Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Mechanical Properties of the Samples
2.2. Artificial Neural Network (ANN)
2.3. Data Proceeding for ANN Models
2.4. Model Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polatci, H.; Taşova, M.; Saraçoğlu, O. Armut (Pirus communis L.) Posasının Bazı Kalite Değerleri Açısından Uygun Kurutma Sıcaklığının Belirlenmesi. Acad. Platf. J. Eng. Sci. 2020, 8, 540–546. [Google Scholar] [CrossRef]
- Tabatabaekoloor, R. Bio-mechanical behavior of kiwifruit as affected by fruit orientation and storage conditions. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014; pp. 6–10. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Publishers: New York, NY, USA, 1970; pp. 51–83. [Google Scholar]
- Cevher, E.Y.; Öztekin, Y.B. Mechanical behavior of Deveci pear cultivar affected by maturation. Turk. J. Food Agric. Sci. 2019, 1, 39–43. [Google Scholar]
- Singh, K.K.; Reddy, B.S. Post-harvest physicomechanical properties of orange peel and fruit. J. Food Eng. 2006, 73, 112–120. [Google Scholar] [CrossRef]
- Cevher, Y.E. Development of a Damage Prediction Model for Peach Fruit during Harvest and Post-Harvest Treatments. Ph.D. Thesis, Ondokuz Mayis University, Graduate School of Sciences, Department of Agricultural Machinery and Technologies Engineering, Samsun, Türkiye, 2017. [Google Scholar]
- Diener, R.G.; Elliott, K.C.; Nesselroad, P.E.; Ingle, M.; Adams, R.E.; Blizzard, S.H. Bruise energy of peaches and apples. Trans. ASAE 1979, 22, 287–0290. [Google Scholar] [CrossRef]
- Wu, S.W.; Zhou, X.G.; Cao, G.M.; Liu, Z.Y.; Wang, G.D. The improvement on constitutive modeling of Nb-Ti micro-alloyed steel by using intelligent algorithms. Mater. Des. 2017, 116, 676–685. [Google Scholar] [CrossRef]
- Landeras, G.; Ortiz-Barredo, A.; López, J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 2008, 95, 553–565. [Google Scholar] [CrossRef]
- Du, C.J.; Sun, D.W. Learning techniques used in computer vision for food quality evaluation: A review. J. Food Eng. 2006, 72, 39–55. [Google Scholar] [CrossRef]
- Azadbakht, M.; Mahmoodi, M.J.; Abbaszadeh-Mayvan, A. Prediction of Physiological Characteristic Changes in Pears Subject to Dynamic Loading Using Artificial Neural Network (ANN). Int. J. Hortic. Sci. Technol. 2022, 9, 275–289. [Google Scholar]
- Ziaratban, A.; Azadbakht, M.; Ghasemnezhad, A. Modeling of volume and surface area of apples from their geometric characteristics and artificial neural network. Int. J. Food Prop. 2017, 20, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zheng, H.; Lou, H.; Jiang, L.; Chen, Y.; Fang, S. Using neural networks to estimate the losses of ascorbic acid, total phenols, flavonoid, and antioxidant activity in asparagus during thermal treatments. J. Agric. Food Chem. 2010, 58, 2995–3001. [Google Scholar] [CrossRef]
