration sign is rather vulnerable and often blanketed through robust
noise and interference signals, thus it is challenging to extract fault records from
combined signals.

2. The excellent mechanical fault classification potential of CNN is primarily based on a
giant number of coaching samples; however, it is tough to achieve fault samples in
engineering practice.

Through the above research analysis, this discovery proposes a diesel engine fault anal-
ysis method for small pattern training. Firstly, the authentic vibration signal is decomposed
using VMD, the optimal quantity of decomposition layers is decided by using scattering
entropy and the beneficial components are preferentially selected for reconstruction, then
the noise reduced vibration signal is converted into a time-frequency map using CWT and
finally the CNN is used for feature extraction of the time-frequency map, but this technique
discards the Softmax layer and uses SVM, which has better classification performance, as
the classifier to construct an improved CNN fault diagnosis method for diesel engines.
Experimental outcomes exhibit that the proposed method in this paper can extract engine
fault points quickly and accurately with a high accuracy rate. The main contributions of
this paper are as follows.

1. The study uses scattering entropy to decide the most fulfilling quantity of layers and
to choose useful elements for VMD decomposition, and the optimized VMD excludes
the noise and interference indicators from the unique vibration signal, for that reason
efficaciously decreasing noise.
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2. The reconstructed data after noise discounting is transformed into a two-dimensional
time-frequency photograph using CWT, which can correctly signify the non-smoothness
of the vibration signal and incorporates richer fault features, which is more conducive
to function extraction with the aid of CNN.

3. This lookup method not only utilizes the exceptional characteristic studying capability
of CNN, but also the wonderful classification functionality of SVM, which avoids the
errors caused by way of guide characteristic extraction and improves the accuracy.

The rest of this paper is organized as follows: Section 2 describes the denoising method
of VMD decomposition, the theoretical knowledge of scatter entropy, the transformation
method of time-frequency map using CWT and the theoretical knowledge of CNN and
SVM algorithms. The fault diagnosis method of diesel engines is described in Section 3;
Section 4 presents the experimental analysis and method comparison; and Section 5 is
the conclusion.

2. Theory Backgrounds
2.1. Variational Mode Decomposition

The vibration signal of diesel engines has the characteristics of non-stationarity and
nonlinearity. VMD decomposition is a processing method for non-stationary and nonlinear
signals. It solves modal aliasing, end effect and sensitivity to noise of EMD, EEMD and LMD.
It is extensively used in the discipline of vibration signal processing and can decompose
the signal adaptively. The authentic time collection f (t) can be decomposed into exclusive
factors uk(t) with restricted bandwidth by way of an iterative search variational model, and
the corresponding middle frequency is ωk. The bandwidth of every component can be
estimated by way of the following steps.

1. Performing Hilbert seriously changes every vibration element to reap a unilateral
spectrum.

2. Adjust the exponent of every estimated middle frequency, and switch the spectrum of
each vibration issue to the baseband region.

3. Calculate the L2-norm of the demodulated sign gradient to achieve the bandwidth of
every vibration component.

Then the vibration output signal VMD of the diesel engine can be expressed by the
following formula:

min
{

k
∑

k=1

∥∥∥∂t((δ(t) +
j

πt ) ∗ uk(t)) exp(−jωkt)
∥∥∥2

2

}
s.t.

k
∑

k=1
uk = f (t)

(1)

In the formula: ∂t represents the partial derivative; δ(t) is the Dirac distribution
function; “*” represents the convolution operation, k is the total number of components;
and f (t) is the original planetary gearbox output signal.

The above restricted extremum issue is transformed into an unconstrained problem to
be cleared up by the use of Lagrangian multiplier λ and quadratic penalty term a, as shown
in Equation (2):

L({uk}, {ωk}, λ) = α
k

∑
k=1

∥∥∥∥∂t((δ(t) +
j

πt
) ∗ uk(t)) exp(−jωkt)

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−
k

∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

k

∑
k=1

uk(t)

〉
(2)
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Each factor uk and the corresponding central frequency ωk can be optimally solved
with the aid of the alternating direction multiplier approach, which is updated as follows.

