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Abstract: Probability distributions perform a very significant role in the field of applied sciences,
particularly in the field of reliability engineering. Engineering data sets are either negatively or
positively skewed and/or symmetrical. Therefore, a flexible distribution is required that can handle
such data sets. In this paper, we propose a new family of lifetime distributions to model the
aforementioned data sets. This proposed family is known as a “New Modified Exponent Power
Alpha Family of distributions” or in short NMEPA. The proposed family is obtained by applying the
well-known T-X approach together with the exponential distribution. A three-parameter-specific sub-
model of the proposed method termed a “new Modified Exponent Power Alpha Weibull distribution”
(NMEPA-Wei for short), is discussed in detail. The various mathematical properties including
hazard rate function, ordinary moments, moment generating function, and order statistics are also
discussed. In addition, we adopted the method of maximum likelihood estimation (MLE) for
estimating the unknown model parameters. A brief Monte Carlo simulation study is conducted to
evaluate the performance of the MLE based on bias and mean square errors. A comprehensive study
is also provided to assess the proposed family of distributions by analyzing two real-life data sets
from reliability engineering. The analytical goodness of fit measures of the proposed distribution
are compared with well-known distributions including (i) APT-Wei (alpha power transformed
Weibull), (ii) Ex-Wei (exponentiated-Weibull), (iii) classical two-parameter Weibull, (iv) Mod-Wei
(modified Weibull), and (v) Kumar-Wei (Kumaraswamy–Weibull) distributions. The proposed class
of distributions is expected to produce many more new distributions for fitting monotonic and
non-monotonic data in the field of reliability analysis and survival analysis.

Keywords: Weibull distribution; NMEPA family of distribution; reliability engineering data; maximum
likelihood estimation; Monte Carlo simulation study

1. Introduction

In the field of reliability engineering as well as other related fields, the modeling of
lifetime events is of great importance. Generally, numerous probability distributions are
available to model such types of lifetime data that are uncertain and complex in nature.
However, in many cases, these probability distributions are suitable to model lifetime data.

In the literature, the exponential and Rayleigh distributions are the most popular
and widely used distributions in lifetime analysis. However, when the lifetime data
sets are complex then these probability distributions are not suitable to represent data
accurately. For example, the Exponentiated distribution is concerned with describing data
that have a constant failure rate function; on the other hand, the Ray distribution is used
to model data that possess an increasing failure rate function. Similarly, the Weibull (Wei)
distribution is one of the important lifetime distributions, which has both the characteristic
of Exponentiated and Rayleigh distributions and has widely been used in the field of
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reliability engineering and in other research areas; see, Lee et al. [1]. Although the Wei
distribution is widely used in many fields, it is confined to the structure of its HF (hazard
function) only increasing, decreasing, and constant. Generally, many significant issues
require a flexible range of HF; for instance, human mortality and life cycles of electronic
machines and components lifetime events possess a bathtub and unimodal-shaped HF.
To overcome these difficulties, we need a more flexible version of the Wei distribution to
model reliability data adequately. In this regard, researchers’ efforts have been devoted
to deriving new models or families of statistical models to provide a better description
of the problem under consideration. Such models have been constructed by inserting
one or more new additional parameters to the baseline models to obtain new models that
are analytically more flexible and provide better fits to the lifetime events than the other
adapted models; see a new modified alpha power (MPA) family of distributions proposed
by Hussein et al. [2]; the new exponential-X (NExp-X) family proposed by Shah et al. [3]; the
Z-family introduced by Ahmad et al. [4]; the new generalized-X (NG-X) family proposed
by Wang et al. [5]; the transmuted alpha power-G (TAP-G) family presented by Eghwerido
et al. [6]; the unit extended Weibull (UEx-Wei) families proposed by Guerra et al. [7]; and a
new lifetime-X (NLT-X) family introduced by Mohammed et al. [8].

Mudholkar and Srivastava [9] proposed a simple Exponentiated method by inserting
an extra parameter into the family of distributions. The CDF (cumulative distribution
function) is given by

K(y; α, ∆) = [G(y; ∆)]α, α > 0, y ∈ R, (1)

where G(y; ∆) is the CDF of any baseline distributions depending on the parameter vector
∆. Cordeiro and de Castro [10] developed a method to incorporate an additional parameter
to the baseline distribution, which has the following form,

K(y; α, β, ∆) = 1−
[
1− G(y; ∆)α]β, α, β > 0, y ∈ R, (2)

using Equation (2), Cordiero and de Castro [10] defined four parameters of Kumaraswamy
Wei distribution. Moreover, using Equation (2), different researchers extended the classical
Wei distribution; see for example ([11–14]).

Similarly, Marshal and Olkin [15] introduced Marshall–Olkin generated (MO-G) family
using the following CDF

K(y; α, ∆) =
G(y; ∆)

1− (1− α)[1− G(y; ∆)]
, α, β, ∆ > 0, y ∈ R, (3)

using Equation (3), Marshal and Olkin [15] derived two special sub-models, namely, the
Marshal–Olkin Exponential (MO-Exp) and Marshal–Olkin Wei (MO-Wei) distributions.
Later on, using Equation (3), several probability distributions were proposed in the litera-
ture; for instance, see the work given in ([16–18]).

Recently, in this regard, Khan et al. [19] proposed an exponentiated odd generalized
exponential (OGE2-G) family of distribution using the following CDF

K(y; α, δ, ∆) =

(
1− e

− 1−G(y;∆)α

G(y;∆)α

)δ

, α, δ, ∆ > 0, y ∈ R, (4)

Using Equation (4), Khan et al. [19] also derived a four-parameter exponentiated odd
generalized exponential Fréchet (OGE2Fr) distribution.

