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Abstract: In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted
using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid,
and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values
of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of
storage time and loading position. The experiments were carried out in two stages, with samples kept
in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated
using four different single and multi-layer ANN models. Four different model results obtained using
Levenberg-Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms
were compared with the calculated values. Statistical parameters such as R?, RMSE, MAE, and MSE
were used to evaluate the performance of the methods. The best-performing model was obtained in
network structure 5-1 that used three inputs: the highest R? value (0.90) and the lowest square of the
root error (0.018), and the MAE (0.093).

Keywords: soft computing technique; artificial intelligence; rupture energy; environmental condition

1. Introduction

Pear (Pyrus communis L.) is a type of fruit first grown in the Asian continent and spread
worldwide. Pear fruit is the most grown fruit in the world after apples and grapes. There
are more than 5000 pear varieties worldwide, and about 640 are grown in Turkey. Within
the fresh pear are vitamins, phenolic compounds, organic acids, fatty acids, and a large
amount of water [1]. Determining the physical and mechanical properties of pear, which is
rich in nutritional value, widely produced worldwide, and has commercial importance, is
important in the adoption and design of various unit operations. Fruits are susceptible to
mechanical damage during harvest and post-harvest processes such as harvesting, sorting,
packaging, and transportation. These damages are related to external forces such as splits,
punctures, and bruises.

The biomechanical properties of fruits are important in designing and adopting various
post-harvest systems. The fruit compression test simulates the static loading condition that
fruit can withstand in mechanical transport and storage [2]. Fruit tissue is susceptible to
mechanical effects. The biological yield point is the measure showing the first cell rupture in
the whole fruit. The biological yield point is the region on the curve where the deformation
increases or does not change. At this point, intracellular ruptures occur in the fruit. Before
the biological yield point, the cell is not damaged. The energy (rupture energy) up to this
point is the work required for the sample’s rupture. The concept of rupture energy of the
fruit is used in the design of cushioning materials for filling surfaces used for processing
and transportation [3,4]. Fruit firmness varies according to the texture characteristics of
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the fruit, which is related to the maturity state of the fruit. Firmness can be an indicator of
fruit maturity and is one of the important parameters affecting mechanical properties. In
addition, the storage of fruits after harvest can cause significant changes in physical and
mechanical properties [5,6]. Magness—Taylor tests are used to measure fruit firmness, which
is an important parameter for post-harvest processes [7]. Another important parameter
is the amount of water-soluble dry matter (WSDM), which determines the maturity and
harvest time of fruits.

With the information obtained by determining the behavior of fruits against external
forces, it will be possible to increase the product quality and contribute to its economic
value. In addition, systems and designs for harvesting and post-harvest processes will
be established or improved. Various methods are used to obtain data for this purpose.
Mathematical modeling studies are carried out for different fruit species and varieties
worldwide. It is essential in determining fruits’ physical, mechanical, and quality properties
under harvesting and storage conditions. For this, various modeling studies are carried
out. In recent years, especially soft computing techniques have been used. Among these
techniques, artificial neural network (ANN) is widely used. Many studies emphasize the
accuracy of modeling and prediction, as ANN tends to explore relationships between input
and output data without making any prior assumptions about physical data [8]. ANN
architecture is a model inspired by biological neural networks. In recent years, there has
been a significant increase in its field due to the development of computer technologies
in different scientific applications. Thus, ANN started to be used in different scientific
fields [9]. Du and Sun [10] stated that the artificial neural network method is used in food
production classification, separation, estimation, and quality evaluation.

Studies are conducted to determine the physical, mechanical, and quality properties
of fruits in different network structures for the artificial neural network. Different input,
network structure, training algorithm, number of iterations, etc. By creating different
combinations, suitable ANN models were determined to be used to predict physical
and mechanical properties. The ANN method was used to estimate the characteristic
physiological change in pear, and it was determined that the ANN model made the best
estimation based on real data [11]. Ziaratban et al. [12] reported that estimating the fruit’s
volume and surface area can be better determined using an artificial neural network. Lu
et al. [13], in their study on asparagus, used single hidden layer ANNSs, and the number
of neurons in the hidden layer were selected by trial and error. Artificial neural networks
(ANNSs) with backpropagation algorithms have been developed to predict the percentage
loss of ascorbic acid, total phenols, flavonoids, and antioxidant activity in different segments
of asparagus. In addition, optimized ANN models have been developed to predict nutrient
losses in the bud, upper, middle, and lower parts of asparagus. The obtained results showed
that the estimated values of the correlation coefficients between the experimental and ANN
varied between 0.8166 and 0.9868. This study reveals the correct estimation of rupture
energy parameters by the artificial neural network method under loading position and
storage duration conditions of Deveci and Abate Fetel pear cultivars. Using the researcher’s
ANN model aims to reveal the most accurate model with various performance criteria
among different inputs and network structures. The results obtained can be considered a
useful tool to deal with harvest/post-harvest loss of pear fruit.

