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Abstract: Methane hydrates found in the sediments of deep sea and permafrost regions draw
global interest. The rate of gas production from a depressurized well is governed by the effective
permeability of the hydrate-bearing sediments around the wellbore. During depressurization, a
decrease in pore pressure leading to soil compaction and hydrate dissociation results in a dynamic
change in the effective permeability. To describe the change in the effective permeability in detail, in
this study, a simple coupled compressibility–permeability analysis method is proposed to identify
the conditions under which the effective permeability increases or decreases after depressurization.
An analytical solution is derived for the effective permeability change with pore pressure and
temperature, considering hydrate dissociation and soil compaction. We found that when there is
a sufficient heat supply, hydrate dissociation dominates the effective permeability during hydrate
dissociation, but after hydrate dissociation, soil compaction is the governing factor for permeability
change. When there is an insufficient heat supply, however, compaction mainly determines the
permeability, and the effect of hydrate dissociation is limited. This work will be helpful for rapid
reservoir assessment.

Keywords: effective permeability; hydrate dissociation; depressurization; soil compaction; heat
supply

1. Introduction

Methane hydrates found in the sediments of deep sea and permafrost regions draw
global interest as an alternative energy resource to traditional fossil-based energy. It is
conservatively estimated that the amount of organic carbon stored in methane hydrate
reservoirs is about twice that of all other fossil fuels on the planet, including coal, oil and
natural gas [1]. Unlike oil and natural gas stored in rock formations, methane hydrates
buried beneath the deep sea are present in relatively loose sediments and play an important
role in the strength of marine sediment structure [2–5]. Hydrate production may damage
the sediment structure and it poses a challenge to production safety [6,7]. Therefore, in
recent years, only a few field-production trials were conducted to assess the feasibility of
extracting methane gas from hydrates that are buried under deep water sediments [8,9].

The majority of current trials in deep water use the depressurization method, which
reduces the pore fluid pressure from a production wellbore and dissociates hydrate to
methane gas and water. The gas released in-situ then migrates toward the wellbore
by pressure gradient and is extracted from the production well. To achieve a high rate
of gas production by depressurization, the permeability of hydrate-bearing sediments
(HBSs) must be large enough to bring the released gas to the production well. It is also
important to note that hydrate dissociation is an endothermic process, requiring heat from
the surrounding environment. Therefore, during depressurization operation, heat flows to
hydrate locations by both conduction and convection, and a high rate of dissociation
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requires the latter component to be a dominant factor [10]. Low permeability slows
the propagation of reduced pressure and heat transport, leading to difficulty in hydrate
dissociation and low energy-production efficiency [11].

The permeability of HBSs was investigated both experimentally and numerically.
Masuda [12] proposed the University of Tokyo model, in which the ratio of the permeability
of HBSs to that of the host sediment without hydrate is a power expression of 1 − sh,

K = (1− sh)
N (1)

where K is the relative permeability for hydrate, sh is the hydrate saturation and N is
the power. Minagawa et al. [13] measured the water permeability of HBSs with different
hydrate saturations and proposed a model to describe the relationship between hydrate
saturation and permeability. Nimblett et al. [14] derived a formula for estimating perme-
ability based on the Kozeny–Carman model to analyze the permeability evolution during
hydrate formation. Kumar et al. [15] combined numerical simulations and experiments to
evaluate the gas permeability of HBSs. They applied the Kozeny–Carman model to derive
an expression, which is equivalent to the University of Tokyo model with the coefficient N
being equal to 3. However, this expression is only applicable when hydrate saturation is less
than 0.35. Delli et al. [16] introduced a hybrid modeling approach to use multiple models to
better predict the permeability variation. In this model, two relative permeabilities obtained
from Kozeny’s grain-coating and pore-filling models are proposed to describe the effects of
different hydrate occurrence habits. Liang et al. [17] proposed a three-dimensional cubic
pore network model to study the effect of hydrate particles and its growth habit on the
permeability. Katagiri et al. [18] formulated Kozeny–Carman-based permeability reduc-
tion models for two types of particle pack and used computational fluid dynamics (CFD)
simulation coupled with the discrete element method (DEM) to evaluate the influence of
hydrate saturation and morphology on tortuosity. Kossel et al. [19] tested the five most
well-known permeability equations, and found that all the suitable permeability equations
included the term (1 − sh)N and derived a high exponent N.