In this manuscript, we propose a new flexible class family of distributions by imple-
menting the method of the T-X approach together with exponential distribution having
density function m(t) = e−t. The new proposed class is called an NMEPA family of
distributions, which capitalizes on the weaknesses of the available distributions in the
literature. The main motivations for using the NMEPA method in practice are the fol-
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lowing: (i) the method has not been proposed/used so far; (ii) to improve the existing
distributions, and numerous new distributions can also be proposed for data modeling in
the different phenomenon; (iii) to generalize the existing distributions with a closed form of
their distribution functions; (iv) to provide the best fit to real-world data as compared the
other distributions having the fever, and same or higher number of parameters; and (v) to
provide the best fit to the considered data sets, describing the reliability in engineering. In
fact, we conclude empirically that the new modification of the Wei distribution offers the
best fit to the considered data sets in comparison to the two, three, and four-parameter
competing distributions.

2. The Proposed NMEPA Family

In this section, we introduce a new modified method to derive a new lifetime distri-
bution. The proposed method is introduced by combining the exponential model having
PDF (probability density function) m(t) = e−t with the T-X family proposed by Alzaatreh
et al. [20].

Consider a random variable, say T be a baseline random variable with PDF m(t), where
T ∈ [a1, a2] for −∞ ≤ a1 < a2 ≤ ∞. Let y be a random variable with CDF (cumulative
distribution function) G(y; ∆) depending on the parameter vector ∆. In addition, suppose
that F[G(y; ∆)] be a function of CDF of y, satisfying the following three conditions,

• F[U(y; ∆)] ∈ [a1, a2],

• F[G(y; ∆)] is differentiable and monotonically increasing,

• F[G(y; ∆)]→ a1 as y→ −∞ and F[G(y; ∆)]→ a2 as y→ ∞ .

Then, according to Alzaatreh et al. [20], the CDF of the T-X family is defined by

KT−X(y) = K(y; ∆) =
∫ F[G(y;∆) ]

a1

m(t)dt, (5)

where F[G(y; ∆)] satisfies certain conditions given above. The PDF of T-X distribution,
corresponding to Equation (5) is given by;

kT−X(y) = k(y; ∆) = m(F[G(y; ∆)])
d

dy
F[G(y; ∆)] (6)

Now, by using m(t) = e−t and setting F[G(y; ∆)] = − log
(

1− G(y;∆)e(1−(α)
2)

e(1−(1−αG(y;∆))2)

)
in

Equation (5), we obtain the CDF K(y; α, ∆) of the NMEPA family of distributions, given by

K(y; α, ∆) =
e(1−(α)

2)G(y; ∆)

e(1−(1−αG(y;∆))2)
, α > 0, y ∈ R, (7)

the CDF may also be written in the following form,

K(y; α, ∆) =
G(y; ∆)

exp
(
(α)2 − (1− αG(y; ∆))2

) , α > 0, y ∈ R,

where α = 1− α, and G(y; ∆) is the CDF of the baseline distribution with parameters
vector ∆.

The PDF k(y; α, ∆) of the NMEPA family associated with Equation (7) is given by

k(y; α, ∆) =
g(y; ∆)[1− 2αG(y; ∆)(1− αG(y; ∆))]

e((α)
2−(1−αG(y;∆))2)

, α > 0, y ∈ R, (8)

where d
dy G(y; ∆) = g(y; ∆).
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Corresponding to Equations (7) and (8), the SF (survival function) and HF (hazard
function) are given as follows:

S(y; α, ∆) = 1− G(y; ∆)

e((α)
2−(1−αG(y;∆))2)

, α > 0, y ∈ R, (9)

and

h(y; α, ∆) =
g(y; ∆)[1− 2αG(y; ∆)(1− αG(y; ∆))]

e((α)
2−(1−αG(y;∆))2) − G(y; ∆)

(10)

In this article, using Equation (7) we propose a new generalized/extended version of
the Wei distribution, namely, an NMEPA-Wei (new modified exponent power alpha Wei)
distribution. The NMEPA-Wei model is compared with five other well-known probability
distributions including (a) three-parameter APT-Wei (alpha power transformed Wei) [21],
(b) Ex-Wei (exponentiated Wei), [9], (c) two-parameter classical Wei [22], (d) Sarhan and
Zaindin Mod-Wei (Modified Wei) [23], and (e) four-parameter Ku-Wei (Kumaraswamy
Wei) distributions [10], by analyzing two real data sets in the field of reliability engineering.
The following Section 2.1, offers the CDF, PDF, SF, HF, and CHF (cumulative hazard
function) of the NMEPA-Wei distribution. Furthermore, different PDF and HF behaviors
are also presented graphically in the same section. The rest of the work in this study is
organized as follows: In Section 3, the statistical properties of the proposed NMEPA family
of distributions are also discussed. The method of MLE for the proposed distribution is
described in Section 4. In Section 4.1, a brief Monte Carlo simulation study is carried out.
The comprehensive analyses using two engineering data sets are discussed in Section 5.
Finally, some concluding remarks are given in Section 6.