- Yeşiloğlu, E.; Yıldırım, D.; Öztekin, Y.B. Effect of Loading Position and Storage Duration on the Mechanical Properties of Abate Fetel Pear Variety. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering (TAE), Prague, Czech Republic, 7–9 September 2016; pp. 714–718. [Google Scholar]
- Davras, İ.; Koyuncu, M.A.; Erbaş, D. They reduce quality losses by salicylic acid treatment in tomatoes during cold storage. Uluslararasi Tarim Yaban Hayati Bilimleri Dergisi 2019, 5, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.A.; Affeldt, H.A.; Liljedahl, L.A. Firmness Measurement of StoredDelicious Apples by Sensory Methods, Magness-Taylor, and Sonic Transmission. J. Am. Soc. Hortic. Sci. 1992, 117, 590–595. [Google Scholar] [CrossRef]
- Yurtlu, Y.B.; Yeşiloğlu, E. Mechanical Behaviour and Split Resistance of Chestnut under Compressive Loading. J. Agric. Sci. 2011, 17, 337–346. [Google Scholar]
- Zhou, G.; Si, J. Advanced Neural-Network Training Algorithm with Reduced Complexity Based on Jacobian Deficiency. IEEE Trans. Neural Netw. 1998, 9, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.T.; Menhaj, M.B. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Parisi, R.; Di Claudio, E.D.; Orlandi, G.; Rao, B.D. A generalized learning paradigm exploiting the structure of feed-forward neural networks. IEEE Trans. Neural Netw. 1996, 7, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Asadollah, S.B.H.S.; Saharafati, A.; Motta, D.; Yaseen, M. River Water Quality Index Prediction and Uncertainty Analysis: A Comparative Study of Machine Learning Models. J. Environ. Chem. Eng. 2021, 9, 104599. [Google Scholar] [CrossRef]
- Azadbakht, M.; Aghili, H.; Ziaratban, A.; Torshizi, M.V. Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy 2017, 120, 947–958. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M. Prediction of environmental indices of Iran wheat production using artificial neural networks. Int. J. Energy Environ. 2013, 42, 339–348. [Google Scholar]
- Azadbakht, M.; Torshizi, M.V.; Noshad, F.; Rokhbin, A. Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices. Energy 2018, 165, 836–845. [Google Scholar] [CrossRef]
- Azadbakht, M.; Torshizi, M.V.; Ziaratban, A.; Ghajarjazi, E. Application of artificial neural network (ANN) in predicting mechanical properties of canola stem under shear loading. Agric. Eng. Int. CIGR 2016, 182, 413–425. [Google Scholar]