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûn
k (ω)+ λ̂n(ω)

2

1+2α(ω−ωn
k )

2

ωn+1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |ûn+1

k (ω)|2dω

(3)

In the formula: f̂ (ω), ûn
k (ω) and λ̂(ω) are the Fourier transform of f (t), uk(t) and λ(t),

respectively; ω is the frequency; and n is the number of iterations.
It can be seen from the above VMD algorithm that VMD decomposes the original

vibration signal into k components. The traditional selection of k values is mainly based on
human experience, which has certain limitations. If the k-value is too large, it will produce
over decomposition, and if the k-value is too small, it will not be able to decompose the
useful signal. In view of this, an improved VMD algorithm based on dispersion entropy
is proposed.

2.2. Dispersion Entropy

The complexity of the time sequence can be measured in phrases of statistics entropy.
Common information entropies are: pattern entropy [29], permutation entropy [30] and
scattering entropy [31]. Among them, pattern entropy is much less environment friendly to
calculate, and although permutation entropy displays the complexity of the signal and the
non-linear characteristics of the signal, permutation entropy ignores the distinction char-
acteristics of the amplitude. In view of this, Rostaghi and Azami proposed the scattering
entropy algorithm in 2016, which is a new algorithm to measure the complexity of time
series, with a quicker calculation velocity compared to sample entropy and better stabil-
ity through thinking about the suggested cost of amplitude and the variability between
amplitudes, with the following calculation procedure.

Step 1: Use the normal distribution function:

yj =
1

σ
√

2π

∫ xj

−∞
e
−(t−µ)2

2σ2 (4)

Map the time series x to y = {y1, y2, · · · , yN}, yj ∈ (0, 1), where µ and σ2 are the
expectation and variance of the time series, respectively.

Step 2: Mapping y to an integer in the range [1, c] yields:

zc
j = int(cyj + 0.5) (5)

In the formula, c is the number of categories, and int is the rounding.
Step 3: Scatter pattern wv0v1···vm−1(v = 1, 2, · · · , c), and calculate the probability of all

scatter patterns:

p(wv0v1···vm−1) =
num(wv0v1···vm−1)

N − (m− 1)d
(6)

where zc
i = v0, zc

i+d = v1, · · · , zc
i+(m−1)d = vm−1; num(wv0v1···vm−1) is the number of zm,c

i
mappings to scatter patterns, m is the embedding dimension and d is the experimental delay.

Step 4: According to the definition of information entropy, DE of signal x is defined as:

DE(x, m, c, d) = −
cm

∑
w=1

p(wv0v1···vm−1)In(p(wv0v1···vm−1)) (7)

According to the above scattering entropy formula, the original vibration signal is
decomposed in VMD to derive each IMF component, and then the scattering entropy value
of each IMF component is calculated using the scattering entropy formula, and the optimal
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number of decomposition layers is determined when the scattering entropy value takes a
turn, thus achieving the optimal selection of k values.

2.3. Continuous Wavelet Transform

The image can comprise richer fault function information, thus it is vital to seri-
ously change the one-dimensional vibration sign into a time-frequency map. Short-time
Fourier transform (STFT) can convert the original fault vibration sign into a time-frequency
map [32], however the window feature in STFT has a constant size and the choice of the
window battles to satisfy both high frequency decision and excessive time resolution. There-
fore, in the image classification, it is challenging to attain a higher classification effect using
the STFT method. The emergence of the wavelet solves the hassle of constant window
function, because the wavelet results in no longer using the concept of a window, but
directly replaces the trigonometric feature foundation with the wavelet basis. This resolves
the conflict between time and frequency resolution. The continuous wavelet transform is:

Tcw,x(u, v) =
∫ +∞

−∞
x(t)ϕu,v(t)dt =

1√
a

∫ +∞

−∞
x(t)ϕ(

t− τ

a
)dt (8)

Among them, the place a represents the scale parameter, τ represents the time pa-
rameter, x(t) represents the authentic signal and ϕ(t) is the wavelet basis function. The
wavelet base selected in this paper is Morse wavelet, because many commonly used an-
alytical wavelets are special cases of the generalized Morse wavelet. The Morse wavelet
can obtain analytical wavelets with different properties and behaviors by adjusting the
time-bandwidth product and symmetric parameters. Its expression is:

ϕu,v(t) =
1√
a

ϕ(
t− τ

a
), v > 0, u ∈ R (9)

The reason why wavelet transform can solve the conflict between time and frequency
resolution is mainly because the scale parameter a and translation parameter τ in wavelet
transform can be automatically adjusted according to the properties of the signal.

