Coupling Coordination Analysis of Regional IEE System: A Data-Driven Multimodel Decision Approach
Abstract
:1. Introduction
2. Method
2.1. Method Flow
2.2. Data Collection
2.3. Data Processing
2.3.1. Range Method
2.3.2. Entropy Weight Method
2.3.3. Weighted Summation Method
2.4. Data Modeling
2.4.1. Coupling Degree Model
2.4.2. Coordination Degree Model
2.4.3. Obstacle Degree Model
3. Case Study
3.1. Study Area
3.2. Results Analysis
3.2.1. Data Collection Results
3.2.2. Indicator Weight Analysis
3.2.3. Synthetic Developmental Level Analysis
3.2.4. Coupling Coordination Development Level Analysis
3.2.5. Obstacle Degree Analysis
4. Discussion and Managerial Implications
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acheampong, A.O.; Boateng, E.; Amponsah, M.; Dzator, J. Revisiting the economic growth–energy consumption nexus: Does globalization matter? Energy Econ. 2021, 102, 105472. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Measuring the green economic growth in China: Influencing factors and policy perspectives. Energy 2022, 241, 122518. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Newell, P.; Carley, S.; Franzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Holroyd, C. Technological innovation and building a ‘super smart’ society: Japan’s vision of society 5.0. J. Asian Public Policy 2022, 15, 18–31. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, H.; Liang, D.; Tian, P.; Xia, J.; Wang, H.; Lei, X. Ecological sustainability and its driving factor of urban agglomerations in the Yangtze River Economic Belt based on three-dimensional ecological footprint analysis. J. Clean. Prod. 2022, 330, 129802. [Google Scholar] [CrossRef]
- Amirgaliev, N.A.; Askarova, M.; Opp, C.; Medeu, A.; Kulbekova, R.; Medeu, A.R. Water quality problems analysis and assessment of the ecological security level of the Transboundary Ural-Caspian Basin of the Republic of Kazakhstan. Appl. Sci 2022, 12, 2059. [Google Scholar] [CrossRef]
- Boons, F.; Wagner, M. Assessing the relationship between economic and ecological performance: Distinguishing system levels and the role of innovation. Ecol. Econ. 2009, 68, 1908–1914. [Google Scholar] [CrossRef]
- Liao, B.; Li, L. Spatial division of labor, specialization of green technology innovation process and urban coordinated green development: Evidence from China. Sustain. Cities Soc. 2022, 80, 103778. [Google Scholar] [CrossRef]
- Gertler, M.S.; Wolfe, D.A.; Garkut, D. No place like home? The embeddedness of innovation in a regional economy. Rev. Int. Political Econ. 2000, 7, 688–718. [Google Scholar] [CrossRef]
- Gai, M.; Wang, X.; Qi, C. Spatiotemporal evolution and influencing factors of ecological civilization construction in China. Complexity 2020, 2020, 8829144. [Google Scholar] [CrossRef]
- Potts, T. The natural advantage of regions: Linking sustainability, innovation, and regional development in Australia. J. Clean. Prod. 2010, 18, 713–725. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Lu, F.; Fan, F. The impact of collaborative innovation on ecological efficiency–empirical research based on China’s regions. Technol. Anal. Strateg. Manag. 2021, 33, 242–256. [Google Scholar] [CrossRef]
- Yasmeen, H.; Tan, Q.; Zameer, H.; Tan, J.; Nawaz, K. Exploring the impact of technological innovation, environmental regulations and urbanization on ecological efficiency of China in the context of COP21. J. Environ. Manag. 2020, 274, 111210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, X.; Guo, Q. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 2018, 89, 348–355. [Google Scholar] [CrossRef]
- Perroux, F. Economic space: Theory and applications. Q. J. Econ. 1950, 64, 89–104. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Sener, S.; Saridogan, E. The effects of science-technology-innovation on competitiveness and economic growth. Procedia Soc. Behav. Sci. 2011, 24, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Droste, N.; Hansjürgens, B.; Kuikman, P.; Otter, N.; Antikainen, R.; Leskinen, P.; Pitkänen, K.; Saikku, L.; Loiseau, E.; Thomsen, M. Steering innovations towards a green economy: Understanding government intervention. J. Clean. Prod. 2016, 135, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, D.; Mazzanti, M. Towards a green economy through innovations: The role of trade union involvement. Ecol. Econ. 2017, 131, 286–299. [Google Scholar] [CrossRef]