The physical validity of the above-mentioned permeability models for HBSs was well
discussed in the past. Johnson et al. [20] thoroughly investigated the effective permeability
of HBS specimens retrieved from the Mount Elbert test and found that moderate hydrate
saturation (1.5–36%) reduced the permeability of the HBS. Kneafsey et al. [21] used X-ray
computed tomography to observe location density changes due to hydrate formation and
flowing water, and further investigated the increase in the effective permeability of HBS
with increasing pore space size. They found that water flux was enhanced by increased
capillary suction and pointed out that the hydrate does not, in general, behave like a
residual gas in a water-saturated porous medium. Jiang et al. [22] innovatively carried
out CT to extract a pore model and calculated the absolute permeability with a high
level of accuracy. Liu et al. [23] conducted a series of laboratory-scale tests to investigate
the influence of hydrate saturation and effective stresses on the gas phase permeability
of kaolin clay and found a critical hydrate saturation for the gas phase permeability of
hydrate-bearing clayey specimen. Daigle et al. [24] investigated relative permeability to
water and gas in the presence of hydrates in sediments. They discovered a link between
pore structure and the transport properties of HBSs. Li et al. [25] found a new relationship
between the ratio of permeability in the presence and absence of hydrate and hydrate
saturation, based on their experimental data for quartz sands.

In recent years, many researchers combined numerical and experimental methods
to study multi-scale characteristics of HBSs. Xu et al. analyzed the influence of hydrate
distribution on the permeability of HBSs at the pore scale [26]. Lei et al. proposed a
new cubic model to calculate the permeability influenced by hydrate decomposition [27].
Liu et al. clarified the relationship between permeability and hydrate saturation using the
lattice Boltzmann method (LBM) [28]. Hu et al. used CT scanning and pore network
modeling (PNM) to analyze the influence mechanism of the permeability anisotropy of
sandy sediment before and after hydrate generation [29,30]. In terms of laboratory exper-
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iments, Wu et al. and Liu et al. discussed the influence law of the ratio of sand to soil
and the stress sensitive effect on dynamic permeability, clarifying the characteristics of
non-Darcy dynamic seepage in the aqueous phase in HBSs [31,32]. Based on a novel X-ray
triaxial testing apparatus, Wu et al. and Zhou et al. clarified the microstructure evolution
of HBSs during shear, creep and isotropic consolidation processes, and revealed dynamic
permeability evolution in detail, which is crucial for improving the prediction accuracy
of gas–water production from a hydrate reservoir [31,33–35]. An innovative method was
proposed for permeability determination with hydrate phase transition by using NMR: the
results showed accurate predictions of relative permeability related to variations in pore
structure and hydrate saturation [36].

When the depressurization method is adopted, the rate of gas production from a de-
pressurized well is governed not only by the magnitude of pressure drawdown, but also by
the permeability around the wellbore. Permeability changes both spatially and temporarily
during depressurization and depends on both hydrate saturation and porosity change
through soil compaction. The mechanism of the latter is that a decrease in pore pressure by
depressurization leads to an increase in effective stress. This, coupled with the collapse of
the hydrate-bonded soil structure by dissociation, results in volume compression, which
in turn reduces permeability. However, this effect was often ignored in past studies. For
example, Rutqvist et al. [37] introduced a porosity-dependent formula into the TOUGH +
HYDRATE model but, in their simulation, the pore volume was fixed because they did not
consider the effect of geomechanical behavior of HBSs on the change of porous volume.
Based on the results of a series of simulations and experiments, Sakamoto et al. [38] pro-
posed a new formula related to the effective permeability of HBSs, in which the contribution
of change in the volume of sediment skeleton to the intrinsic permeability was considered.
The effect of the reduction in permeability due to consolidation on the dissociation and
gas production behavior was not obvious; this is because the scale of the simulated HBS
was small and the effective permeability was relatively high. Chen et al. [39] systematically
investigated the promoting effect of the permeability of HBSs during hydrate dissociation
and proposed a novel enhancement strategy of water flow erosion for natural gas hydrate
production.

Gupta et al. [40] proposed a formula for estimating effective permeability based on
Rockhold’s model [41] and Faruk’s model [42] in order to test the performance of their
thermo-hydro-mechanical model. However, they did not analyze the effect of compaction
on the permeability of HBSs. Myshakin et al. [43] and Moridis et al. [44] found that higher
pore compressibility decreases production rates because the permeability decreases with
soil compaction. To simulate the compression-influenced gas production, they applied a
pore compressibility defined in petroleum engineering to govern the change in porosity, fur-
ther affecting the permeability and production rate. To investigate the relationship between
compressibility and permeability, Yoneda et al. [45] conducted a series of consolidation
tests. The results showed that the permeability dropped by 90% when the effective stress
increased by 10 MPa due to the consolidation and clogging of fine particles which formed
by particle breakage [46]. Therefore, the permeability drop due to soil consolidation cannot
be neglected.

This study focuses on the changes in the effective permeability of HBSs during depres-
surization. The study considers two counteracting effects; (i) the permeability-reducing
trend by soil compaction induced by the increase in effective stress and (ii) the permeability-
increasing trend by the increase in fluid permeability due to hydrate dissociation inside
the pores. This is achieved by combing (a) a power law model of void ratio–permeability
relationship and (b) the University of Tokyo model of hydrate-saturation-dependent per-
meability. To illustrate the coupling effect, an analytical solution that relates permeability
change to hydrate dissociation and soil compaction is derived, and a parametric study is
conducted using this solution in two extreme scenarios (the constant temperature case and
the heat-insulated case).
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2. Modeling Method
2.1. A Relationship between Permeability and Void Ratio

Kozeny [47] proposed a model for describing the relationship between hydraulic
conductivity and void ratio. Carman [48] and Matyka et al. [49] also proposed a similar
form, which can be presented as follows

Ksat = C
g

µwρw

e3

S2
sG2

s(1− e)
(2)

where C is a constant related to the porous space geometry, g is acceleration of gravity, µw
is the dynamic viscosity of water (Pa·s) related to temperature, ρw is the density of water,
Gs is the specific gravity of the grained soil, Ss is the specific surface of the grained soil, and
e is the void ratio.