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Soil Spatial Variability, Proceedings of a Workshop of the ISSS and the SSA, Las Vegas, NV, USA, 30 November–1 December 1984; Las Vegas PUDOC: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Güler, M. A comparison of different interpolation methods using the geographical information system for the production of reference evapotranspiration maps in Turkey. J. Meteorol. Soc. Jpn. 2014, 92, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Predicting mechanical properties of golden delicious apple using ultrasound technique and Artificial Neural Network. Food Anal. Methods 2020, 13, 699–705. [Google Scholar] [CrossRef]
- Vahedi Torshizi, M.; Khojastehpour, M.; Tabarsa, F.; Ghorbanzadeh, A.; Akbarzadeh, A. Investigation of physical properties changes of kiwi fruit during different loadings, storage, and modeling with the artificial neural network. Int. J. Fruit Sci. 2020, 20 (Suppl. 3), S1417–S1435. [Google Scholar] [CrossRef]
- Saiedirad, M.H.; Mirsalehi, M. Prediction of mechanical properties of cumin seed using artificial neural networks. J. Texture Stud. 2010, 41, 34–48. [Google Scholar] [CrossRef]
- Zarifneshat, S.; Rohani, A.; Ghassemzadeh, H.R.; Sadeghi, M.; Ahmadi, E.; Zarifneshat, M. Predictions of apple bruise volume using artificial neural network. Comput. Electron. Agric. 2012, 82, 75–86. [Google Scholar] [CrossRef]
- Gorzelany, J.; Belcar, J.; Kuźniar, P.; Niedbała, G.; Pentoś, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef]
Model | ANN1 | ANN2 | ANN3 | ANN4 |
---|---|---|---|---|
L | √ | √ | ||
W | √ | √ | ||
T | √ | √ | ||
M | √ | √ | ||
WSDM | √ | √ | ||
MT | √ | √ | √ | √ |
Variables | Maximum | Minimum | Mean | SD | CV | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|
Deveci Storage | L | 94.1 | 70.4 | 81.5 | 5.2 | 6.3 | 0.2 | 0.2 |
W | 90.2 | 67.3 | 74.1 | 3.5 | 4.7 | 1.3 | 4.8 | |
T | 87.8 | 61.4 | 71.2 | 4.0 | 5.6 | 0.4 | 2.7 | |
M | 317.5 | 181.8 | 214.6 | 20.6 | 9.6 | 1.3 | 5.6 | |
WSDM | 12.4 | 7.6 | 9.9 | 1.0 | 10.5 | 0.4 | −0.1 | |
MT | 78.5 | 26.7 | 53.1 | 13.0 | 24.4 | −0.2 | −0.6 | |
RE | 0.3 | 0.0 | 0.2 | 0.1 | 39.3 | 0.4 | 0.02 | |
Deveci Room Conditions | L | 92.2 | 61.2 | 79.3 | 6.5 | 8.1 | −0.4 | 0.9 |
W | 94.0 | 75.4 | 86.2 | 4.8 | 5.5 | −0.3 | −0.7 | |
T | 94.8 | 72.7 | 82.9 | 4.4 | 5.4 | 0.1 | 0.8 | |
M | 360.2 | 260.1 | 309.0 | 23.4 | 7.6 | 0.2 | −0.5 | |
WSDM | 15.7 | 9.5 | 12.0 | 1.2 | 10.2 | 0.7 | 1.7 | |
MT | 67.7 | 20.3 | 40.9 | 10.1 | 24.6 | 0.3 | −0.2 | |
RE | 0.3 | 0.0 | 0.1 | 0.0 | 37.6 | 0.6 | 1.1 | |