2.4. Convolutional Neural Network

The CNN model uses multiple processing layers to process the input statistics [33],
and has emerged as a frequent approach for feature extraction in deep studies [34]. CNN
can automatically extract and integrate signal features, particularly in photo classification,
which has been widely used. The common simple shape of the CNN is proven in Figure 1.
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Figure 1. Structural diagram of a convolutional neural network. Figure 1. Structural diagram of a convolutional neural network.

2.4.1. Convolutional Layer

In the convolution layer, the top layer characteristic map is first convolved with the
aid of the convolution kernel and then the next layer function map is obtained by means
of the activation function. By extracting local features from the entered data, the range
of community parameters is decreased and the complexity of the model is reduced. The
convolution method can be described as follows:

xl
j = f ( ∑

i∈Mj

xl−1
i kl

ij + bl
j) (10)
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Among them, l is the l layer convolutional layer; i, j represents the feature map number
in the l layer and the l − 1 layer respectively; xl

j is the output of the l layer; Mj is the feature

set of the l − 1 layer, kl
ij is the weight matrix, bl

j is the bias and f ( ) is the activation function.

2.4.2. Pooling Layer

In the pooling layer, downsampling is carried out by using the potential of pooling
kernels, which serve to reduce the computational complexity of the community and extract
useful fault features. This can be expressed in terms of the following equation:

xl
j = f (βl

jdown(xl−1
j ) + bl

j) (11)

where down( ) is the downsampling function and β is the weight of the network.

2.4.3. Fully Connected Layer

The image features are entered into the entirely linked layer at the end of the CNN
after multi-layer convolution and pooling. In the fully linked layer, the neurons in the
post-layer layer and the neurons in the front layer are connected one by one to distinguish
the deep feature facts and to construct the extracted elements and labels of the mapping
relationship between them. This can be expressed in terms of the following equation:

yk = f (wkxk−1 + bk) (12)

Among them, xk−1 is the input of the fully connected layer, k is the network of the
k layer, yk is the output of the fully connected layer, wk is the weight coefficient and bk is
the bias.

2.5. Support Vector Machines

SVMs were proposed by Vapnik [35] and are commonly used in small-sample and
nonlinear problems [36,37]. The schematic diagram of SVM classification is shown in
Figure 2. The fundamental model of SVM is to locate or create a hyperplane that maximizes
the distance between the nearest sample factors on both sides of the hyperplane. In the
pattern space, the partitioned hyperplane can be described as:

f (x) = wTx + b (13)

where w = (w1, w2, · · · , wd) is the normal vector of the hyperplane and b is the distance
between the hyperplane and the far point.
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This linearly separable optimal classification surface is:

min
1
2
‖w‖2

w,b

(14)

The constraints are:
yi(w·xi + b) ≥ 1, i = 1, . . . , n (15)

In order to solve the above problems, the Lagrangian function is introduced:

L(w, b, a) =
1
2
‖w‖2 −

n

∑
i=1

aiyi(w·xi + b) +
n

∑
i=1

ai (16)

where ai is the Lagrange multiplier and ai ≥ 0, b is the classification threshold. The optimal
classification is as follows:

Samples in the unique house are generally non-linear and indivisible. Therefore, a
kernel characteristic is used to map the non-linear samples into the greater dimensional
space, and a most reliable hyperplane is observed in the greater dimensional space to make
the samples linearly divisible. Finally, the primary model of the SVM can be obtained
as follows:

f (x) = sign(
n

∑
i=1

aiyiK(xi · x) + b) (17)

where K denotes the kernel function. The Gaussian radial basis characteristic with its sturdy
localization and knowledge gaining capability is chosen. The most suitable values of the
width coefficients and penalty factors of the kernel characteristic are acquired with the aid
of a cross-validation method.