2.1. The NMEP-Wei Distribution

Consider the CDF G(y; ∆) and PDF g(y; ∆) of the classical two-parameter (γ > 0, θ > 0)
Wei distribution given by

G(y; ∆) = 1− e−γxθ
, y ≥ 0, (11)

and
g(y; ∆) = γθxθ−1e−γxθ

, y > 0, (12)

where ∆ = (γ, θ).
Using Equation (11) in Equation (7) yields the CDF K(y; α, ∆) of the NMEPA-Wei

distribution, which is given by

K(y; α, ∆) =
e(1−(α)

2)(1− e−γyθ
)

e(1−(1−α(1−e−γyθ
))

2
)

, y ≥ 0, α, γ, θ > 0, (13)

with PDF

k(y; α, ∆) =
γθxθ−1e−γyθ

[
1− 2α(1− e−γyθ

)
(

1− α(1− e−γyθ
)
)]

e((α)
2−(1−α(1−e−γyθ

))
2
)

, y > 0 (14)

Different plots of the PDF k(y; α, ∆) of the NMEPA-Wei distribution are presented in
Figure 1a,b for different values of the parameters α, γ and θ. From Figure 1a,b, we can
see different PDF patterns including bio-modal, left-skewed, right-skewed, and symmetri-
cal curves.
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Figure 1. Plots of (a) bi-modal, and (b) left-skewed, right-skewed, and symmetrical PDF k(y; α, ∆) of
the proposed NMEPA-Wei distribution.

Furthermore, the SF S(y; α, ∆), HF h(y; α, ∆), and CHF (cumulative hazard function)
H(y; α, ∆) of the NMEPA-Wei distribution are given by

S(y; α, ∆) = 1−

(
1− eγyθ

)
e((α)

2−(1−α(1−eγyθ
))

2
)
, y > 0, (15)

h(y; α, ∆) =
γθxθ−1e−γyθ

[
1− 2α(1− e−γyθ

)
(

1− α(1− e−γyθ
)
)]

e((α)
2−(1−α(1−e−γyθ

))
2
) − (1− e−γyθ

)
, y > 0, (16)

and

H(y; α, ∆) = log

1−

(
1− eγyθ

)
e((α)

2−(1−α(1−eγyθ
))

2
)

, y > 0, (17)

respectively.
Here, different plots of the HF h(y; α, ∆) of the NMEP-Wei distribution are presented

in Figure 2a,b. From Figure 2a, we can see increasing and decreasing HF h(y; α, ∆), while in
Figure 2b, we can see uni-modal HF h(y; α, ∆). Similarly, from Figure 3, we can see bathtub
HF h(y; α, ∆) of the NMEPA-Wei distribution.

Figure 2. Plots of (a) increasing, and decreasing, and (b) unimodal HF h(y; α, ∆) of the NMEPA-
Wei distribution.
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Figure 3. Plots of different bathtub shapes of HF h(y; α, ∆) of the proposed NMEPA-Wei distribution.

3. Statistical Properties of NMEPA Family

In this section, various mathematical properties of the proposed family of distributions
such as QF (quantile function), and ordinary moments that can further be used to obtain
some important characteristics of the model are discussed. In addition to these properties,
the MGF (moment generating function) and OS (order statistics) are also derived.

3.1. Quantile Function

The QF also called IDF (inverse distribution function) is an important statistical
characteristic used to generate random numbers (RNs). The QF of the NMEPA distribution
is a function Q(u; ∆) that satisfies the following nonlinear equation

Q(K(u; ∆); ∆) = u

where u ∈ (0, 1). By using Equation (7) and after some algebraic manipulation the QF is
derived as

Q(K(u; ∆); ∆) = K−1(u) = G−1(u) (18)

where u is the solution of the nonlinear equation log(u)− (1− αG(y; ∆))2 + α2− log G(y; ∆).
The expression (18) can also be used to measure the effect of parameters on Skewness and
Kurtosis. Hence, the formulas for Skewness and Kurtosis are the following expression

Skewness =
Q(1/4)− 2Q(1/2) + Q(3/4)

Q(3/4)−Q(1/4)
,

and

Kurtosis =
Q(7/8)− [Q(5/8) + Q(1/8)] + Q(3/8)

Q(6/8)−Q(2/8)
.

The mean, variance, skewness, and kurtosis for γ = 1, and different values of α and θ,
of the NMEPA-Wei distribution, are sketched in Figure 4.
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Figure 4. Different plots of (a) mean, (b) variance, (c) skewness, and (d) kurtosis of the NMEPA-
Wei model.

3.2. rth Moments

The rth moment is an important and useful statistical tool to obtain certain characteris-
tics and features of a model. These characteristics are known as (i) central tendency, which
deals with the mean point of distribution; (ii) dispersion, which measures the variance of
a model; (iii) skewness, which describes the tail behavior of the model; and (iv) kurtosis,
which helps in studying the peakedness of the distribution. Let y be a random variable that
follows the NMEPA-Wei distribution, then its rth moment can be expressed as follows,

µ′r =
∫ ∞

−∞

r
y k(y; α, ∆)dy. (19)

Using Equation (8) in Equation (18), we have

µ′r =
∫ ∞

−∞

r
y

g(y; ∆)[1− 2αG(y; ∆)(1− αG(y; ∆))]

e((α)
2−(1−αG(y;∆))2)

dy, (20)

Using the following series

ey =
∞

∑
i=0

yi

i!
(21)
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and using y =
(
(α)2 − (1− αG(y; ∆))2

)
in Equation (20), we obtain

e((α)
2−(1−αG(y;∆))2) =

∞

∑
i=0

(
(α)2 − (1− αG(y; ∆))2

)i

i!

e((α)
2−(1−αG(y;∆))2) =

∞

∑
i=0

(α)2i

i!