Abate Fetel Storage | L | 130.5 | 117.2 | 122.9 | 4.2 | 3.4 | 0.3 | −1.0 |
W | 66.6 | 58.8 | 62.7 | 2.1 | 3.4 | −0.2 | 0.1 | |
T | 63.8 | 53.5 | 58.7 | 2.8 | 4.8 | −0.2 | −0.1 | |
M | 227.1 | 182.3 | 206.2 | 13.8 | 6.7 | −0.3 | −1.0 | |
WSDM | 15.3 | 12.9 | 13.9 | 0.7 | 4.8 | 0.5 | 0.0 | |
MT | 59.3 | 23.0 | 40.6 | 9.5 | 23.3 | 0.0 | −0.4 | |
RE | 0.3 | 0.0 | 0.1 | 0.1 | 41.5 | 1.0 | 0.5 | |
Abate Fetel Room Conditions | L | 130.6 | 113.6 | 122.9 | 5.7 | 4.6 | 0.0 | −1.3 |
W | 66.5 | 53.7 | 58.1 | 3.3 | 5.7 | 1.5 | 2.6 | |
T | 65.1 | 50.1 | 59.2 | 4.3 | 7.2 | −0.7 | 0.1 | |
M | 234.9 | 175.7 | 207.8 | 18.3 | 8.8 | −0.5 | −0.8 | |
WSDM | 13.7 | 10.8 | 11.8 | 0.8 | 6.6 | 1.1. | 1.3 | |
MT | 59.0 | 15.2 | 37.8 | 10.7 | 28.4 | −0.3 | −0.6 | |
RE | 0.3 | 0.0 | 0.1 | 0.1 | 41.9 | 0.2 | −0.3 | |
All Dataset Storage | L | 130.5 | 70.4 | 92.0 | 18.6 | 20.2 | 1.0 | −0.6 |
W | 82.6 | 58.8 | 71.1 | 5.6 | 7.9 | −0.5 | −0.5 | |
T | 78.5 | 53.5 | 68.0 | 6.4 | 9.4 | −0.6 | −0.6 | |
M | 246.8 | 181.8 | 211.6 | 16.9 | 8.0 | 0.0 | −0.7 | |
WSDM | 15.3 | 7.6 | 10.9 | 2.0 | 18.2 | 0.7 | −0.8 | |
MT | 78.5 | 23.0 | 50.2 | 13.3 | 26.4 | 0.0 | −0.6 | |
RE | 0.3 | 0.0 | 0.2 | 0.1 | 40.9 | 0.5 | 0.0 | |
All Dataset Room Conditions | L | 130.6 | 61.2 | 90.8 | 20.3 | 22.3 | 0.9 | −0.7 |
W | 94.0 | 53.7 | 78.8 | 13.2 | 16.8 | −0.8 | −0.9 | |
T | 94.8 | 50.1 | 76.7 | 11.4 | 14.8 | −0.8 | −0.5 | |
M | 360.2 | 175.7 | 282.4 | 49.9 | 17.7 | −0.7 | −0.7 | |
WSDM | 15.7 | 9.5 | 11.9 | 1.1 | 9.4 | 0.8 | 2.1 | |
MT | 67.7 | 67.7 | 40.1 | 10.3 | 25.7 | 0.1 | −0.2 | |
RE | 0.3 | 0.3 | 0.1 | 0.0 | 39.5 | 0.5 | 0.6 |
Training Data | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LM | SCG | RP | |||||||||||
Model | Model Structure | R2 | RMSE | MSE | MAE | R2 | RMSE | MSE | MAE | R2 | RMSE | MSE | MAE |
ANN1 | 3-5-1 | 0.85 | 0.0263 | 0.0007 | 0.1392 | 0.94 | 0.0152 | 0.0002 | 0.1397 | 0.77 | 0.0312 | 0.0010 | 0.1390 |
3-8-1 | 0.72 | 0.0374 | 0.0014 | 0.1385 | 0.91 | 0.0191 | 0.0004 | 0.1396 | 0.70 | 0.0349 | 0.0012 | 0.1387 | |
3-10-1 | 0.70 | 0.0370 | 0.0014 | 0.1386 | 0.82 | 0.0295 | 0.0009 | 0.1391 | 0.53 | 0.0496 | 0.0025 | 0.1375 | |
3-5-5-1 | 0.75 | 0.0321 | 0.0010 | 0.1389 | 0.88 | 0.0234 | 0.0005 | 0.1394 | 0.61 | 0.0455 | 0.0021 | 0.1379 | |
3-5-8-1 | 0.68 | 0.0409 | 0.0017 | 0.1383 | 0.88 | 0.0238 | 0.0006 | 0.1394 | 0.70 | 0.0652 | 0.0042 | 0.1357 | |
3-5-10-1 | 0.71 | 0.0380 | 0.0014 | 0.1385 | 0.83 | 0.0354 | 0.0013 | 0.1387 | 0.69 | 0.0429 | 0.0018 | 0.1381 | |
ANN2 | 3-5-1 | 0.65 | 0.1422 | 0.0186 | 0.1197 | 0.81 | 0.0287 | 0.0228 | 0.1391 | 0.64 | 0.0425 | 0.1381 | 0.1381 |