2. Materials and Methods
2.1. Determination of Mechanical Properties of the Samples

Deveci and Abate Fetel pear varieties used in the research were harvested from
SAMMEY fruit production farm in Samsun in October. The harvest was conducted by
hand. Before starting the trials, the materials were cleaned from foreign materials such
as branches and leaves. Pear varieties were divided into groups according to storage and
room temperature conditions. Half of the sorted pear varieties were stored at 1 °C storage
temperature and 90% relative humidity for 30 days. A refrigerator was used as a storage
medium. Trials of the other half were carried out in a laboratory environment at 21 - 2 °C
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room temperature after harvest. The samples were kept at ambient temperature for 1 h
before starting the trials [14].

Kern (Germany) brand electronic precision scales with a sensitivity of 0.01 g and a
maximum measurement capacity of 2500 g were used for mass measurements of pear
varieties. Dimension measurements of fruits were made with a digital caliper with a
precision of 0.01 mm (Mitutoya brand, Absolute Digimatic model, Kawasaki, Japan) [3,14].
The water-soluble dry matter content was determined using the Atago Pocket (Japan) brand
digital refractometers -. The Brix measurement range of the digital refractometer is 0.0-53%,
and the resolution is 0.1% Bx [15]. A single-column Universal Tester (Lloyd Instrument
LRX Plus, Lloyd Instruments Ltd., An AMETEK Company, Hampshire, UK) attached to a
Magness-Taylor probe (10 mm) was used to obtain the firmness values of the fruits. Force
was applied to fruit varieties with a 100 N capacity load cell at 10 mm/min compression
speed. Data were obtained with NEXYGEN Plus Material Test Software Version 2.1 (Lloyd
Instrument Ltd., An AMETEK Company, Hampshire, UK). The maximum force in the force-
deformation graph provided by the software was taken as the Magness—Taylor force [14,16].
Rupture energy values were obtained with the calculation of the area under the curve [17].

2.2. Artificial Neural Network (ANN)

ANN is a computer system developed to automatically realize the ability of the human
brain to derive and discover new information through learning without any assistance.
ANN is a learning algorithm that predicts outputs against inputs with adjusted weights
and biases. In this algorithm, the importance and value of the information reaching the
neurons are determined by weights. In the next step, biases are determined by numerical
values. Artificial neurons come together to form an artificial neural network. The coming
together of nerve cells is not random. In general, cells come together in 3 layers and in
parallel in each layer to form the network. These layers are the input layer, middle layers
(hidden layer), and output layer. The relations between the layers used in the study are
seen in Figure 1.
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Figure 1. Artificial neural network multi-layer structure with 3-5-8-1 for rupture energy prediction.

2.3. Data Proceeding for ANN Models

Estimation of rupture energy value for single- and double-layer network structures
using different input combinations of length (L), thickness (T), width (W), mass (M), water-
soluble dry matter (WSDM), and Magness-Taylor force (MT) values were made with
artificial neural networks (ANN).
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Training an ANN construct makes backpropagation essential in the basic training
construct. This method requires adjusting the inter-network weight relationships and using
a training pattern with appropriate output values. Necessary adjustments between the
weights are made by adding rules to the training; thus, a single piece of information is
obtained from the data. The neural network model is influenced by the network’s topology,
characteristics, and training algorithm [18-20].

In these studies, the input variables must first be determined. Different input combina-
tions were assessed to evaluate each variable’s effect on the rapture energy values. Different
input parameters used in prediction models directly affect the model’s performance. In this
study, suitable input combinations were determined by correlation analysis that evaluated
different combinations of input variables. The Pearson correlation coefficient was a simple,
reliable, and understandable method [21]. Therefore, four models were created. Four
models were created with the inputs (length, thickness, width, mass, and water-soluble dry
matter used in the study. The inputs used for the models are given in Table 1.