The limitation of the above model for evaluating the permeability of sandy soils with
fines and fine-grained soils was long recognized. For example, Terzaghi [50] pointed out
that the limitation is owing to the thin immobile water layer at the surface of clay particles
and the inaccurate estimation of the specific area of the fine particles and the pore size. To
better fit the experimental data, Ren et al. [51] extended the relation in log–log scale and
obtained the following relationship between the void ratio and hydraulic conductivity of
saturated soils.

ksat = ks0

(
e
e0

)β

(3)

where ksat is the hydraulic conductivity for water-saturated soil, ks0 is the hydraulic
conductivity corresponding to the initial void ratio e0 and e is the void ratio. β is the curve
fitting parameter. Ren et al. [51] rearranged the published data for natural and remolded
sediments from coarse sands to fine-grained clays. They also investigated the relationship
between the hydraulic conductivity and void ratio of different types of soils. By fitting the
hydraulic conductivity data using Equation (3), they found that ks0 decreases for the finer
sediment and the slopes κ for most soils are similar. Most of the β values are in the range
of 2 < β < 6; β = 3 ± 1 for coarse-grained soils, whereas β = 5 ± 1 for fine-grained soils.

Considering the relationship between permeability K and hydraulic conductivity k, in
which K = kµw

ρwg where µw, ρw are viscosity and density of water, respectively, the following
formula is given

Kint = Ks0

(
e
e0

)β

(4)

where Ks0 is the initial intrinsic permeability for the initial void ratio of e0 and Kint is
intrinsic permeability.

For HBSs, the occurrence of hydrate increases flow tortuosity. The concept of relative
permeability is used to describe the decrease in permeability due to hydrate formation.
Masuda et al. [12] introduced an exponent N to relate relative permeability Krh to the
hydrate saturation sh:

Krh = (1− sh)
N (5)

The value of N is related to the occurrence habitat of the hydrate, pore size and the
specific area of reaction [52].

Hence the expression of the effective permeability of HBSs is

K = KintKrh = Ks0

(
e
e0

)β

(1− sh)
N (6)

The model has two state variables (void ratio and hydrate saturation) and three model
parameters (β, N and Ks0). It shows that permeability decreases with decreasing void
ratio but increases with decreasing hydrate saturation. In this paper, the relative effect
of changes in e and sh on the effective permeability K during a depressurization event is
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considered. In this paper, we do not consider relative permeability for the different phases
of fluid, so the effective permeability of HBSs is identical to the permeability of HBSs.

2.2. One-Dimensional Compression Model

During depressurization, the effective stress increases due to pore pressure reduction,
and soil compaction occurs. The reduction in void ratio results in a permeability decrease.
At the same time, the hydrate dissociates, resulting in a permeability increase. In this study,
these counteracting changes in permeability during depressurization are examined. The
study uses a simple 1D analytical model for the investigation. The 1D model will allow a
quick estimation of settlement that may occur during depressurization. Figure 1a shows a
1D compression model of the HBS. Figure 1b shows that a pore pressure decrease leads
to an increase in effective stress. It is assumed that the vertical overburden total stress σv
remains constant. Hence, the vertical effective stress increment ∆σ′v is opposite and equal
to the pore pressure decrease (∆pp = −∆σ′v), according to the Terzaghi effective principle.
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Figure 1. Compression model (a) 1D compaction model and (b) increase in effective stress with
decreasing pore pressure.

The compression model of the sediment is shown in Figure 2, following the previous
work of Uchida et al. [53]. The dashed line describes the compression behavior of a sediment
that contains hydrate. The black solid line in Figure 2a is the normal compression line of the
host sediment without hydrate and the dashed line describes the normal compression line
of the HBS. The relative position of the two lines shows the enhancement of the yield stress
of the sediment resulting from the hydrate bonded structure. The blue solid line is the
recompression line, which is the nonlinear elastic compression behavior prior to yielding.
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An HBS generally experiences the following three stages during depressurization, as
shown in Figure 2b. In the first stage, the stress state is on a recompression line until it
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reaches the yield point. In the second stage, yielding occurs and the stress state follows the
normal compression line, which changes its position as the hydrate dissociates (shown by
the orange arrows). In the final third stage, all the hydrate dissociates, and the stress state
reaches the normal consolidation line of the host sediment. The stress state moves along
the normal consolidation line of the host sediment without hydrate as the effective stress
increases by depressurization.