3-8-1 | 0.59 | 0.0678 | 0.0218 | 0.1353 | 0.83 | 0.0266 | 0.0228 | 0.1392 | 0.61 | 0.0674 | 0.1354 | 0.1354 | |
3-10-1 | 0.69 | 0.0399 | 0.0225 | 0.1383 | 0.80 | 0.0367 | 0.0227 | 0.1386 | 0.70 | 0.0392 | 0.1384 | 0.1384 | |
3-5-5-1 | 0.71 | 0.0368 | 0.0226 | 0.1386 | 0.83 | 0.0263 | 0.0229 | 0.1392 | 0.72 | 0.0370 | 0.1386 | 0.1386 | |
3-5-8-1 | 0.68 | 0.1418 | 0.0186 | 0.1198 | 0.83 | 0.0273 | 0.0228 | 0.1392 | 0.77 | 0.0325 | 0.1389 | 0.1389 | |
3-5-10-1 | 0.66 | 0.1417 | 0.0187 | 0.1199 | 0.79 | 0.0378 | 0.0227 | 0.1385 | 0.64 | 0.0427 | 0.1381 | 0.1381 | |
ANN3 | 4-5-1 | 0.65 | 0.0474 | 0.0022 | 0.1377 | 0.85 | 0.0268 | 0.0007 | 0.1392 | 0.71 | 0.0406 | 0.0016 | 0.1383 |
4-8-1 | 0.73 | 0.0359 | 0.0013 | 0.1386 | 0.80 | 0.0330 | 0.0011 | 0.1388 | 0.67 | 0.0440 | 0.0019 | 0.1380 | |
4-10-1 | 0.68 | 0.0437 | 0.0019 | 0.1380 | 0.82 | 0.0261 | 0.0007 | 0.1392 | 0.64 | 0.0402 | 0.0016 | 0.1383 | |
4-5-5-1 | 0.76 | 0.0312 | 0.0010 | 0.1390 | 0.87 | 0.0250 | 0.0006 | 0.1393 | 0.68 | 0.0387 | 0.0015 | 0.1384 | |
4-5-8-1 | 0.59 | 0.0433 | 0.0019 | 0.1381 | 0.82 | 0.0282 | 0.0008 | 0.1391 | 0.71 | 0.0354 | 0.0013 | 0.1387 | |
4-5-10-1 | 0.68 | 0.0387 | 0.0015 | 0.1384 | 0.78 | 0.0358 | 0.0013 | 0.1387 | 0.72 | 0.0405 | 0.0016 | 0.1383 | |
ANN4 | 4-5-1 | 0.65 | 0.0410 | 0.0017 | 0.1383 | 0.79 | 0.0291 | 0.0008 | 0.1391 | 0.68 | 0.0357 | 0.0013 | 0.1387 |
4-8-1 | 0.69 | 0.0953 | 0.0091 | 0.1308 | 0.81 | 0.0278 | 0.0008 | 0.1392 | 0.72 | 0.0359 | 0.0013 | 0.1386 | |
4-10-1 | 0.65 | 0.0551 | 0.0030 | 0.1369 | 0.77 | 0.0365 | 0.0013 | 0.1386 | 0.65 | 0.0422 | 0.0018 | 0.1382 | |
4-5-5-1 | 0.53 | 0.0542 | 0.0029 | 0.1370 | 0.85 | 0.0241 | 0.0006 | 0.1394 | 0.69 | 0.0372 | 0.0014 | 0.1385 | |
4-5-8-1 | 0.55 | 0.0434 | 0.0019 | 0.1380 | 0.79 | 0.0409 | 0.0017 | 0.1383 | 0.68 | 0.0522 | 0.0027 | 0.1372 | |
4-5-10-1 | 0.60 | 0.1815 | 0.0330 | 0.1070 | 0.78 | 0.0334 | 0.0011 | 0.1388 | 0.63 | 0.0455 | 0.0021 | 0.1379 |
Testing Data | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LM | SCG | RP | |||||||||||
Model | Model Structure | R2 | RMSE | MSE | MAE | R2 | RMSE | MSE | MAE | R2 | RMSE | MSE | MAE |
ANN1 | 3-5-1 | 0.72 | 0.0346 | 0.0012 | 0.7805 | 0.86 | 0.0256 | 0.0007 | 0.7853 | 0.74 | 0.0454 | 0.0021 | 0.7786 |
3-8-1 | 0.70 | 0.0297 | 0.0009 | 0.7761 | 0.85 | 0.0270 | 0.0007 | 0.7843 | 0.68 | 0.0301 | 0.0009 | 0.7772 | |
3-10-1 | 0.73 | 0.0293 | 0.0009 | 0.7774 | 0.80 | 0.0320 | 0.0010 | 0.7803 | 0.72 | 0.0318 | 0.0010 | 0.7712 | |
3-5-5-1 | 0.70 | 0.0328 | 0.0011 | 0.7785 | 0.81 | 0.0259 | 0.0007 | 0.7829 | 0.68 | 0.0365 | 0.0013 | 0.7736 | |