3. Optimizing VMD and Improving CNN for Diagnosis

Aiming at the small amount of on-hand fault records of diesel engines and the com-
plicated characteristic extraction of normal wise analysis methods, this paper proposes
a small-sample fault detection approach for diesel engines. The approach combines the
tremendous signal processing functionality of VMD, the computerized characteristic ex-
traction functionality of CNN and the processing capability and generalization capability
of SVM for small samples. Its flow is shown in Figure 3.

The specific troubleshooting procedure is as follows:
Step 1: Carry out a preset fault test on the diesel engine and acquire the fault facts of

the diesel engine. The authentic vibration sign is decomposed with the aid of the VMD
algorithm, the most effective variety of decomposed layers is decided by means of the
spread entropy and the beneficial IMF factors are screened out and subsequently the noise
reduction signal is obtained by means of superposition and reconstruction.

Step 2: Use CWT to convert the noise discount vibration signal into a time-frequency
photo with a dimension of 227 × 227 × 3. Every 5000 vibration signal factors are converted
into a sample. The samples of every kind of fault are divided into education samples and
take the form of samples in a ratio of 8:2.

Step 3: Train the CNN network, and enter the education samples into the CNN
community for characteristic extraction.

Step 4: The CNN model education is completed and the features from the utterly
connected layer are fed into the SVM for classification.
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4. Experiments and Analysis
4.1. Experimental Equipment

In this experiment, a CA6DF3-20E3 diesel engine was used, and its rotational velocity
was 800 rpm. The specific indicators are shown in Table 1. The sketch of the experimental
setup and sensors is shown in Figure 4. The diesel engine control panel commonly controls
the starting and stopping of the diesel engine and monitors the status of the diesel engine.
The records acquisition system selects the acquisition card of the PXI-3342 model and the
pc of PXI-9082. The sensor model is a B&W14100 acceleration sensor, and the sampling
frequency is 20 KHz. The sensor is positioned on the cylinder head of the diesel engine,
and the experiment below records six working conditions. As shown in Table 2. Specific
experimental test steps are: (1) install the vibration sensor and connect the collection
equipment; (2) start the diesel engine and set the speed to 800 rpm; (3) wait for the engine
to run steadily for 3 min and start collecting data; (4) preset five kinds of faults, repeat
steps (2) and (3), respectively, collect 10 sets of data for each fault, and collect 12 s for
each set of data. Among them, for the injection pump fault and broken supply pipe fault
experiments, the approach used was to replace the faulty injection pump and broken supply
pipe fittings; for one cylinder misfiring and six cylinder misfiring, the approach taken was
to disconnect its corresponding injector power cable; and for the air filter blockage fault
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experiments, the air intake cover was added. The specific preset fault test method is shown
in Figure 5.

Because of the complex structure of diesel engines and the difficulty of acquiring fault
sample data, it is necessary to analyze the uncertainty analysis of diesel engine experiments.
Engine uncertainty is mainly manifested in the following ways: (1) in the acquisition of
fault data, there is noise uncertainty in the vibration signal, thus this paper uses a VMD to
decompose the original vibration signal, reduce the impact of noise on fault identification
and extract the weak features of the fault; (2) the uncertainty caused by the sensor, a single
sensor will result in the fault information acquisition not being comprehensive, thus in this
paper, the B&W14100 piezoelectric acceleration sensor with high accuracy is selected and
the sensor is rigidly linked to the engine cylinder head. Six sensors were arranged on the
diesel engine to collect the diesel engine fault information more comprehensively.

Table 1. Diesel engine specific detailed specifications.

Item Indicators Item Indicators

Type Four-stroke, high
pressure common rail Ignition 1-5-3-6-2-4

Model Tin Diesel
CA6DF3-20E3 Bore*stroke 107 mm × 125 mm

Size 1330 × 970 × 1005
mm Common rail systems BOSCH Electronically

controlled common rail
Net power 147 KW Power rating 155 KW

Maximum torque 760 NM Maximum
horsepower 200 horsepower
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Table 2. Diesel engine operating conditions.