Herein, the initial stress state of the sediment is (σ′v0, e0), and it has a stress-history-
dependent yield stress state of (σ′yi, eyi) when the sediment had no hydrate, as shown in
Figure 2a. Along the recompression line, the following relationship holds

e0 = eyi − κ0 ln

(
σ′v0
σ′yi

)
(7)

where κ0 is the slope of the elastic recompression line. It is assumed that stiffness is not a
function of hydrate saturation because the stiffness of a hydrate crystal is smaller than that
of sediment grains.

The normal compression line of a sediment without hydrate is expressed using the
following formula [54]

σ′v = σ′yi exp
(

eyi − e
λ0

)
(8)

where λ0 is the slope of the normal consolidation line, which has an intercept of (σ′yi, eyi)
at the yield point.

The existence of hydrate increases the density of the sediments and bonds the sediment
particles, enhancing the sediment yield strength σ′y. A relationship between σ′y and
hydrate saturation sh was proposed [55]:

σ′y = σ′yi + asb
h (9)

where σ′yi is the initial yield stress of the host sediment as defined earlier, and a and b
are the coefficients governing the yield stress related to hydrate saturation sh. The yield
stress of an HBS is the sum of the stress-history-dependent yield stress and the increase in
strength of the hydrate.

The expression of the hydrate-enhanced normal compression line becomes the follow-
ing by combining Equations (8) and (9).

σ′v = σ′yi exp
(

eyi − e
λ0

)
+ asb

h (10)

This equation can be rewritten as

e = eyi − λ0 ln
(
σ′v − asb

h

)
+ λ0lnσ′yi (11)

Substituting Equations (10) and (11) to eliminate eyi, the following relationship be-
tween e and σ′v is obtained.

e = e0 + κ0 lnσ′v0 − λ0 ln
(
σ′v − asb

h

)
+ (λ0 − κ0)lnσ′yi (12)

Combining Equations (7) and (12), leads to the following.

K = Ks0

1 +
κ0 ln

(
σ′v0
σ′yi

)
− λ0 ln

(
σ′v−asb

h
σ′yi

)
e0


β

(1− sh)
N (13)
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Using Equation (4), the initial effective permeability is

K0 = Ks0(1− sh0)
N (14)

Therefore,

K
K0

=

1 +
κ0 ln

(
σ′v0
σ′yi

)
− λ0 ln

(
σ′v−asb

h
σ′yi

)
e0


β(

1− sh
1− sh0

)N
(15)

This equation shows how the effective permeability of HBS increases with hydrate
dissociation (sh decreases from sh0) and decreases with an increase in vertical effective
stress (σ′v increases from σ′v0) by depressurization. Normally, effective permeability first
increases due to hydrate dissociation and then decreases as soil compaction occurs at the
later stage of depressurization.

2.3. Importance of K/K0 for Gas Production by the Depressurization Method

It is argued that the ratio of the permeability sediments after hydrate dissociation
to that of the sediments with hydrates (K/K0) controls the distribution of fluid pressure,
considering that the capillary pressure between the water and gas of a sediment much
smaller than the magnitude of the pressure decreases at the well. When the radius of the
location of the hydrate dissociation front is r*, the magnitude of the wellbore pressure pwell
required can be estimated using the following expression [56].

Pwell = p∗ − K0

K
ln r∗ − ln rwell
ln rfar − ln r∗

(pfar − p∗) (16)

where p* is the phase equilibrium pressure, which is related to temperature; pfar denotes
the pore pressure at the far-end boundary, which is equal to the initial pressure; rwell is
the radius of the wellbore and rfar denotes the radius of the far-end boundary. Although
the permeability varies spatially and temporarily during depressurization, as a conceptual
model, it is assumed here that the permeability of the undissociated zone remains K0 and
that of the dissociated zone is K.

The pressure distribution is described using the following equations

p =

{
p∗ − ln r∗−ln r

ln rfar−ln r∗ (pfar − p∗) when r∗ < r < rfar

p∗ − K0
K

ln r∗−ln r
ln rfar−ln r∗ (pfar − p∗) when rwell < r < r∗

(17)

Figure 3 shows the meaning of the notations in Equation (17). The blue solid line de-
scribes the pore-pressure distribution in the formations when considering soil compaction.
The red dash line represents the pore-pressure distribution in the formations without the
consideration of soil compaction. In the steady state analysis, this distribution is related
to the ratio of the permeability of the hydrate-dissociated zone to the permeability of the
undissociated zone.