3-5-8-1 | 0.72 | 0.0351 | 0.0012 | 0.7763 | 0.75 | 0.0386 | 0.0015 | 0.7808 | 0.68 | 0.0344 | 0.0012 | 0.7628 | |
3-5-10-1 | 0.70 | 0.0356 | 0.0013 | 0.7766 | 0.76 | 0.0326 | 0.0013 | 0.7784 | 0.62 | 0.0340 | 0.0012 | 0.7739 | |
ANN2 | 3-5-1 | 0.72 | 0.0332 | 0.0873 | 0.6911 | 0.80 | 0.0246 | 0.1061 | 0.7807 | 0.57 | 0.0691 | 0.1083 | 0.7716 |
3-8-1 | 0.70 | 0.0374 | 0.1016 | 0.7598 | 0.91 | 0.0173 | 0.1057 | 0.7814 | 0.73 | 0.0278 | 0.1017 | 0.7624 | |
3-10-1 | 0.68 | 0.0648 | 0.1082 | 0.7733 | 0.87 | 0.0265 | 0.1056 | 0.7783 | 0.68 | 0.0578 | 0.1074 | 0.7744 | |
3-5-5-1 | 0.71 | 0.0560 | 0.1075 | 0.7754 | 0.78 | 0.0434 | 0.1075 | 0.7800 | 0.69 | 0.0602 | 0.1079 | 0.7746 | |
3-5-8-1 | 0.65 | 0.0633 | 0.0903 | 0.6884 | 0.79 | 0.0411 | 0.1072 | 0.7799 | 0.54 | 0.1179 | 0.1188 | 0.7664 | |
3-5-10-1 | 0.53 | 0.1139 | 0.0994 | 0.6798 | 0.86 | 0.0202 | 0.1052 | 0.7782 | 0.65 | 0.0561 | 0.1067 | 0.7732 | |
ANN3 | 4-5-1 | 0.81 | 0.0312 | 0.0110 | 0.7698 | 0.92 | 0.0170 | 0.0035 | 0.7777 | 0.72 | 0.0357 | 0.0085 | 0.7757 |
4-8-1 | 0.74 | 0.0367 | 0.0071 | 0.7379 | 0.88 | 0.0244 | 0.0050 | 0.7783 | 0.76 | 0.0301 | 0.0096 | 0.7757 | |
4-10-1 | 0.69 | 0.0438 | 0.0098 | 0.7683 | 0.82 | 0.0241 | 0.0038 | 0.7745 | 0.70 | 0.0492 | 0.0099 | 0.7736 | |
4-5-5-1 | 0.75 | 0.0329 | 0.0055 | 0.7660 | 0.94 | 0.0155 | 0.0029 | 0.7790 | 0.73 | 0.0331 | 0.0084 | 0.7721 | |
4-5-8-1 | 0.67 | 0.0442 | 0.0108 | 0.7719 | 0.87 | 0.0220 | 0.0043 | 0.7737 | 0.71 | 0.0315 | 0.0067 | 0.7698 | |
4-5-10-1 | 0.73 | 0.0346 | 0.0085 | 0.6287 | 0.73 | 0.0236 | 0.0062 | 0.7763 | 0.71 | 0.0334 | 0.0079 | 0.7690 | |
ANN4 | 4-5-1 | 0.60 | 0.0670 | 0.0125 | 0.7713 | 0.81 | 0.0249 | 0.0045 | 0.7788 | 0.74 | 0.0287 | 0.0066 | 0.7737 |
4-8-1 | 0.72 | 0.0284 | 0.0444 | 0.7752 | 0.90 | 0.0189 | 0.0040 | 0.7773 | 0.76 | 0.0267 | 0.0066 | 0.7726 | |
4-10-1 | 0.73 | 0.0416 | 0.0140 | 0.7725 | 0.84 | 0.0343 | 0.0078 | 0.7785 | 0.71 | 0.0364 | 0.0087 | 0.7724 | |
4-5-5-1 | 0.72 | 0.0367 | 0.0163 | 0.7768 | 0.87 | 0.0238 | 0.0033 | 0.7793 | 0.70 | 0.0606 | 0.0102 | 0.7739 | |
4-5-8-1 | 0.74 | 0.0370 | 0.0104 | 0.7715 | 0.85 | 0.0342 | 0.0086 | 0.7780 | 0.75 | 0.0329 | 0.0124 | 0.7756 | |
4-5-10-1 | 0.72 | 0.0645 | 0.1536 | 0.7738 | 0.82 | 0.0236 | 0.0060 | 0.7761 | 0.71 | 0.0569 | 0.0133 | 0.7744 |
Reference | Model Structure | Material | Model Input | Model Output | The Best Model |
---|---|---|---|---|---|
Azadbakht et al. [11] | 5 and 10 neurons in the hidden layer | Physiological characteristic changes in pears | Loading storage period | Total phenol content, Antioxidant Vitamin C | 2-5-3 model total phenol content (R2 = 0.980), antioxidant (R2 = 0.983), Vitamin C (R2 = 0.930) |