(
1− (1− αG(y; ∆))2

(α)2

)i

(22)

In addition, using the following series representation for Equation (22)

(1− y)i =
i

∑
j=0

(−1)j
(

v
j

)
yj (23)

Using y = (1−αG(y;∆))2

(α)2 in Equation (23), we obtain

e((α)
2−(1−αG(y;∆))2) =

∞

∑
i=0

i

∑
j=0

(α)2i−2j

i!
(−1)j

(
i
j

)
(1− αG(y; ∆))2j (24)

again using series representation in Equation (23), and replacing y = αU(y; ∆), we obtain

e((α)
2−(1−αG(y;∆))2) =

∞

∑
i=0

i

∑
j=0

2j

∑
l=0

αl(α)2i−2j

i!
(−1)j+l

(
i
j

)(
2j
l

)
G(y; ∆)l (25)

By inserting Equation (25) in Equation (20), we obtain the following expression

µ′r =
1

ηi,j,l

(
Ψr,−l − 2αΨr,1−l − 2α2Ψr,2−l

)
(26)

where ηi,j,l =
∞
∑

i=0

i
∑

j=0

2j
∑

l=0

αl(α)2 i−2j

i! (−1)j+l
(

i
j

)(
2j
l

)
, from Equation (26), we have

µ′r =
1

ηi,j,l
(Ψr,−l − 2α(Ψr,1−l + αΨr,2−l)) (27)

where Ψr,−l =
∞∫
−∞

yrk(y; α, ∆)K(y; α, ∆)−ldy, Ψr,1−l =
∞∫
−∞

yrk(y; α, ∆)K(y; α, ∆)1−ldy, and

Ψr,2−l =
∞∫
−∞

yrk(y; α, ∆)K(y; α, ∆)2−ldy.

Furthermore, the MGF (moment generating function), say My(t) of the NMEPA family
of distribution, is derived as follows

My(t) =
∞∫
−∞

etyk(y; α, ∆)dy

My(t) =
∞

∑
r=0

tr

r!

∞∫
0

yrk(y; α, ∆)dy

My(t) =
∞

∑
r=0

tr

r!
µ′r (28)

By using Equation (27) in Equation (28), we can easily obtain the MGF of the NMEPA
family of distributions.
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3.3. Order Statistics

In distribution theory, order statistics has great significance and it makes its appearance
in reliability analysis, problems of estimation theory, and life testing in different ways. It
can characterize the lifetimes of elements or components of a reliability system.

Let y1, y2, . . . , yk be a random sample of q observations chosen from the NMEPA
family of distributions with CDF and PDF given by (7) and (8), respectively. Then, the
density function of wr:q is given by

Wr:q(y) =
1

B(r, q− r + 1)
k(y; α, ∆)[K(y; α, ∆)]r−1[1− K(y; α, ∆)]q−r. (29)

We express the 1st order statistic as y1:q = min
(

y1, y2, . . . , yq

)
and the qth order

statistic as yq:q = max
(

y1, y2, . . . , yq

)
. Since 0 < K(y; α, ∆) < 1 for y > 0. We utilize the

binomial expansion of [1− K(y; α, ∆)]q−r as follows:

[1− K(y; α, ∆)]q−r =
q−r

∑
i=0

(−1)i
[
[1− K(y; α, ∆)]q−r

]i
. (30)

Using Equation (30) in Equation (29), we obtain

wr:q(y) =
k(y; α, ∆)

B(r, q− r + 1)

k−r

∑
i=0

(−1)i[K(y; α, ∆)]r+i−1. (31)

Using Equations (7) and (8), in Equation (31), we obtain the DF (density function)
of wr:q.

4. Estimation of Parameters and Monte Carlo Simulation

This section provides a detailed description of the maximum likelihood estimation
implemented for estimating unknown parameters of the proposed NMEPA family of dis-
tribution. Furthermore, we conduct a comprehensive Monte Carlo simulation study for
assessing the performance of these estimators. The same section also provides an assess-
ment of the efficacy of the proposed method in modeling reliability engineering problems.

4.1. Maximum Likelihood Estimation

Several methods for estimating the parameters have been introduced in the literature.
MLE is one of the most frequently used methods. This method furnishes estimators with
several important properties and can be used in the construction of confidence intervals
as well as other tests for checking statistical significance. For further details about MLEs,
see [24]. This sub-section provides a discussion on the MLEs approach for estimating the
parameters of the NMEPA family of distributions.

Suppose y1, y2, . . . , yn are the observed values from the PDF given in Equation (8).
Then, the LLF (Log-likelihood function) corresponding to Equation (8) is

L(y; α, ∆) =
∞
∑

i=1
log g(yi; ∆)− n log(2)− n log(α)−

∞
∑

i=1
log{1− αG(yi; ∆)}

−
(
(α)2 − (1− αG(yi; ∆))2

) (32)

Generally, the LLF (log-likelihood function) can be maximized either directly by using
the R package (Adequacy Model), Ox program (subroutine Max BFGS), or SAS (PROC
NLMIXED) (for further details, see Doornik, [25]), or by solving the nonlinear log-likelihood
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equations. Here, we obtain the partial derivative of Equation (32), on behalf of parameters
and it is given as follows:

∂L(y;α,∆)
∂α =

∞
∑

i=1
G(yi; α, ∆)/(1− αG(yi; ∆)) + 2(α)

− n
α + 2(1− αG(yi; ∆))2G(yi; ∆),

(33)

and
∂L(y;α,∆)

∂∆ =
∞
∑

i=1

∂g(yi ;∆)/∂∆
g(yi ;∆)

+ α
∞
∑

i=1

∂G(yi ;∆)/∂∆
(1−αG(yi ;∆))

+2α(1− αG(yi; ∆))∂G(yi; ∆)/∂∆.
(34)

Equating Equation (33) ∂L(y;α,∆)
∂α and Equation (34) ∂L(y;α,∆)

∂∆ to zero, and solving simul-

taneously, yield the MLEs of
(

ˆ
α,

ˆ
∆
)

.