Table 1. Inputs are used in ANN models.

Model ANNT1 ANN2 ANN3 ANN4
L v v
w v v
T v v
M v v

WSDM Vv v

MT v v v v

L: Length (mm); W: Width (mm); T: Thickness (mm); M: Mass (g); WSDM: Water-Soluble Dry Matter (%); MT:
Magness—Taylor (N).

Three different inputs were used in ANN1 and ANN2 models, and four different
inputs were used in ANN3 and ANN4 models. For four models, estimations were made
on single-layer networks as 5*1, 8*1, 10*1, and double-layer networks as 5*5*1, 5*8*1, and
5*10*1. As an example, the model structure of ANN2 with 5*8*1 (double hidden layers) is
shown in Figure 1. The number of neurons in the hidden layer was determined by using the
trial-and-error approach that tested 5, 8, and 10 in the number of neurons to find optimal
best results. The tangent sigmoid (tansig) and linear (purelin) activation functions were
used in the input and output layers, respectively.

The results werevobtained by using three different training algorithms: Levenberg-
Marquardt (LM), Scaled Conjugate Gradient (SCG), and Resilient Backpropagation (RP),
which were compared with the real values by performing 250-500-750 iterations. In this
study, we used a training-testing analysis design that allowed for estimating effect sizes in
an unbiased way. Moreover, 174 (74%) of 274 data were used as training data and 60 (26%)
as test data which were carried out for model selection. Modeling was created according to
174 data, and the remaining 60 data were used as test data.

2.4. Model Evaluation

As a result of the analysis, the determination coefficient (R?) [22] of the data, root
mean square error (RMSE) [23,24], mean absolute error (MAE) [25], and mean square error
(MSE) [25] values were calculated in Equations (1)—(4), respectively. Using the equations
given below, the best model was determined according to the highest R? value and lowest
RMSE, MSE, and MAE values:

(X" (vi —9)(0; = O]

R? = >
Y (v —5)* (0, —0)

)

£t (i =0
n

RMSE = @)
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MAE = ‘E?l(y;lot) (3)
n JRp— . 2

where n: total number of data; O;: estimated data; y;: actual (measured) data.

3. Results and Discussion

The descriptive statistics properties of the mechanical properties measured for Deveci
and Abate Fetel pear cultivars at storage and room conditions are shown in Table 2. The
coefficient of variation (CV) measures the variation of an attribute. A CV < 15% indicates a
low variation, 16-35% a moderate variation, and a CV > 36% high variation [26,27].

In the measured mechanical properties, CV values varied between 4.7-39.3% in the
Deveci warehouse, 5.4-37.6% in room conditions, and 3.4-41.5% in the Abate Fetel ware-
house, 4.6-41.9% in room conditions. The skewness values for Deveci and Abate Fetel pear
cultivars varied between 0 and 0.5 under storage and room conditions. It is accepted that
the variables given in the table show a normal distribution according to skewness values.
The skewness value of the dataset is considered normal up to 0.5. When the skewness
value is between 0.5 and 1, square root transformation is performed; however, logarithmic
transformation is performed when it is greater than 1. The whole dataset for storage and
room conditions values is given in Table 2. Average values of L, W, T, M, WSDM, MT, and
RE are 92.0,71.1, 68.0, 211.6, 10.9, 50.2, and 0.2 for storage conditions and 90.8, 78.8, 76.7,
282.4,11.9, 40.1, and 0.1 for room conditions.

In the study, rupture energy was estimated for ANN models by using different combi-
nations of length, thickness, width, mass, water-soluble dry matter, and Magness—Taylor
force data. Four ANN models were created using different inputs. In total, 174 of 234 data
were used as training data, and 60 were used as test data. Using three inputs and four
inputs, rupture energy was estimated for different model structures, and the estimation
results according to the training data and performance indicators are given in Table 3.

Estimation results and performance indicators according to test data are given in
Table 4. According to the training and test data, 750 iterations were made in the SCG
training algorithm, and better results were obtained than the LM and RP training algorithms
presented in Tables 3 and 4. The test data results were obtained in the SCG training
algorithm with the highest R? and performance comparison criteria.