Figure 4 shows the pore-pressure distribution for five different K/K0 cases (100,
10, 1, 0.5 and 0.1) when the well pressure is reduced to 4.5 Mpa from the initial pore
pressure of 13 Mpa. The phase equilibrium pressure that initiates hydrate dissociation
is 8.38 Mpa. The lower permeability region dominates the pressure drop and, hence, the
hydrate dissociation front is largely dependent on K/K0 values. When K/K0 is one, the
dissociation front is 6.69 m from the wellbore. When soil compaction is not considered,
K/K0 is often greater than one as hydrate dissociation increases permeability, hence the
dissociation front becomes much greater than 6.69 m. However, as shown later, soil
compaction can lead to K/K0 becoming smaller than one for compressible sediment. As
shown in the figure, this leads to a reduction in the radius of the dissociation front (0.20 m
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for K/K0 = 0.5 and 1.52 m for K/K0 = 0.1). This means a limited volume of gas production
because of the soil compaction effect, which has a significant practical implication.
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It is possible to find the ‘critical’ vertical effective stress σ′vc when the permeability
becomes smaller than the initial permeability K0 by making K = K0 in Equation (15).1 +

κ0 ln
(

σ′v0
σ′yi

)
− λ0 ln

(
σ′v−asb

h
σ′yi

)
e0


β(

1− sh
1− sh0

)N
= 1 (18)

when β > 0, a critical vertical effective stress σ′vc can be defined from Equation (18)
as follows.

σ′vc = σ′yi exp


e0 − e0

(
1−sh0
1−sh

)N
β
+ κ0 ln

(
σ′v0
σ′yi

)
λ0

+ asb
h (19)

If the vertical effective stress σ′v after depressurization is less than σ′vc, there is no
permeability reduction compared to the original state.

In this discussion, it is assumed that K is constant within the dissociated zone. How-
ever, when the soil compaction effect is considered, permeability will be a function of the
effective vertical stress and, hence, K will change spatially and temporally. Such consid-
eration requires a numerical simulation of a thermo-hydro-mechanical coupled model.
However, in this study, a simple semi-analytical method to evaluate K/K0 during the
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depressurization process is proposed to conduct a back-of-the-envelope estimation of the
effect of the permeability change on gas production by depressurization. The change in
K/K0 during depressurization is modelled by coupling a model that gives a decrease in
permeability by an increase in effective vertical stress (as discussed earlier) and a model
that computes the transient change in hydrate saturation during depressurization. The
latter is presented in the next section.

2.4. Permeability Ratio Changes during the Transient Stage of Dissociation

Hydrate dissociation due to depressurization is a transient process, in which tempera-
ture, pressure, water and gas saturation are all associated with hydrate dissociation. The
permeability change during the transient stage of dissociation can be evaluated as follows.

The volume change of the host sediment is identical to the change in the pore volume
of the sediment by supposing that the particles of the sediments are incompressible. The
following equation can be obtained

− dn
dt

+ (1− n)
dεV

dt
= 0 (20)

where n is the porosity of the host sediment, which is related to the void ratio e = n/(1 – n). εV
is the volumetric strain.

The mass conservation equation for hydrate is introduced to calculate the change in
hydrate saturation during depressurization.

d(nρhsh)

dt
+ nρhsh

dεV

dt
=

dmh
dt

(21)

where ρh is the hydrate density, and dmh
dt is the dissociation rate.

Kim et al. [57] proposed a first-order kinetics governing equation to describe the
dissociation process, in which the dissociation rate was proportional to the product of the
specific surface area and fugacity difference:

dmh
dt

= −n
(

shAhsKdMh< peq − pg >
)

(22)

where Mh is the molar mass of the hydrate, Ahs is the specific area, Kd is the hydrate
dissociation dynamics coefficient; pg is the gas pressure at a certain temperature, peq is
the phase equilibrium pressure dependent on this temperature. 〈·〉 are Macaulay brackets
describing the ramp function. N is the porosity of the host sediments. Sh is the hydrate
saturation.

The phase equilibrium curve is usually described using a Kamath regression
equation [58],

peq = exp
(

E1 −
E2

T

)
(23)

where E1 and E2 are two regression coefficients. In this study, the two coefficients are
E1 = 39.08 and E2 = 8520.

According to the experimental results provided by Kim et al. [57], Kd depends on
surface activation energy and temperature:

Kd = Kd0 exp
(

∆Ed
RT

)
(24)

where ∆Ed = −78,300 J/mol is the surface activation energy of hydrate dissociation,
Kd0 = 1.24 105 mol/(m2·Pa·s), and R is the ideal gas constant.

Substituting Equations (23) and (24) into Equation (22), we obtain
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d(nρhsh)

dt
+

n
1− n

ρhsh
dn
dt

= −n
(

shAhsKd0Mh< exp
(

E1 +
∆Ed − E2R

RT

)
− pg exp

(
∆Ed
RT

)
>

)
(25)

As n = e
1+e and supposing ρh is a constant, Equation (25) becomes

ρh
e

1 + e
dsh
dt

+
1

1 + e
ρhsh

de
dt

= − e
1 + e

(
shAhsKd0Mh< exp

(
E1 +

∆Ed − E2R
RT

)
− pg exp

(
∆Ed
RT

)
>

)
(26)

After simplification,

1
esh

d(esh)

dt
= −AhsKd0Mh

ρh
< exp

(
E1 +

∆Ed − E2R
RT

)
− pg exp

(
∆Ed
RT

)
> (27)

This equation can be integrated as follows.