4.2. Simulation Study

In this sub-section, a simulation is performed to study the behavior of
ˆ
αMLE, and

ˆ
∆MLE of the NMEPA-Wei distribution. The random numbers are successfully generated
from PDF k(y; α, ∆) by using the inverse CDF approach. We are assumed to have three sets
(Set 1, Set 2, and Set 3) of parameter combination values, given by (i) Set 1: α = 1.4, γ = 1.0,
θ = 1.6, (ii) Set 2: α = 2.4, γ = 1.7, θ = 1.5, and (iii) Set 3: α = 0.5, γ = 1.2, θ = 1.6.

To evaluate the performance of the
ˆ
αMLE, and

ˆ
∆MLE, two statistical measures (i) MSE

(mean square error), and (ii) Bias are considered. The formula of mean square error (MSEs)
and bias (Bias) of the parameters are, respectively, computed as

MES(
ˆ
α) =

1000

∑
i=1

(
ˆ
αi − α

)2

and

Bias(
ˆ
α) =

1000

∑
i=1

(
ˆ
αi − α

)
The above process is also repeated for ∆.
Simulation results on estimated parameters in terms of MSEs and Bias values are

reported in Table 1, while graphically the results are displayed in Figures 5–10.
From Table 1, we can see that as the sample size increase:

• The estimated values of
ˆ
αMLE,

ˆ
γMLE, and

ˆ
θMLE tend to be stable.

• The MSE of
ˆ
αMLE,

ˆ
γMLE, and

ˆ
θMLE decreases.

• The biases of
ˆ
αMLE,

ˆ
γMLE, and

ˆ
θMLE become smaller.

In conclusion, it is apparent that the MLEs perform reasonably well in estimating the
model parameters of the NMEPA family of distributions.
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Table 1. Simulation results for NMEPA-Wei distribution of MLEs, MSEs, and Biases for Set 1, Set 2,
and Set 3.

Set1:α = 1.4, γ = 1.0, θ = 1.6 Set2:α = 2.4, γ = 1.7, θ = 1.5 Set3:α = 0.5, γ = 1.2, θ = 1.6

n par MLE MSE Bias MLE MSE Bias MLE MSE Bias

25

ˆ
α 1.41090 0.07820 0.01090 2.67742 0.66393 0.02774 0.56813 0.20871 0.06813

ˆ
γ 1.05926 0.11310 0.05926 1.85403 0.42708 0.01540 1.62178 0.54727 0.42178

ˆ
θ 1.05926 0.09874 0.03332 1.55344 0.25297 0.05344 1.70385 0.11961 0.10385

50

ˆ
α 1.38411 0.05196 −0.0158 2.49650 0.18209 0.09650 0.53607 0.15119 0.03607

ˆ
γ 1.01761 0.04847 0.01761 1.76572 0.15554 0.06572 1.47307 0.21074 0.27307

ˆ
θ 1.81810 0.04014 0.01809 1.52061 0.08498 0.02061 1.66159 0.05930 0.06159

100

ˆ
α 1.39997 0.01375 −0.00030 2.44145 0.04850 0.04145 0.49917 0.11870 −0.00082

ˆ
γ 1.00362 0.02095 0.00362 1.73307 0.05624 0.033072 1.41762 0.13045 0.21762

ˆ
θ 1.81320 0.01902 0.01320 1.50543 0.03244 0.00543 1.61329 0.03533 0.01329

200

ˆ
α 1.39769 0.00649 −0.00230 2.40806 0.01740 0.00806 0.51140 0.08201 0.01140

ˆ
γ 1.00124 0.01041 0.00124 1.70214 0.02252 0.00214 1.33849 0.06677 0.13849

ˆ
θ 1.80210 0.00943 0.00210 1.51109 0.01574 0.01109 1.61436 0.02334 0.01436

400

ˆ
α 1.40242 0.00319 0.00242 2.40795 0.00808 0.00795 0.48380 0.05800 −0.01619

ˆ
γ 1.00237 0.00466 0.00237 1.70588 0.01087 0.00588 1.30253 0.04315 0.10253

ˆ
θ 1.80658 0.00462 0.00658 1.50328 0.00649 0.00328 1.60199 0.01340 0.00199

600

ˆ
α 1.39970 0.00210 −0.00029 2.40198 0.00497 0.00198 0.50037 0.04459 0.00037

ˆ
γ 0.99905 0.00301 −0.00094 1.69973 0.00691 −0.00026 1.27540 0.02636 0.07539

ˆ
θ 1.80276 0.00308 0.00276 1.50626 0.00442 0.00626 1.60542 0.01088 0.00542

800

ˆ
α 1.39955 0.00163 −0.00044 2.40535 0.00384 0.00535 0.49072 0.03587 −0.00927

ˆ
γ 0.99908 0.00237 −0.00091 1.70374 0.00538 0.00374 1.26489 0.02068 0.06488

ˆ
θ 1.80351 0.00215 0.00351 1.50208 0.00326 0.00208 1.60166 0.00803 0.00166

900

ˆ
α 1.39848 0.00139 −0.01517 2.39979 0.00333 −0.00021 0.48945 0.03130 −0.01054

ˆ
γ 1.00154 0.00197 0.01540 1.69932 0.00441 −0.00067 1.25829 0.01666 0.05829

ˆ
θ 1.80190 0.00182 0.00190 1.50212 0.00290 0.00212 1.60246 0.00710 0.00246

1000

ˆ
α 1.39932 0.00113 −0.00067 2.40275 0.00276 0.002753 0.49375 0.02960 −0.00624

ˆ
γ 0.99918 0.00191 −0.00081 1.70254 0.00369 0.00253 1.25068 0.01547 0.05068

ˆ
θ 1.80132 0.00162 0.00132 1.50039 0.00239 0.00039 1.60025 0.00653 0.00025
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Figure 5. Plots of (a) estimated parameters vs. n, and (b) MSEs vs. n for Set 1: α = 1.4, γ = 1.0,
θ = 1.6.