Fault Tags Fault Tags Fault Tags Type of Fault

01 normal 04 Six cylinder misfire

02 Insufficient oil supply to
high pressure pump 05 Air filter clogged

03 Cylinder misfire 06 Oil supply pipe is damaged
and dripping oil
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4.2. Preprocessing and Analysis of Experimental Data

The unique vibration signal was collected, the diesel engine speed was set to 800 rpm,
the sensor sampling frequency was 20 KHz, a set of information was collected every 30 s,
each set of information collection time every 12 s, and 10 sets of records were collected for
every condition. The particular experimental facts are shown in Table 3.

Table 3. Experimental dataset.

Fault Tags Rotational
Speed Frequency Number of

Sensors
Collection

Time
Sample

Collection

01 800 rpm 20 KHz 6 12 s 10
02 800 rpm 20 KHz 6 12 s 10
03 800 rpm 20 KHz 6 12 s 10
04 800 rpm 20 KHz 6 12 s 10
05 800 rpm 20 KHz 6 12 s 10
06 800 rpm 20 KHz 6 12 s 10

The experimental information preprocessing was carried out with only one cylinder
misfire and the 4th sensor acquisition sign for instant analysis. The authentic vibration
sign was decomposed using the VMD to calculate the scattering entropy values of every
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IMF aspect to determine the most suitable wide variety of decomposition layers and the
most treasured IMF components. For calculating the scattering entropy, the embedding
dimension of m = 2, the quantity of categories of c = 8 and the time delay of d = 1 were
selected. The scattering entropy effects of every aspect of the special decomposition layers
are displayed below in Table 4. At k = 5 the scattering entropy cost starts off evolved to
show a clear turnaround at IMF2. This means that the noise issue and the useful factor
are already present at this point, and the scattering entropy price of IMF2 is the largest,
indicating the biggest sign complexity. Therefore, the best range for decomposition layers
of k = 5 is determined.

Table 4. Scattering entropy values for every aspect of the VMD decomposition.

IMF
Scattering Entropy Values for Each IMF Issue at One of a Kind K

3 4 5 6 7

IMF1 3.9627 3.9711 3.8240 3.8330 3.8339
IMF2 3.5992 3.6195 3.9498 3.9653 3.9703
IMF3 3.1888 3.3924 3.6125 3.7180 3.8439
IMF4 3.0777 3.3808 3.5933 3.6937
IMF5 3.0669 3.3597 3.5810
IMF6 3.0567 3.3384
IMF7 3.0575

When k = 5, the spectrum plot of every decomposed IMF factor is calculated, as shown
in Figure 6. It can be seen in Figure 6 that each IMF1 and IMF2 are excessive frequency
factors with a relatively extensive bandwidth and a complex spectrum, and there can
also be a large variety of interfering alerts and complicated signals. Therefore, the IMF1
and IMF2 aspects are discarded and the final three factors are chosen for reconstruction.
The reconstructed signal after noise reduction is transformed into a CWT time-frequency
map, and every 5000 samples are modified into a two-dimensional time-frequency map.
Figure 7 indicates an example CWT plot for each fault state (the color spectrum represents
the sign power intensity stage in dB). It can be seen in Figure 7 that although the time-
frequency distribution of the fault circumstance is close to that of the regular condition, and
the foremost energy distribution of the engine tends to be 1.5–4 Khz, the time-frequency
plan can visualize the distribution of power in distinct frequency ranges. In addition, the
time-frequency area points developed with the aid of CWT can efficiently represent the
non-smooth characteristics of the vibration signal, which is extra beneficial for CNN to
extract features. As a result, the CWT time-frequency maps include richer fault information
than time or frequency area alerts and are more beneficial for fault diagnosis.

Processes 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. IMF component and IMF component spectrograms. 

 
Figure 7. CWT time-frequency diagram: (a) 01 status; (b) 02 status; (c) 03 status; (d) 04 status; (e) 05 
status; (f) 06 status. 

4.3. CNN Model Structure 
An excellent community model without delay influences the great of function extrac-

tion. In order to obtain excellent extraction of feature information, the CNN model used 
in this paper has 24 layers, consisting of an input layer, a convolutional layer, a 

Figure 6. IMF component and IMF component spectrograms.