- Mehmet, A. Technological progress, innovation and economic growth; the case of Turkey. Procedia Soc. Behav. Sci. 2015, 195, 776–782. [Google Scholar]
- Liang, L.; Wang, Z.B.; Luo, D.; Wei, Y.; Sun, J. Synergy effects and it’s influencing factors of China’s high technological innovation and regional economy. PLoS ONE 2020, 15, e0231335. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, B. Multiplier effect of science and technology innovation in regional economic development: Based on panel data of coastal cities. J. Coast. Res. 2019, 94, 883. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Multiscale assessment of the coupling coordination between innovation and economic development in resource-based cities: A case study of Northeast China. J. Clean. Prod. 2021, 318, 128597. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, P.; Zhao, X. Spatial analysis, coupling coordination, and efficiency evaluation of green innovation: A case study of the Yangtze River Economic Belt. PLoS ONE 2020, 15, e0243459. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, R.P.; Arvin, M.B.; Nair, M.; Bennett, S.E. The dynamics among entrepreneurship, innovation, and economic growth in the Eurozone countries. J. Policy Model. 2020, 42, 1106–1122. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Jianguo, W. Nexus between financial innovation and economic growth in South Asia: Evidence from ARDL and nonlinear ARDL approaches. Financ. Innov. 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Pala, A. Innovation and economic growth in developing countries: Empirical implication of swamy’s random coefficient model (RCM). Procedia Comput. Sci. 2019, 158, 1122–1130. [Google Scholar] [CrossRef]
- Norgaard, R.B. Economic indicators of resource scarcity: A critical essay. J. Environ. Econ. Manag. 1990, 19, 19–25. [Google Scholar] [CrossRef]
- Boulding, K.E. The Economics of the Coming Spaceship Earth; Routledge: New York, NY, USA, 1966; pp. 1–17. [Google Scholar]
- Liu, C.; Cai, W.; Zhai, M.; Zhu, G.; Zhang, C.; Jiang, Z. Decoupling of wastewater eco-environmental damage and China’s economic development. Sci. Total Environ. 2021, 789, 147980. [Google Scholar] [CrossRef]
- Oliveira, C.; Antunes, C.H. A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal. Energy 2011, 36, 2856–2866. [Google Scholar] [CrossRef]
- Peng, B.; Sheng, X.; Wei, G. Does environmental protection promote economic development? From the perspective of coupling coordination between environmental protection and economic development. Environ. Sci. Pollut. Res. 2020, 27, 39135–39148. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, S.Z.; Lu, Y.T.; Zhao, Y.H. Study on the effect of the environmental protection industry and investment for the national economy: An input-output perspective. J. Clean. Prod. 2019, 227, 1093–1106. [Google Scholar] [CrossRef]
- Fan, Y.P.; Fang, C.L.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.L.; Chen, Y.; Wang, Y.J.; Lin, M.S. Study on the coupling and coordination degree of high-quality economic development and ecological environment in Beijing-Tianjin-Hebei region. Appl. Ecol. Environ. Res. 2019, 17, 11069–11083. [Google Scholar] [CrossRef]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Adami, L.; Schiavon, M. From circular economy to circular ecology: A review on the solution of environmental problems through circular waste management approaches. Sustainability 2021, 13, 925. [Google Scholar] [CrossRef]
- Liu, W.W.; Sun, R.; Li, Q. Measurement of coupling degree between regional knowledge innovation and technological innovation: An empirical analysis based on provincial panel data in China during 2010-2014. J. Interdiscip. Math. 2017, 20, 125–139. [Google Scholar] [CrossRef]
- Stern, D.I. Progress on the environmental Kuznets curve? Environ. Dev. Econ. 1998, 3, 173–196. [Google Scholar] [CrossRef]
- Cole, M.A.; Rayner, A.J.; Bates, J.M. The environmental Kuznets curve: An empirical analysis. Environ. Dev. Econ. 1997, 2, 401–416. [Google Scholar] [CrossRef]