In the SCG training algorithm using M, WSDM, and MT inputs, 750 iterations were
made, with the highest R? value (0.94) and lowest RMSE (0.0152) in the 3-5-1 model with a
5*1 single-layer network structure. MSE (0.0002) and MAE (0.1397) values were obtained,
and the model was determined as the best rupture energy estimation model (Table 3). The
SCG training algorithm obtained a high deterministic coefficient (R?) in the single- and
double-layer other model structures. R? values were calculated as 0.91, 0.82, 0.88, 0.88, and
0.83 in 8-1, 10-1, 5-5-1, 5-8-1, 5-10-1 models, respectively. In the ANN2 model, where L, W,
and MT values are used as inputs, the R? value was obtained as 0.83 in 8-1, 5-5-1, and 5-8-1
network structures in the SCG training algorithm. According to the performance criteria,
the 5-5-1 model structure was determined as the best model according to the lowest RMSE
values. In the ANN3 model, in which T, M, WSDM, and MT inputs are used, R? varies
between 0.78 and 0.87 in single- and double-layer network structures. According to the
highest R? and lowest performance criteria, the best rupture energy estimation was made
in the 5-5-1 model structure. In the ANN4 model, L, T, W, and MT inputs were used, and
the highest R? (0.85) and lowest RMSE (0.241), MSE (0.0006), and MAE (0.1394) values were
calculated in the 5-5-1 network structure.

In ANN1, ANN2, ANN3, and ANN4 models, R? values in single- and double-layer
network structures varied between 0.86 and 0.94. The highest R? and lowest RMSE, MSE,
and MAE values were obtained in the network structures of 5-1 in the ANN1 model, 8-1 in
the ANN2 model, and 5-5-1 in the ANN3 and ANN4 models (Table 4). Azadbakht et al. [11]
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reported using a multi-layer perceptron featuring a hidden layer (MLP) artificial neural
network of 5 and 10 neurons in each layer that forecasted amounts of the total phenol,
antioxidants, and Vitamin C contents of the fruits. Considering all the data, rupture energy
was estimated in the network structures selected according to the estimation models, and
the distribution graphs are shown in Figure 2. Evaluating training, testing, and all data
estimations, the most accurate rupture energy estimation was made using the SCG training
algorithm with a single-layer 5-1 network structure in the ANN1 model, in which mass,
water-soluble dry matter, and Magness—Taylor inputs were used.

Table 2. Descriptive statistical parameters for Deveci and Abate Fetel fruits and all datasets in
environmental conditions.

Variables Maximum Minimum Mean SD CvV Skewness Kurtosis
L 94.1 70.4 81.5 5.2 6.3 0.2 0.2
W 90.2 67.3 74.1 3.5 4.7 1.3 4.8
T 87.8 61.4 71.2 4.0 5.6 0.4 2.7
Deveci Storage M 317.5 181.8 214.6 20.6 9.6 1.3 5.6
WSDM 124 7.6 9.9 1.0 10.5 0.4 -0.1
MT 78.5 26.7 53.1 13.0 24.4 —-0.2 -0.6
RE 0.3 0.0 0.2 0.1 39.3 0.4 0.02
L 92.2 61.2 79.3 6.5 8.1 —-04 0.9
W 94.0 75.4 86.2 4.8 5.5 -0.3 -0.7
T 94.8 72.7 82.9 44 5.4 0.1 0.8
Deveci Room Conditions M 360.2 260.1 309.0 23.4 7.6 0.2 —0.5
WSDM 15.7 9.5 12.0 1.2 10.2 0.7 1.7
MT 67.7 20.3 40.9 10.1 24.6 0.3 —-0.2
RE 0.3 0.0 0.1 0.0 37.6 0.6 1.1
L 130.5 117.2 122.9 4.2 34 0.3 -1.0
W 66.6 58.8 62.7 2.1 34 -0.2 0.1
T 63.8 53.5 58.7 2.8 4.8 —-0.2 —-0.1
Abate Fetel Storage M 227.1 182.3 206.2 13.8 6.7 -0.3 -1.0
WSDM 15.3 12.9 13.9 0.7 4.8 0.5 0.0
MT 59.3 23.0 40.6 9.5 23.3 0.0 —-04
RE 0.3 0.0 0.1 0.1 41.5 1.0 0.5
L 130.6 113.6 122.9 5.7 4.6 0.0 -13
W 66.5 53.7 58.1 3.3 5.7 1.5 2.6
T 65.1 50.1 59.2 4.3 7.2 -0.7 0.1
Abate Fetel Room Conditions M 234.9 175.7 207.8 18.3 8.8 —0.5 —0.8
WSDM 13.7 10.8 11.8 0.8 6.6 1.1. 1.3
MT 59.0 15.2 37.8 10.7 28.4 -0.3 —-0.6
RE 0.3 0.0 0.1 0.1 419 0.2 -0.3
L 130.5 70.4 92.0 18.6 20.2 1.0 —-0.6
W 82.6 58.8 71.1 5.6 79 —-0.5 —-0.5
T 78.5 53.5 68.0 6.4 94 —-0.6 —0.6
All Dataset Storage M 246.8 181.8 211.6 16.9 8.0 0.0 -0.7
WSDM 15.3 7.6 10.9 2.0 18.2 0.7 -0.8
MT 78.5 23.0 50.2 13.3 26.4 0.0 —-0.6
RE 0.3 0.0 0.2 0.1 40.9 0.5 0.0
L 130.6 61.2 90.8 20.3 22.3 0.9 -0.7
Y 94.0 53.7 78.8 13.2 16.8 —-0.8 —-0.9
T 94.8 50.1 76.7 114 14.8 -0.8 -0.5
All Dataset Room Conditions M 360.2 175.7 282.4 49.9 17.7 —-0.7 —-0.7
WSDM 15.7 9.5 11.9 1.1 9.4 0.8 2.1
MT 67.7 67.7 40.1 10.3 25.7 0.1 -0.2
RE 0.3 0.3 0.1 0.0 39.5 0.5 0.6