ln
(

esh
e0sh0

)
= −AhsKd0Mh

ρh

∫ t

t0

< exp
(

E1 +
∆Ed − E2R

RT(t)

)
− pg(t) exp

(
∆Ed

RT(t)

)
>dt (28)

Substituting Equation (12) into Equation (28) becomes,

sh(t) =
e0sh0 exp

(
−AhsKd0Mh

ρh

∫ t
0 < exp

(
E1 +

∆Ed−E2R
RT(t)

)
− pg(t) exp

(
∆Ed

RT(t)

)
>dt

)
e0 + κ0 lnσ′v0 − λ0 ln

(
σ′v − asb

h

)
+ (λ0 − κ0)lnσ′yi

(29)

Equation (29) can be used to evaluate the change in hydrate saturation with time.
However, this equation is a highly nonlinear and there is no explicit expression of sh. In
this study, an iteration method is used to evaluate the time dependent changes in sh.

Assuming that the gas may be released instantly after hydrate dissociation, the total
vertical stress σv0 remains constant and the capillary pressure is negligible (pg = pw = pp,
where pp denotes pore pressure). Equation (13) describes the permeability change during
depressurization and can be rewritten as follows.

K(t) = Ks0

1 +
κ0 ln

(
σ′v0
σ′yi

)
− λ0 ln

(
σv0−pp(t)−ash(t)

b

σ′yi

)
e0


β

(1− sh(t))
N (30)

where sh(t) is obtained using Equation (28).
From Equation (30), the variation of permeability with time is dependent not only on

the state of pore pressure but also on the history of both temperature and pore pressure.
Equations (28) and (29) provide a method for estimating the change in the effective per-
meability of the HBS with time through the time series of pore pressure and temperature
considering hydrate dissociation and soil compaction.

3. Parametric Study and Results

As shown by Equation (30), there are eight parameters that relate compaction and
hydrate dissociation to permeability. The initial intrinsic permeability of the host sediment
Ks0 is set to be 100 millidarcies. The initial porosity n0 is 0.418. The parameters a and b
equal 20.1 and 1, respectively, provided by Uchida et al. [53]. Different values of initial
hydrate saturation sh0 (0, 0.4 and 0.8) are chosen in the range of the real test data obtained
from HBS samples obtained from the Nankai Trough site [53].

In the parametric study, the initial vertical effective stress is set to be 3 Mpa, whereas
the initial water pressure is 13 Mpa. The total vertical stress (16 Mpa) is kept constant
during depressurization. The water pressure decreases from 13 Mpa to 3 Mpa over ten
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hours and, hence, the vertical effective stress increases from 3 Mpa to 13 Mpa. The rate
of depressurization is set according to the rate of depressurization in the Nankai Trough
production [59]. Based on Equation (23), the phase equilibrium pressure is 8.38 Mpa at an
initial temperature of 283.56 K.

The parameters used for the parametric study are shown in Table 1. The hydrate
permeability parameter N is related to the hydrate morphology in the pores. For bonding
or coating morphology, N is about 2, whereas for pore-filling morphology, N is about 6 [52].
Ren et al. [51] show that the compaction–permeability parameter β ranges between 2 and 6.
When β equals zero, the effect of compaction on permeability is ignored. According to the
triaxial test data from the Nankai HBS specimens, the parameter λ = 0.15 and κ = 0.01 [53].
The range of the values of these two parameters is, therefore, given as listed in Table 1.

Table 1. Parameters and Initial Conditions.

Parameters sh0 N β λ κ σ′yi

Variations 0, 0.4, 0.8 2, 4, 6 0, 4, 7, 10 0.1, 0.15, 0.2 0.005, 0.01, 0.015 2, 3, 4 Mpa

Two scenarios are considered in this study. The first scenario assumes a constant
temperature condition, in which the heat supply during hydrate dissociation is large
enough to keep the temperature at 283.56 K. The endothermic process is, therefore, ignored
and the phase equilibrium pressure remains constant during hydrate dissociation. The
second scenario considers the heat-insulation condition. The endothermic process is consid-
ered, but there is no heat conduction from the outside. The temperature decreases and then
hydrate dissociation stops at a certain point, resulting in residual hydrate. In reality, the
supply of heat is made by both conduction and convection and, hence, the two scenarios
are considered to be the two extreme situations.

3.1. Scenario 1 Constant Temperature Case

In this scenario, the temperature remains at its initial value T0 = 283.56 K. The hydrate
dissociates when the pressure becomes equal to the phase equilibrium pressure of 8.38 Mpa
at this given temperature. Figure 5a shows the changes in permeability, whereas Figure 5b
shows the changes in the permeability ratio. Three different initial hydrate saturations
(sh = 0, 0.4 and 0.8) are considered. The model parameters are N = 4, β = 7, λ = 0.15,
κ = 0.01 and σ′y = 3 Mpa (normally consolidated). Results are shown for the cases with and
without the soil compaction effect.