Processes 2022, 10, 2162 13 of 20

Processes 2022, 10, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. IMF component and IMF component spectrograms. 

 
Figure 7. CWT time-frequency diagram: (a) 01 status; (b) 02 status; (c) 03 status; (d) 04 status; (e) 05 
status; (f) 06 status. 

4.3. CNN Model Structure 
An excellent community model without delay influences the great of function extrac-

tion. In order to obtain excellent extraction of feature information, the CNN model used 
in this paper has 24 layers, consisting of an input layer, a convolutional layer, a 

Figure 7. CWT time-frequency diagram: (a) 01 status; (b) 02 status; (c) 03 status; (d) 04 status;
(e) 05 status; (f) 06 status.

4.3. CNN Model Structure

An excellent community model without delay influences the great of function extrac-
tion. In order to obtain excellent extraction of feature information, the CNN model used in
this paper has 24 layers, consisting of an input layer, a convolutional layer, a normalization
layer, a ReLU layer, a pooling layer, an utterly-linked layer, a Softmax layer and an output
layer, and its shape is shown in Table 5. After many experiments, considering factors such
as classification effect and time cost, the initial learning rate is set to 0.01; the activation
function selects the ReLU function; the pooling layer with maximum pooling, which not
only reduces the input data and training parameters of the next layer, and greatly preserve
the largest local features in the feature map; the model training optimization uses the Adam
algorithm; and the minimum batch size is set to 20. The convolution method adopts a zero-
padding method, which is beneficial to control the shape of the output. In order to reduce
overfitting and improve model convergence speed, dropout and batch normalization (BN)
layers are introduced.



Processes 2022, 10, 2162 14 of 20

Table 5. CNN model structure.

Name Activations Learnables

Image input 227 × 227 × 3 -
Conv_1 227 × 227 × 8 Weights 5 × 5 × 3 × 8, Bias1 × 1 × 8

Batchnorm_1 227 × 227 × 8 Offset 1 × 1 × 8, Scale1 × 1 × 8
Relu_1 227 × 227 × 8 -

Maxpool_1 113 × 113 × 8 -
Conv_2 113 × 113 × 12 Weights3 × 3 × 8 × 12, Bias1 × 1 × 12

Batchnorm_2 113 × 113 × 12 Offset 1 × 1 × 12, Scale1 × 1 × 12
Relu_2 113 × 113 × 12 -

Maxpool_2 56 × 56 × 12 -
Conv_3 56 × 56 × 16 Weights3 × 3 × 12 × 16, Bias1 × 1 × 16

Batchnorm_3 56 × 56 × 16 Offset 1 × 1 × 16, Scale1 × 1 × 16
Relu_3 56 × 56 × 16 -

Maxpool_3 28 × 28 × 16 -
Conv_4 28 × 28 × 20 Weights 3 × 3 × 16 × 20, Bias1 × 1 × 20

Batchnorm_4 28 × 28 × 20 Offset 1 × 1 × 20, Scale1 × 1 × 20
Relu_4 28 × 28 × 20 -

Maxpool_4 14 × 14 × 20 -
Fc1 1 × 1 × 32 Weights 32 × 3920, Bias32 × 1

Dropout_1 1 × 1 × 32 -
Fc2 1 × 1 × 64 Weights 64 × 32, Bias64 × 1

Dropout_2 1 × 1 × 64 -
Fc3 1 × 1 × 6 Weights 6 × 64, Bias6 × 1

Softmax 1 × 1 × 6 -
Classification Output - -

Dropout is when some of the hidden nodes are set to zero, which reduces the training
of weights and effectively reduces the overfitting of the model; dropout is set to 0.2. The
BN layer normalizes the data and speeds up the training of the model.