L: Length (mm); W: Width (mm); T: Thickness (mm); M: Mass (g); WSDM: Water-Soluble Dry Matter (%); MT:
Magness—Taylor Force (N); RE: Rupture Energy (J); SD: Standard Deviation; CV: Coefficient of Variation.
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Table 3. Statistical results between calculated and predicted rupture energy in training data by the
developed ANN models.

Training Data

LM SCG RP

Model Model R? RMSE MSE MAE R? RMSE MSE MAE R? RMSE MSE MAE
Structure

351 0.85 0.0263 0.0007 01392 094 00152 0.0002 01397 0.77 0.0312 0.0010 0.1390

3.8-1 072 00374 00014 01385 091 00191 00004 01396 070 00349 00012 0.1387

3-10-1 070 00370 00014 01386 082 00295 00009 01391 053 0049 00025 0.1375

ANNL 3551 075 00321 00010 01389 088 00234 00005 01394 061 00455 00021 0.1379

3581 068 00409 00017 01383 088 00238 00006 01394 070 00652 00042 0.1357

3510-1 071 00380 00014 01385 083 00354 00013 01387 069 00429 00018 0.1381

3.5-1 065 01422 00186 01197 081 00287 00228 01391 064 00425 01381 0.1381

3.8-1 059 00678 00218 01353 0.83 0.0266 00228 01392 061 00674 01354 0.1354

3-10-1 069 00399 00225 01383 080 00367 00227 0138 070 00392 01384 0.1384

ANN2 3551 071 00368 00226 0138 083 00263 00229 01392 072 00370 01386 0.1386

3581 068 01418 00186 01198 083 00273 00228 01392 0.77 0.0325 01389 0.1389

35101 066 01417 00187 01199 079 00378 00227 01385 064 00427 01381 0.1381

4-5-1 0.65 00474 00022 01377 085 00268 00007 01392 071 00406 00016 0.1383

4-8-1 073 00359 00013 0138 080 00330 00011 01388 067 00440 00019 0.1380

410-1 0.68 00437 00019 01380 082 00261 00007 01392 064 00402 00016 0.1383

ANN3 4551 076 00312 00010 01390 0.87 00250 0.0006 01393 068 00387 00015 0.1384

4581 059 00433 00019 01381 082 00282 00008 01391 071 00354 00013 0.1387

45-10-1 068 00387 00015 01384 078 00358 00013 01387 072 0.0405 0.0016 0.1383

4-5-1 0.65 00410 00017 01383 079 00291 00008 01391 068 00357 00013 0.1387

4-8-1 0.69 0.0953 0.0091 01308 081 00278 00008 01392 0.72 0.0359 0.0013 0.1386

410-1 0.65 00551 00030 01369 077 00365 00013 0138 065 00422 00018 0.1382

ANN4 4551 053 00542 00029 01370 0.85 0.0241 0.0006 01394 069 00372 00014 0.1385

4581 055 00434 00019 01380 079 00409 00017 01383 068 00522 00027 0.1372

45-10-1 060 01815 00330 01070 078 00334 00011 01388 063 00455 0.0021 0.1379

ANN: Artificial neural network, R?: Determination coefficient, RMSE: Root mean square error, MSE: Mean square
error, MAE: Mean absolute error, LM: Levenberg-Marquardt, SCG: Scaled conjugate gradient, RP = Resilient
backpropagation. (The bold font represents the best results in table).