Figure 6. Plots of (a) absolute biases vs. n, and (b) biases vs. for Set 1: α = 1.4, γ = 1.0, θ = 1.6.
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Figure 7. Plots of (a) estimated parameters vs. n, and (b) MSEs vs. n for Set 2: α = 2.4, γ = 1.7,
θ = 1.5.

Figure 8. Plots of (a) absolute biases vs. n, and (b) biases vs. for Set 2: α = 2.4, γ = 1.0, θ = 1.6.
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Figure 9. Plots of (a) estimated parameters vs. n, and (b) MSEs vs. n for Set 3: α = 0.5, γ = 1.2,
θ = 1.6.

Figure 10. Plots of (a) absolute biases vs. n, and (b) bias vs. n for Set 3: α = 0.5, γ = 1.2, θ = 1.6.

5. Applications of NMEPA-Wei to Engineering Data

In order to demonstrate the usefulness of the NMEPA-Wei distribution for modeling,
in this section, we analyzed two real data sets. The first data set is taken from Merovci
et al. [26] and also used by Dey et al. [21], consisting of 63 observations of the strength of
1.5 cm glass fibers that were originally obtained by workers in the UK (National Physical
Laboratory). While the second data set initially presented by Barlow et al. [27], was later on
studied by Andrews and Herzberg [28], and then, later on, was also used by Dey et al. [21],
represents the life of a fatigue fracture of Kevlar 373/epoxy that is subject to constant
pressure at the 90 stress level until all had failed. For both data sets, see Table 2.
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Table 2. The engineering data sets.

Data set 1

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36,
1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59,
1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69,
1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24

Data set 2

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748,
0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836,
1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595,
1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503,
1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045,
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960

The comparison of the proposed distribution is made with five well-known lifetime
probability distributions, such as APT-Wei (Alpha Power Transformed Wei) proposed by
Dey et al. [21], Ex-Wei (Exponentiated Wei) of Medholkar and Srivastava [3], classical
Weibull (Wei) [14], Sarhan and Zaindin Modified Wei (Mod-Wei) [15], and Kumaraswamy
Wei (Ku-Wei) distribution of Cordeiro et al. [16]. The CDFs of the competitor distributions
are as follows:

• The APT-Wei distribution

K(y; α, γ, θ) =
α(1−e−γyθ

) − 1
α− 1

, y ≥ 0, α, θ, γ > 0.

• The Ex-Wei distribution

K(y; α, γ, θ) =
(

1− e−γyθ
)δ

, y ≥ 0, δ, θ, γ > 0.

• The classical Wei distribution

K(y; γ, θ) =
(

1− e−γyθ
)

y ≥ 0, γ, θ > 0.

• Sarhan and Zaindin Mod-Wei distribution

K(y; γ, θ, δ) =
(

1− e−γyθ−δy
)

y ≥ 0, γ, δ, θ > 0.

• The Ku-Wei distribution

K(y; a, b, γ, θ) = 1−
(

1−
(

1− e−γyθ
)a)b

, y ≥ 0, a, b, γ, θ > 0.

Next, we consider different goodness of fit measures to examine which competitor
is the best fit for the considered data sets. These goodness of fit measures include: CM
(Cramer–von Misses) test statistic, AD (Anderson–Darling) test statistic, KS (Kolmogorov–
Smirnov) test statistic, AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion), corrected Akaike information criterion (CAIC), and HQIC (Hannan–Quinn
information criterion) as well as p-values. The mathematical formulae of these measures
are given by:

• The CM test statistic calculated as

CM =
n

∑
i=1

[
2i− 1

2n
− G(yi; ∆)

]2

+
1

12n
.

• The AD test statistics computed as
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AD = −n− 1
n

n

∑
i=1

(2i− 1)× [log G(yi; ∆) + log(1− G(yi−n+1; ∆))].

• The KS test statistic derived as

supx[Gn(y; ∆)− G(y; ∆)].

• The AIC test statistics obtained as

AIC = 2p− 2L.

• The BIC test statistics derived as

BIC = p log(n)− 2L.

• The CAIC test statistics calculated as

CAIC =
2np

n− p− 1
− 2L.

• The HQIC test statistics computed as

HQIC = 2p log(log(n))− 2L.

where L is the maximized likelihood function evaluated at MLEs, n is the sample size, and p
is the number of parameters in the model. All of the above computations are carried out by
the statistical R software using the (AdquacyModel) package with the “BFGS” algorithm.
In general, a model having smaller values of these analytical measures and a higher p-value
indicates the best fit among the other competitive models to the considered data sets.

5.1. Data 1

Corresponding glass fiber data set (Data 1), some basic measures of statistics for the
first data set are the following: Minimum = 0.550, 1st Quartile = 1.375, Median = 1.590,
Mean = 1.507, 3rd Quartile = 1.685, Maximum = 2.240, variance = 0.1050575, Range = 1.69,
Skewness =−0.8999263, and Kurtosis = 3.923761. Corresponding to Data 1, some basic plots
including histogram, Kernel density plot, TTT plot, Violin plot, and box plot for the first
data set are presented in Figure 11. From Figure 11, it is clear that the data are negatively
skewed and suffer from an increasing hazard rate. Thus, the proposed NMEPA-Wei model
can be used to model HF of the first data set.