The Initial hydrate saturation prior to depressurization determines the Initial perme-
ability. The changes in permeability can be separated into three phases: (i) before hydrate
dissociation (Phase I), (ii) during hydrate dissociation (Phase II) and (iii) after hydrate
dissociation (Phase III). In Phase I, there is no hydrate dissociation and the permeability
decreases by volumetric compression for all three initial hydrate saturation cases (sh = 0,
0.4 and 0.8). In Phase II, the water pressure becomes smaller than the phase equilibrium
pressure, hydrate dissociation creates pore space and the effective permeability increases.
For the high initial hydrate saturation case (sh = 0.8), there is a large permeability increase
due to hydrate dissociation. In Phase III, hydrate is dissociated completely. The perme-
ability values of the three different hydrate saturation cases become the same. In this
phase, the reduction in permeability becomes important due to soil compaction by further
depressurization. If the soil compaction effect is not considered, the permeability ratio
K/K0 is always greater than one. When the soil compaction effect is considered, however,
the permeability ratio K/K0 becomes less than one at the end of depressurization for the
medium hydrate saturation case (sh = 0.4). For the high hydrate saturation case (sh = 0.8),
K/K0 remains greater than one, even with the soil compaction effect considered because
of the significant increase in permeability due to hydrate dissociation. Hence, it is the
medium hydrate saturation condition that can have a noticeable soil compaction effect on
gas production.
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Figure 7 shows the effect of parameter β on permeability change. A large β value 
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Figure 6 shows the effect of N, which controls the change in permeability with hydrate
saturation. The initial hydrate saturation is fixed at sh = 0.4. The initial permeability
decreases with an increase in parameter N. A smaller value of N (N = 2 in this case) implies
less permeability change during depressurization, as shown by the lines of the no-soil-
compaction effect. It is this case that soil compaction reduces permeability significantly and
the permeability ratio K/K0 becomes around 0.25 (see Figure 6b). Gas production would
be affected by soil compaction in this case.
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Figure 6. The effect of parameter N on (a) permeability and (b) permeability ratio.

Figure 7 shows the effect of parameter β on permeability change. A large β value
implies a large soil compaction effect on permeability, as shown by a larger decreasing
rate as the depressurization continues. The ratio K/K0 becomes smaller than one when
β is greater than 7, as shown in Figure 7b. Figure 8 shows the permeability ratio K/K0
after depressurization (pw = 3 MPa) for different initial hydrate saturation cases. The four
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figures correspond to four different N value cases. Each figure shows the effect of β for a
given N value. For the compression parameters considered (λ = 0.15, κ = 0.01, σ′y = 3 MPa,
β > 4), the effective permeability (pw = 3 MPa) becomes less than the initial permeability
when the initial hydrate saturation is less than 0.5 and N is equal to 2.
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Apart from parameter β, the magnitude of the compaction is governed by three soil
deformation parameters describing the compressive behavior of HBSs. These include com-
pressive coefficient λ, swelling coefficient κ, and preconsolidation pressure σ′yi. Figure 9a
shows how parameter λ affects the change in permeability during depressurization for
the cases with their other parameters fixed. The permeability decreases with depressur-
ization when parameter λ equals 0.2, but increases when λ equals 0.1. The higher the
value of λ, the larger the volume contraction becomes, resulting in lower permeability.
Figure 9b shows that the elastic stiffness parameter κ has a relatively weak influence dur-
ing Phase I than the other two phases. After sediment yielding (i.e., effective vertical
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stress becoming greater than the yield stress), the magnitude of permeability is domi-
nated by plastic compression and, hence, the effect of κ becomes small. Figure 9c shows
that the permeability increases with the yield stress σ′yi when the initial vertical effec-
tive stress is 3 MPa. When σ′yi < 3 Mpa, the host sediment is in the underconsolidated
state and hence the sediment compacts rapidly as the hydrate starts to dissociate. When
σ′yi > 3 Mpa, the host sediment is in the overconsolidated state and, hence, the perme-
ability does not decrease to the level of the normally consolidated case with the same
compression parameters.
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3.2. Scenario 2 Heat-Insulated Case

In the heat insulation condition, the temperature decreases with hydrate dissociation
because hydrate dissociation is an endothermal process, and it is assumed that there is no
heat supply during depressurization. Because of this, the hydrate will not fully dissociate
and some residual hydrate will be left for a given depressurization value. In a real gas



Processes 2022, 10, 2210 15 of 20

production condition, there is neither absolute heat insulation (as in this case) nor constant
temperature (as discussed earlier). The actual condition should be in a range between the
two limits.

In this scenario, the Kamath equation [58] is used to compute the absorbed heat ∆H
from the system stored heat during the dissociation [57].

4H = 56599− 16.744T (31)

CT
dT
dt

= −n4H
(

shAhsKdMh< peq − pg >
)

(32)

where the heat compacity of HBSs CT = 2.31 × 106 J/m3/K, dissociation kinetic coefficient

Kd = 123× 103e
9.42×103

T and specific area Ahs = 0.3 1
µm .