In the estimation of all data, R? was calculated as 0.90, RMSE as 0.018, MSE as 0.0003,
and MAE as 0.093. For ANN2, ANNB3, and ANN4 models, R? was calculated as 0.87, 0.90
and 0.86, RMSE 0.025, 0.023, 0.024, MSE 0.0006, 0.0005, 0.0006, MAE 0.931, 0.930, 0.932,
respectively, in other model structures. Ziaratban et al. [12] used mathematical modeling
of volume, surface area, and feed-forward artificial neural network methods in Golden
Delicious apples. In this study, using different training algorithms (GD, CGF, LM) 5, 10, and
15 neuron structures, they predicted high accuracy (R?, 0.99) for 15 neuron structures in the
LM training algorithm. In the studies, different network neuron structures were modeled
using 5, 10 [11], between 2 and 20 neurons [28], and the LM training algorithm [11].

The study estimated rupture energy using the mechanical properties of Deveci and
Abate Fetel pear cultivars measured under storage and room conditions. In this study, the
best-performing model was determined to estimate the rupture energy used in the 3-5-1
model network structure.

The estimation values were made in a single-layer 5-1 network structure by using
M, WSDM, and MT inputs. Distribution and scatter graphs for rupture energy estimated
storage and room conditions of Deveci and Abate Fetel pear varieties that are presented
in Figure 3. The R? values of the Deveci pear cultivar were calculated as 0.94 and 0.91 in
storage and room conditions, respectively, and 0.88 and 0.86 in storage and room conditions
for Abate Fetel pear in the rupture energy estimation in the 3-5-1 network structure (ANN1
model). Vahedi Torshizi et al. [29] utilized the artificial neural network method to estimate
weight, volume, and density parameters for kiwi and found loading force, storage period,
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loading direction, equivalent diameter, geometric diameter, arithmetic diameter, spherical
coefficient, rounding coefficient, and aspect ratio. The coefficient was estimated with high
accuracy R? of 0.9992, 0.9984, and 0.9970 using different input combinations.

The artificial neural network application is aimed at making high-accuracy predictions
using a few inputs. In the study, different inputs were used for a total of four models. In
addition, estimation results were evaluated according to LM, SCG, and RP training algo-
rithms in six different network structures (5-1, 8-1, 10-1, 5-5-1, 5-8-1, and 5-10-1). According
to the network structures used, high-accuracy predictions were made in the SCG training
algorithm. With the evaluation of the results, high-accuracy rupture energy estimation was
made in the 5-1 network structure using the M, WSDM, and MT (ANN1) inputs. When
missing data from the input parameters used in the study, accurate predictions can be made
using the other three models (ANN2, ANN3, and ANN4). There are many studies similar
to this study:.

Table 4. Statistical results between calculated and predicted rupture energy in testing data by the
developed ANN models.