4.4. Experimental Analysis
4.4.1. CNN Feature Extraction Effect

To show the impact of CNN characteristic extraction, exclusive fault types are repre-
sented by the t-SNE [38] method. t-SNE has superb visualization functionality and can
intuitively show the statistics feature distribution functionality of unique community layers.
t-SNE is used in this paper to change multi-dimensional statistics into 2-dimensional data.
When the variety of statistics samples for every circumstance is 240, the function distribu-
tion of unique layers is proven in Figure 8. It can be seen in Figure 8 that the fault state of 3
is easy to distinguish. The data features in the Conv1 layer are scattered and disordered,
different fault states overlap each other, and the classification effect is poor. In the Conv2
layer, two failure modes of 03 and 05 can be clearly distinguished. With the increase of the
number of network layers, in the Conv4 layer, only a few features are indistinguishable,
and the 04 and 02 states still partially overlap. In the FC3 layer, all fault states are fully
distinguishable and clustering is better. The experimental evaluation suggests that the
technique has accurate function mastering capability and can improve the classification
accuracy. Table 6 presents the feature extraction and diagnosis results of the CNN model
for each failure mode.
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Table 6. CNN model feature extraction diagnosis results.

Fault State Total Sample Accuracy

01 240 100.0%
02 240 100.0%
03 240 100.0%
04 240 100.0%
05 240 100.0%
06 240 100.0%

4.4.2. Comparative Analysis of Multi-Mode Decomposition Diagnosis Results

As can be seen from Figure 8, CNN has excellent feature extraction ability. In order
to prove that the optimized VMD signal is helpful to improve the classification accuracy,
different signal processing algorithms are selected, and then CWT is used to convert the
noise reduction signal into a time-frequency map, which is input into the CNN-SVM
network. The experimental outcomes are shown in Table 7. The EMD-CNN-SVM technique
has the shortest education time, however the classification accuracy is low due to modal
blending. The EEMD-CNN-SVM technique gave the worst classification outcomes and
time for this dataset, whilst the CEEMD-CNN-SVM approach multiplied the accuracy to
some extent, however it took longer. The comprehensive analysis shows that the optimized
VMD algorithm has excellent noise reduction ability, and the calculation efficiency is higher
than other algorithms, which helps to improve the classification accuracy. The specific
classification and diagnosis diagram is shown in Figure 9.
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Table 7. Comparative results of the different models.

Network Model Total Sample Training Sample Test Sample Accuracy Time (s)

VMD-CNN-SVM 240 192 48 100.0% 200.3
EMD-CNN-SVM 240 192 48 95.1% 194.6

EEMD-CNN-SVM 240 192 48 92.3% 364.1
CEEMD-CNN-SVM 240 192 48 97.6% 356.4
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4.4.3. Comparative Analysis of Different Training Samples

From the above analysis, it can be seen that by using different signal processing
methods, the denoised sign is entered into the CNN-SVM model after continuous wavelet
transform, and the accuracy rate can reach 90%. It can be seen that the CNN has excellent
extraction ability characteristics, but the excellent mechanical fault classification ability
of CNN is based on massive training samples. This approach can solve the small sample
issue well with the exceptional characteristic extraction capacity of CNN and the higher
classification potential of SVM. The accuracy rates of typical CNN-Softmax and CNN-SVM
under different amounts of data are compared. The 5-fold cross-validation test was used.
The CNN-Softmax and CNN-SVM models were trained using the stipulations of whole
statistics volumes of 30, 60, 120 and 240. It can be seen from Table 8 that the accuracy of
CNN-Softmax in the test set drops rapidly with the decrease of test data, and fluctuates
greatly. However, the accuracy of the CNN-SVM model is less affected by the amount of



Processes 2022, 10, 2162 17 of 20

data. In the case of a small amount of data, CNN-SVM still has good performance, and the
accuracy rate can still remain above 90%, which verifies the method proposed in this paper.
It is still effective in solving small sample problems.

Table 8. Accuracy values of CNN-Softmax and CNN-SVM with different data volumes.