As before, a higher initial hydrate saturation corresponds to lower initial effective
permeability. During hydrate dissociation, effective permeability increases at the beginning.
As there is no heat supply from outside, the water pressure decreases along the phase
equilibrium curve, as shown in Figure 10a, which is the self-preservation phenomenon of
hydrate. As a result, the hydrate dissociation rate is much smaller than that in the previous
case and there will be residual hydrate saturation after the target pressure of 3 Mpa is
reached, as shown in Figure 10b. As the dissociation occurs, the effective vertical stress
increases and, hence, soil compaction occurs. The permeability then decreases. As shown in
Figure 11, the soil compaction effect is more apparent in low initial hydrate saturation cases.
For the cases with high initial hydrate saturations, the effective permeability is mainly
affected by hydrate dissociation.
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The plots of the ratio of effective permeability after depressurization (pw = 3 MPa) to 
the initial effective permeability (K/K0) for the insulated scenario are given in Figure 13. 
Each plot shows the effect of β for a given N value. For the compression parameters con-
sidered (λ = 0.15, κ = 0.01, σ’y = 3 MPa, β > 4), the permeability (pw = 3 MPa) becomes less 
than the initial permeability when the initial hydrate saturation is less than 0.416 and N is 
less than 4. The soil compaction effect on permeability becomes more apparent in this 
insulated scenario than in the constant temperature scenario. This is because hydrate does 
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presses due to a reduction in pressure. 

Figure 11. The vibration of effective permeability of HBSs with depressurization corresponding to
different initial hydrate saturation (Left figures—permeability, Right figures—permeability ratio).

Figure 12 shows that the effect of parameters N and β on the permeability ratio
changes. The soil compaction effect becomes apparent when the N value decreases and
the β value increases. Unlike the previous scenario, the effective permeability under the
heat-insulated condition increases slightly at the beginning of hydrate dissociation, then
decreases with compaction; this is because hydrate dissociates little, and the compaction
governs the decrease in permeability. All cases show K/K0 becoming less than one at the
end of depressurization.
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The plots of the ratio of effective permeability after depressurization (pw = 3 MPa) to
the initial effective permeability (K/K0) for the insulated scenario are given in Figure 13.
Each plot shows the effect of β for a given N value. For the compression parameters
considered (λ = 0.15, κ = 0.01, σ′y = 3 Mpa, β > 4), the permeability (pw = 3 Mpa) becomes
less than the initial permeability when the initial hydrate saturation is less than 0.416 and
N is less than 4. The soil compaction effect on permeability becomes more apparent in this
insulated scenario than in the constant temperature scenario. This is because hydrate does
not dissociate fully, so the permeability does not change much but the sediment compresses
due to a reduction in pressure.

The effects of the soil deformation parameters (λ, κ and σ′yi) on the permeability ratio
K/K0 are shown in Figure 14. As the sediment becomes softer (large values of λ, κ and a
smaller value of σ′yi), the soil compaction effect on permeability is greater and the K/K0
values reduce. Again, the soil compaction effect becomes more apparent in the insulated
scenario compared with the constant temperature scenario, indicating the importance of
heat transfer to dissociate hydrate fully.
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4. Conclusions

The study described in this paper analyzes the change in permeability during depres-
surization considering the volume contraction due to the increase in effective stress and
the degradation of the bonded structure. Combining three models (hydrate-saturation de-
pendent permeability model, permeability–void ratio model, and hydrate soil compaction
model), a semi-analytic method to evaluate permeability change through pore pressure
and temperature during depressurization is proposed. The method enables the evaluation
of the ratio of the effective permeability after depressurization to the initial effective per-
meability (K/K0), which is important in evaluating the extent of dissociation in the HBS
from the depressurized wellbore location. A parametric study was conducted to show the
effects of model parameters on the change in permeability based on two scenarios (constant
temperature and heat insulated).
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Results of the parametric study show the relative effects of soil compaction and hydrate
dissociation on permeability change by the depressurization method. A typical magnitude
of depressurization in the field is in the order of 10 MPa, which in turn increases the effective
stress of the sediment by a similar magnitude. If the soil compaction effect is not considered,
the pressure drawdown in the hydrate reservoir occurs mainly in the undissociated zone
because of the increase in permeability due to hydrate dissociation. However, when soil
compaction is considered, the ratio of K/K0 does not increase much or, in certain cases, the
ratio becomes less than one, especially in the heat-insulated scenario when the hydrate does
not dissociate fully. In such a case, the extent of dissociation becomes limited compared
with the case when soil compaction is not considered, and this has practical implications
on gas production by depressurization.

The method proposed in this paper allows a simple back-of-the-envelope evaluation
of the soil compaction effect on permeability change when the depressurization method
is used for gas production from HBSs. If the effect is evaluated as being critical for gas
production evaluation, then the next step can be to perform a fully coupled thermo-hydro-
mechanical simulation for estimating the spatial and temporal variations in the pressure
field in the HBSs and the gas/water production rate, which can be affected by the soil
compaction effect.
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