Testing Data
LM SCG RP

Model 2 2 2

Model RMSE MSE MAE R® RMSE MSE MAE R® RMSE MSE MAE
Structure

3.5-1 072 00346 00012 07805 0.86 0.0256 0.0007 0.7853 0.74 0.0454 0.0021 0.7786
3.8-1 070 00297 00009 07761 085 00270 00007 07843 0.68 00301 00009 0.7772
3-10-1 0.73  0.0293 0.0009 0.7774 080 00320 0.0010 07803 072 00318 00010 0.7712
ANNL 3551 070 00328 00011 07785 081 00259 00007 07829 068 00365 00013 0.7736
3581 072 00351 00012 07763 075 00386 00015 07808 0.68 00344 00012 0.7628
3510-1 070 00356 00013 07766 076 00326 00013 07784 062 00340 00012 0.7739
3.5-1 072 0.0332 00873 06911 080 00246 0.1061 07807 057 00691 01083 07716
3.8-1 070 00374 01016 07598 091 00173 01057 07814 073 0.0278 01017 0.7624
3-10-1 0.68 00648 01082 07733 087 00265 01056 07783 068 00578 01074 0.7744
ANNZ 3551 071 00560 01075 07754 078 00434 01075 07800 0.69 00602 01079 0.7746
3581 065 00633 00903 0684 079 00411 01072 07799 054 01179 01188 0.7664
3510-1 053 01139 00994 06798 086 00202 01052 07782 065 00561 01067 0.7732
4-5-1 0.81 0.0312 00110 07698 092 00170 00035 07777 072 00357 00085 0.7757
481 074 00367 00071 07379 088 00244 00050 07783 076 0.0301 0.009 0.7757
410-1 069 00438 00098 07683 082 00241 00038 07745 070 00492 00099 0.7736
ANN3 4551 075 00329 00055 07660 0.94 00155 0.0029 07790 073 00331 00084 0.7721
4581 067 00442 00108 07719 087 00220 00043 07737 071 00315 00067 0.7698
45101 073 00346 00085 06287 073 00236 00062 07763 071 00334 0.0079 0.7690
4-5-1 060 00670 00125 07713 081 00249 00045 07788 074 00287 00066 0.7737
4-8-1 072 00284 00444 07752 090 00189 0.0040 07773 076 0.0267 0.0066 0.7726
410-1 073 00416 00140 07725 084 00343 00078 07785 071 00364 00087 07724
ANNS 4551 072 00367 00163 07768 087 00238 00033 07793 070 00606 00102 0.7739
4581 074 00370 00104 07715 085 00342 00086 07780 075 00329 00124 07756
45101 072 00645 01536 07738 082 00236 00060 07761 071 00569 00133 0.7744

ANN: Artificial neural network, R?: Determination coefficient, RMSE: Root mean square error, MSE: Mean square
error, MAE: Mean absolute error, LM: Levenberg-Marquardt, SCG: Scaled conjugate gradient, RP: Resilient
backpropagation. (The bold font represents the best results in table).

Saiedirad et al. [30] used an artificial neural network to determine the mechanical
properties of cumin seeds. In order to estimate the rupture energy value, 13 models
were created in single and multi-layered network structures, and lower RMS (root mean
functional error) values were obtained from the results of the single-layer model compared
to the results of the multi-layered model. It is seen that the 6-1 structure has the lowest
RMS percentage and was chosen as the best ANN model for the estimation of the force
required to break the cumin seed. Zarifneshat et al. [31] estimated the volume of apple fruit
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crunches using an artificial neural network. The study concluded that the ANN model
is more accurate than the regression model. The R? value was calculated as 0.994 for the
ANN model and 0.969 for the regression model.

Azadbakht et al. [11] used an artificial neural network to estimate total pear phenol,
antioxidant, and Vitamin C contents by two dynamics of loading force and storage time.
In the study, the highest R? value for dynamic loading in a network with five neurons
in the hidden layer was determined for total phenol content (R? = 0.980), antioxidant
(R? = 0.983), and Vitamin C (R? = 0.930). Vasighi-Shojae et al. [29] stated that using
7 inputs and 11 neurons in the Golden Delicious apple for firmness estimation, a 7-11-1
network structure is the best estimation, and a 7-17-1 network structure for elastic modulus
estimation is made.

Gorzelany et al. [32] were reported to predict mechanical properties of fresh and stored
fruit of large cranberry by a used artificial neural network. The best model for NNEc was
determined to have a high R-value of 0.89 for the training data set and 0.88 for the validation
data set with 47 neurons in the hidden layer. Mohammed et al. [33] estimated the fruit
quality attributes of the pH, total soluble solids (TSS), water activity (aw), and moisture
content (MC) parameters with the ANN model using 14 different inputs under storage
conditions. PH, TSS, aw, and MC were determined as high determination of coefficient R?
value as 0.938, 0.954, 0.876, 0.855, RMSE 0.121, 2.946, 0.020, and 0.803, respectively.

A multi-layer perceptron (MLP) artificial neural network evaluated the quantities of
pear fruit mechanical properties after different storage times. This study is thought to be
the first study to determine the mechanical properties of pear with ANN. Table 5 shows
the comparison of ANN and studies for different features. Determining the rupture energy
value, which is one of the mechanical properties of pear varieties, with ANN will provide
practicality in the adjustment, design, and development of equipment and systems used
during and after harvest, as well as time and economic benefits.
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Figure 2. Rupture energy results for all data by the best ANN models.
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Figure 3. Scatter plots between calculated and predicted rupture energy results according to ANN1
(a) storage duration of Deveci pear; (b) loading position of Deveci pear; (c) storage duration of Abate
Fetel pear, and (d) loading position of Abate Fetel pear.
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Table 5. Studies of ANN for different properties.