Ziaratban et al. [12] | 5, 10, 15 neurons in a hidden layer | Mathematical modeling of volume and surface area in Golden Delicious apples | Major diameter Minor diameter | The volume surface area | 15 neurons, 2-15-1 (R2, 0.999) |
Vasighi-Shojae et al. [28] | 11 neurons in the hidden layer | Mechanical properties of Golden Delicious apples | Attenuation on D1, ultrasound velocity, attenuation on D2, the main diameters D1, D2, vertical diameter (D3) | Firmness Elastic modulus | 7-11-1 network structure, R2 0.999, 7-17-1 network structure, R2 0.999 |
Vahedi-Torshizi et al. [29] | MLP is a feed-forward network, 3, 9 neurons | Physical properties of kiwifruit during different loadings, storage | Loading force, storage period, loading direction, spherical coefficient, rounding coefficient, aspect ratio coefficient, length, width, and thickness | Weight Volume Density | 6-9-3 network structure R2, 0.995 |
Saiedirad et al. [30] | Single hidden layer (5, 6, 7, 8, 9 neurons), Double (4-2, 4-4,4-5, 4-6,4-7,5-5,5-6,5-7 neurons) | Mechanical properties of cumin seeds | Moisture content, seed size, loading rate, seed orientation | Rupture force energy | 6-1 neural network structure for force and energy RMS values lower 4.16 and 6.85 |
Gorzelany et al. [32] | 47 neurons in the hidden layer (MLP) | Mechanical properties of fresh and stored fruit of large cranberry | Storage temperature, duration of storage, x, y, and z dimensions of the fruits | Mechanical parameters | 6-47-1 network structure R-value in 0.89 |
Mohammed et al. [33] | 15 neurons in the hidden layer | Physicochemical properties during cold storage | Electrical properties for 14 different inputs | pH, total soluble solids, water activity, moisture content | 14-15-4 network structure R2, 0.938 (pH), 0.954 (TSSW), water activity (0.876), moisture content (0.855) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevher, E.Y.; Yıldırım, D. Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit. Processes 2022, 10, 2245. https://doi.org/10.3390/pr10112245
Cevher EY, Yıldırım D. Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit. Processes. 2022; 10(11):2245. https://doi.org/10.3390/pr10112245
Chicago/Turabian StyleCevher, Elçin Yeşiloğlu, and Demet Yıldırım. 2022. "Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit" Processes 10, no. 11: 2245. https://doi.org/10.3390/pr10112245
APA StyleCevher, E. Y., & Yıldırım, D. (2022). Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit. Processes, 10(11), 2245. https://doi.org/10.3390/pr10112245