Furthermore, the values of
ˆ
γMLE,

ˆ
θMLE,

ˆ
αMLE,

ˆ
aMLE,

ˆ
bMLE, and

ˆ
δMLE of the

NMEPA-Wei and other competing models are reported in Table 3. While the numerical val-
ues of analytical and discrimination measures (taken to select the nice model) are presented
in Tables 4 and 5. The theoretical and empirical PDFs and CDFs plots of the NMEPA-Wei
and other competitor models are displayed in Figure 12. The probability–probability plots
of the proposed and competing models are displayed in Figure 13. Similarly, for the same
data, the quantile–quantile (Q-Q) plots for the proposed and all the other competing models
are presented in Figure 14.

Based on the numerical results, obtained in Tables 4 and 5, we can see that the NMEPA-
Wei model has the lowest values of the analytical and discrimination measures. The
values of the analytical measures for the NMEPA-Wei distribution are: AIC = 27.1435,
BIC = 33.5729, CAIC = 27.5503, HQIC = 29.6722, CM = 0.0497, AD = 0.3355, KS = 0.1221,
with p-value = 0.8685. In terms of AIC, BIC, CAIC, HQIC, and p-value, the second-best
model is the APT-Wei distribution. The values of these measures for the APT-Wei distribu-
tion are given by 32.9483, 39.3772, 33.3553, 35.4773, and 0.2993. Whereas the second-best
model in terms of CM, AD, and KS is the Mod-Wei distribution. For the Mod-Wei distribu-
tion, the CM, AD, and KS values are given by 0.1385, 0.7985, and 0.1332, respectively.

In support of numerical illustrations in Tables 4 and 5 and the above discussion, we
observed that the NMEPA-Wei distribution is the optimum choice for glass fiber data
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(Data 1). According to Figures 12–14, it is observed that the NMEPA-Wei distribution fits
the glass fiber data quite well.

Figure 11. The (a) Histogram, (b) Kernel density plot, (c) TTT plot, (d) Violin plot, and (e) box plot
for Data 1.

Table 3. The values of
ˆ
γMLE,

ˆ
θMLE,

ˆ
αMLE,

ˆ
aMLE,

ˆ
bMLE, and

ˆ
δMLE of the competitive models

using glass fiber data set (Data 1).

Models ^
γMLE

^
θMLE

^
αMLE

^
aMLE

^
bMLE

^
δMLE

NMEPA-Wei 0.25201 4.47591 2.03312 - - -

APT-Wei 0.19403 4.48236 10.83013 - - -

Ex-Wei 0.02013 7.21201 - - - 0.68101

Wei 0.05980 5.77622 - - - -

Mod-Wei 6.37653 0.03092 - - - 0.04083

Ku-Wei 0.11102 7.10514 - 0.50902 0.22313 -

Table 4. The goodness of fit CM, AD, and KS measures, and p-value of the competitive models for
glass fiber data set (Data 1).

Models CM AD KS p-Values

NMEPA-Wei 0.0497 0.3355 0.1221 0.8685

APT-Wei 0.1682 0.9273 0.1472 0.2993

Ex-Wei 0.2013 1.1162 0.1524 0.1312

Wei 0.2373 1.3045 0.1332 0.1069

Mod-Wei 0.1385 0.7985 0.1332 0.2142

Ku-Wei 0.1493 0.8471 0.1221 0.2091
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Table 5. The discrimination AIC, BIC, CAIC, and HQIC measures of competitive models using glass
fiber data set (Data 1).

Models AIC BIC CAIC HQIC

NMEPA-Wei 27.1435 33.5729 27.5503 29.6722

APT-Wei 32.9483 39.3772 33.3553 35.4773

Ex-Wei 35.3521 41.7821 35.7592 37.8812

Wei 35.7893 38.7000 34.6137 36.0995

Mod-Wei 35.7892 42.2187 36.1961 38.3180

Ku-Wei 35.5131 44.0852 36.2023 38.8832

Figure 12. Plots of (a) estimated PDFs, and (b) estimated CDFs of competitive models for Data 1.

Figure 13. Probability–probability (PP) plots of (a) NMEPA-Wei, (b) APT-Wei, (c) Ex-Wei, (d) Wei,
(e) Mod-Wei, and (f) Ku-Wei for Data 1.
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Figure 14. Q-Q (quantile–quantile) plots of (a) NMEPA-Wei, (b) APT-Wei, (c) Ex-Wei, (d) Wei,
(e) Mod-Wei, and (f) Ku-Wei distributions for Data 1.

5.2. Data 2

Corresponding fatigue fracture of Kelvar 373/epoxy data set (Data 2), some basic
measures of statistics for the second data set are the following: minimum = 0.0251, 1st
Quartile = 0.9048, median = 1.7362, mean = 1.9592, 3rd Quartile = 2.2959, maximum = 9.0960,
variance = 2.477415, range = 9.0709, Skewness = 1.979558, and Kurtosis = 8.160792. Corre-
sponding to Data 2, some basic plots including histogram, Kernel density plot, TTT plot,
Violin plot, and box plot for the second fatigue fracture data set are presented in Figure 15.
From Figure 15, it is clear that the data are positively skewed and suffer from an increasing
hazard rate. Thus, the proposed NMEPA-Wei model can be used to model HF of the second
data set.