Reference Model Structure Material Model Input Model Output The Best Model
Total phenol content 2-5-3 model total phenol
5 and 10 neurons in the Physiological characteristic Loading P ’ content (R? = 0.980),
Azadbakht et al. [11] . : . Antioxidant .. >
hidden layer changes in pears storage period Vitamin C antioxidant (R~ = 0.983),

Vitamin C (R? = 0.930)

Ziaratban et al. [12]

5,10, 15 neurons in a
hidden layer

Mathematical modeling of
volume and surface area in
Golden Delicious apples

Major diameter
Minor diameter

The volume surface area

15 neurons,
2-15-1 (R?, 0.999)

Vasighi-Shojae et al. [28]

11 neurons in the hidden layer

Mechanical properties of
Golden Delicious apples

Attenuation on D1,
ultrasound velocity,
attenuation on D2, the main
diameters D1, D2, vertical
diameter (D3)

Firmness
Elastic modulus

7-11-1 network structure,
R? 0.999, 7-17-1 network
structure, R? 0.999

Vahedi-Torshizi et al. [29]

MLP is a feed-forward
network, 3, 9 neurons

Physical properties of
kiwifruit during different
loadings, storage

Loading force, storage period,
loading direction, spherical
coefficient, rounding
coefficient, aspect ratio
coefficient, length, width,
and thickness

Weight
Volume Density

6-9-3 network structure
RZ,0.995

Saiedirad et al. [30]

Single hidden layer (5, 6, 7, 8,9
neurons), Double (4-2, 4-4,4-5,
4-6,4-7,5-5,5-6,5-7 neurons)

Mechanical properties of
cumin seeds

Moisture content, seed size,
loading rate, seed orientation

Rupture force
energy

6-1 neural network structure
for force and energy RMS
values lower 4.16 and 6.85

Gorzelany et al. [32]

47 neurons in the hidden
layer (MLP)

Mechanical properties of
fresh and stored fruit of
large cranberry

Storage temperature,
duration of storage, x, y, and
z dimensions of the fruits

Mechanical parameters

6-47-1 network structure
R-value in 0.89

Mohammed et al. [33]

15 neurons in the hidden layer

Physicochemical properties
during cold storage

Electrical properties for 14
different inputs

pH, total soluble solids, water
activity, moisture content

14-15-4 network structure
R?,0.938 (pH), 0.954 (TSSW),
water activity (0.876),
moisture content (0.855)
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4. Conclusions

Especially in pome fruits, it is important to carry out modeling studies to determine
the storage conditions and mechanical properties. In the study, the mechanical properties
of rupture energy were modeled for the loading position and storage duration conditions
of Deveci and Abate Fetel pear cultivars using the artificial neural network method. In the
study, R?, RMSE, MSE, and MAE parameters were used as an acceptability indicator in the
estimation of the rupture energy for pear.

High-accuracy predictions were made in the created 4 ANN models. According to the
input parameters, by using these models, rupture energy estimations for pear can be made
with high accuracy. According to the purpose of the ANN method, it is important to obtain
highly accurate predictions using little data. Based on this and evaluating the model results
in the study, a high accuracy (R?, 0.90) estimation was made in the 3*5*1 network structure
according to the highest R? and lowest RMSE, MSE, and MAE indicators. In the best RMSE,
MSE, and MAE performance estimation for pear, 0.0184, 0.0003, and 0.0932 were obtained
in the SCG training algorithm in the ANN1 model, respectively. According to the ANN 1
(3*5*1) model, the Device and Abate Fetel pear rupture energy values were estimated at
0.94, 0.91, 0.88, 0.86 (RZ) under loading position and storage duration conditions.

In conclusion, this study recommends the artificial neural network technique devel-
oped as an alternative to estimating rapture energy because it quickly yields accurate
estimations. Soft computing techniques are commonly used in many applications (agricul-
tural, mechanical, environmental, etc.) because they explain complex problems. Rupture
energy data were difficult; hence, it is estimated quickly and accurately using ANN mod-
els. It is thought that the study’s results will help estimate the rupture energy from the
mechanical properties of the fruit using the artificial neural network method and develop
stronger models. The study will also enable the development of models to determine the
mechanical and physical properties of different fruits grown in different regions.
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