Network Model
Accuracy

30 60 120 240

CNN-Softmax training set 93.2% 96.9% 98.0% 100.0%
CNN-Softmax test set 60.1% 68.3% 85.6% 97.6%

CNN-SVM training set 94.4% 96.1% 98.9% 100.0%
CNN-SVM test set 92.3% 95.6% 98.2% 100.0%

4.4.4. Comparative Analysis of Diagnostic Results of Different Network Models

To confirm the effectiveness of the proposed method, the proposed approach is in
contrast with VMD-CWT-CNN-RF, VMD-CWT-CNN-ELM, VMD-CWT-CNN-LSTM, VMD-
CWT-CNN-DBN and VMD-CWT-CNN-Softmax strategies. Each method is trained five
times, and its training time and accuracy are the averages of the five times. The diagnosis
results are shown in Table 9, and the test set classification effect is shown in Figure 10.
The evaluation leads to the use of scatter entropy to determine the beneficial elements of
the VMD decomposition, which is then modified into a CWT time-frequency map and
fed into the CNN to extract features. Using different machine learning and deep learning
models as classifiers, the accuracy rate can reach more than 90%. It fully shows that the
VMD algorithm has excellent signal processing ability and can obtain better noise reduction
effect. The time-frequency map after CWT contains richer fault feature information, which
is helpful for the CNN to extract fault features. In this paper, we use SVM, which has exact
classification performance, as the classifier. In both the training and check sets, an accuracy
of 100% can be attained, which is higher than other methods, verifying the effectiveness of
the proposed approach in this paper. From Table 9, it can be concluded that the classifier
uses machine learning methods (SVM, random forest (RF) and extreme learning machine
(ELM)), and its time is better than deep learning (long short-term memory network (LSTM),
deep belief network (DBN) and traditional CNN classifiers) methods. The hyperparameters,
learning rate and number of iterations in deep learning need to be determined, thus the
training time is long. It can also be observed through Figure 10 that among the different
network models, fault state 03 and fault state 06 are the best for classification, and fault
state 02 and fault state 04 are harder to distinguish. This is consistent with the use of t-SNE
to demonstrate the effect of CNN extracted features, indirectly indicating that a good fault
feature extractor directly affects the subsequent classification effect, while CWT adaptivity
and multi-resolution are better than STFT, thus the time-frequency map extracted by CWT
contains richer feature information and is more conducive to CNN extracted features.

Table 9. Diagnostic results of different models.

Network Model Total Sample Training Set Test Set Time (s)

VMD-CWT-CNN-SVM 240 100.0% 100.0% 200.3
VMD-CWT-CNN-RF 240 95.4% 94.1% 216.9

VMD-CWT-CNN-ELM 240 100.0% 98.6% 233.7
VMD-CWT-CNN-LSTM 240 98.2% 96.9% 346.7
VMD-CWT-CNN-DBN 240 97.7% 95.8% 335.4

VMD-CWT-CNN-Softmax 240 100.0% 97.6% 276.6
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Figure 10. Fault diagnosis results of different methods: (a) VMD-CWT-CNN-SVM = 100.0%;
(b) VMD-CWT-CNN-LSTM = 96.9%; (c) VMD-CWT-CNN-Softmax = 97.6%; (d) VMD-CWT-CNN-
RF = 94.1%; (e) VMD-CWT-CNN-ELM = 98.6%; (f) VMD-CWT-CNN-DBN = 95.8%.
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5. Conclusions

In this paper, a diesel engine fault diagnosis technique with optimized VMD and
improved CNN is proposed for diesel engines. The essential findings are as follows:

1. Based on the optimized VMD method to decompose the authentic vibration signal, the
gold standard range of decomposition layers and beneficial components are acquired
through scattering entropy value, and a higher noise reduction effect is obtained.

2. The diesel engine fault diagnosis method primarily based on CWT time-frequency
map and extended CNN network model is viable and effective. The continuous
wavelet transform picture incorporates wealthy fault features, which improves the
fault identification rate.

3. The visualization impact of t-SNE verifies that the method in this paper can success-
fully extract the fault points of diesel engines and enhance the fault consciousness
cost of diesel engines. Replacing the Softmax layer in CNN with SVM can correctly
solve the small pattern issue of diesel engines. Without manual function extraction
and selection, the analysis method proposed in this paper avoids the errors induced
by means of guide function extraction, and its training time is shorter and the classifi-
cation impact is better.

The approach proposed in this paper ordinarily conducts preset fault experiments
for diesel engines under equal operating conditions, however the tool’s actual operation
regularly results in exceptional working prerequisites due to unique speed and load, thus
how to solve the fault analysis of variable working prerequisites will be the next step to be
carried out.
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