Furthermore, the values of
ˆ
γMLE,

ˆ
θMLE,

ˆ
αMLE,

ˆ
aMLE,

ˆ
bMLE, and

ˆ
δMLE of the

NMEPA-Wei and other competing models are reported in Table 6. Whereas the numerical
values of analytical and discrimination measures (taken to select the nice model) are
presented in Tables 7 and 8. The theoretical and empirical PDFs and CDFs plots of the
NMEPA-Wei and other competitor models are displayed in Figure 16. The P-P (probability–
probability) plots of the proposed and competing models are displayed in Figure 17.
Similarly, for the same data, the Q-Q (quantile–quantile) plots for the proposed and all the
other competing models are sketched in Figure 18.

Again, if we look at the numerical results obtained in Tables 7 and 8, it is obvious
that the NMEPA-Wei model has the lowest values of the analytical measures and the
highest p-value. The values of the analytical measures for the NMEPA-Wei distribution
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are: AIC = 247.9672, BIC = 254.9594, CAIC = 248.3005, HQIC = 250.7616, CM = 0.0563,
AD = 0.3335, KS = 0.0798, with p-value = 0.6872. In terms of AIC, CAIC, CM, AD, KS,
and p-value, the second-best model is also the APT-Wei distribution. The values of these
measures for the APT-Wei distribution are given by 248.7293, 249.0623, 0.0901, 0.5378,
0.0821, and p-value = 0.6533. Whereas the second-best model in terms of BIC and HQIC is
the classical Wei distribution. For the Wei distribution, the BIC, and HQIC values are given
by 253.7108, and 250.9123, respectively.

From the numerical illustrations given in Tables 7 and 8 and the above discussion, we
can conclude that the NMEPA-Wei distribution is a good choice for analyzing or examining
the fatigue fracture of Kelvar 373/epoxy data (Data 2). According to Figures 16–18, it is also
observed that the NMEPA-Wei distribution fits the fatigue fracture of Kelvar 373/epoxy
data quite well.

Figure 15. The (a) Histogram, (b) Kernel density plot, (c) TTT plot, (d) Violin plot, and (e) box plot
for Data 2.

Table 6. The values of
ˆ
γMLE,

ˆ
θMLE,

ˆ
αMLE,

ˆ
aMLE,

ˆ
bMLE, and

ˆ
δMLE of the competitive models

using fatigue fracture data set (Data 2).

Models ^
γMLE

^
θMLE

^
αMLE

^
aMLE

^
bMLE

^
δMLE

NMEPA-Wei 1.85724 0.66292 2.59681 - - -

APT-Wei 0.09442 1.59063 0.02183 - - -

Ex-Wei 0.57967 1.10123 - - - 1.4426 4

Wei 0.36633 1.32560 - - - -

Mod-Wei 0.43131 1.28260 - - - −0.06313

Ku-Wei 1.78175 3.75453 - 0.30474 0.88932 -
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Table 7. The values of CM, AD, and KS measures and p-value of the competitive models for fatigue
fracture data set (Data 2).

Models CM AD KS p-Values

NMEPA-Wei 0.0563 0.3335 0.0798 0.6872

APT-Wei 0.0901 0.5378 0.0821 0.6533

Ex-Wei 0.1167 0.6912 0.0987 0.4217

Wei 0.1305 0.7672 0.1099 0.2953

Mod-Wei 0.1304 0.7676 0.1083 0.3112

Ku-Wei 0.1137 0.6737 0.0972 0.4403

Table 8. The discrimination measures values of AIC, BIC, CAIC, and HQIC measures of competitive
models using fatigue fracture data set (Data set 2).

Models AIC BIC CAIC HQIC

NMEPA-Wei 247.9672 254.9594 248.3005 250.7616

APT-Wei 248.7293 255.7212 249.0623 251.5234

Ex-Wei 250.3272 257.3194 250.6606 253.1216

Wei 249.0494 253.7108 249.2138 250.9123

Mod-Wei 251.0238 258.0160 251.3571 253.8182

Ku-Wei 252.1412 261.4642 252.7046 255.8671

Figure 16. Plots of (a) estimated PDFs, and (b) estimated CDFs of competitive models for Data 2.
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Figure 17. Probability–probability (PP) plots of (a) NMEPA-Wei, (b) APT-Wei, (c) Ex-Wei, (d) Wei,
(e) Mod-Wei, and (f) Ku-Wei for Data 2.

Figure 18. Q-Q (quantile–quantile) plots of (a) NMEPA-Wei, (b) APT-Wei, (c) Ex-Wei, (d) Wei,
(e) Mod-Wei, and (f) Ku-Wei distributions for Data 2.
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6. Conclusions

In the present work, we have presented a new family of distributions called the New
Modified Exponent Power Alpha family (NMEPA). A three-parameter special sub-case
of the proposed class by employing the Weibull distribution as a baseline distribution is
studied in detail. The special sub-case is named as NMEPA-Wei (new modified exponent
power Alpha Wei) distribution. The PDF (probability density function) of the derived
model is positively skewed, negatively skewed, symmetrical, and also bimodal depending
upon parameter values. Moreover, the HF (hazard function) can have non-monotonically
increasing, decreasing, uni-model, and bathtub shapes. General expressions, for different
statistical properties of the proposed family, have been derived including quantile function,
moments, moments generating function, and order statistics. The Maximum Likelihood
method has been used for estimating the unknown parameters, and in addition, a Monte
Carlo simulation study is carried out to assess the performance of the proposed model
estimators. Based on analytical measures and graphical illustration, it is observed that the
proposed NMEPA-Wei distribution is the best competitor for modeling the reliability of
engineering data sets. We hope that this novel improvement in the field of distributions
theory will provide more attractive applications in the reliability of engineering and other
related fields.
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