- Solakoglu, E.G. The effect of property rights on the relationship between economic growth and pollution for transition economies. East. Europ. Econ. 2007, 45, 77–94. [Google Scholar] [CrossRef]
- Bakhsh, K.; Akmal, T.; Ahmad, T.; Abbas, Q. Investigating the nexus among sulfur dioxide emission, energy consumption, and economic growth: Empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 7214–7224. [Google Scholar] [CrossRef] [PubMed]
- Shikwambana, L.; Mhangara, P.; Kganyago, M. Assessing the relationship between economic growth and emissions levels in South Africa between 1994 and 2019. Sustainability 2021, 13, 2645. [Google Scholar] [CrossRef]
- Jiang, M.; Kim, E.; Woo, Y. The relationship between economic growth and air pollution—A regional comparison between China and South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2761. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Bing, Y. Strategic leadership, environmental optimisation, and regional innovation performance with the regional innovation system coupling synergy degree: Evidence from China. Technol. Anal. Strateg. Manag. 2022, 1–14. [Google Scholar] [CrossRef]
- Ke, H.; Dai, S.; Yu, H. Spatial effect of innovation efficiency on ecological footprint: City-level empirical evidence from China. Environ. Technol. Innov. 2021, I, 101536. [Google Scholar] [CrossRef]
- Meirun, T.; Mihardjo, L.W.W.; Haseeb, M.; Khan, S.A.R.; Jermsittiparsert, K. The dynamics effect of green technology innovation on economic growth and CO2 emission in Singapore: New evidence from bootstrap ARDL approach. Environ. Sci. Pollut. Res. 2021, 28, 4184–4194. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; van Melis, J. On the need for innovation in ecological restoration1. Ann. Mo. Bot. Gard. 2017, 102, 227–236. [Google Scholar] [CrossRef]
- Murphy, J.; Gouldson, A. Environmental policy and industrial innovation: Integrating environment and economy through ecological modernisation. Ecol. Mod. Read. 2020, 31, 275–294. [Google Scholar]
- Aribi, I.; Hassen, L.B. Phases of economic development in an endogenous growth model with innovation and education. Oradea J. Bus. Econ. 2021, 6, 78–87. [Google Scholar] [CrossRef]
- Wu, N.; Liu, Z.K. Higher education development, technological innovation and industrial structure upgrade. Technol. Forecast. Soc. Chang. 2021, 162, 120400. [Google Scholar] [CrossRef]
- Jogova, M.; Song, J.E.S.; Campbell, A.C.; Warbuton, D.; Warshawski, T.; Chanoine, J.-P. Process evaluation of the Living Green, Healthy and Thrifty (LiGHT) web-based child obesity management program: Combining health promotion with ecology and economy. Can. J. Diabetes 2013, 37, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H.; Wood, B.M. Effects of evolution, ecology, and economy on human diet: Insights from hunter-gatherers and other small-scale societies. Annu. Rev. Nutr. 2021, 41, 363–385. [Google Scholar] [CrossRef]
- Sovacool, B.K. Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Res. Soc. Sci. 2021, 73, 101916. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J. Exploring the coupling and forecasting of financial development, technological innovation, and economic growth. Technol. Forecast Soc. Chang. 2021, 163, 120466. [Google Scholar]
- Zhang, F.; Sarker, M.N.I.; Lv, Y. Coupling coordination of the regional economy, tourism industry, and the ecological environment: Evidence from western China. Sustainability 2022, 14, 1654. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Yan, Y.; Liu, C. A perspective of ecological civilization: Research on the spatial coupling and coordination of the energy-economy-environment system in the Yangtze River Economic Belt. Environ. Monit. Assess. 2022, 194, 403. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal differentiation of the coupling coordinated development of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar]
- Yan, X.; Chen, M.; Chen, M.Y. Coupling and coordination development of Australian energy, economy, and ecological environment systems from 2007 to 2016. Sustainability 2019, 11, 6568. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zhu, Y.; Qiu, F.; Wang, L. Coupling relationship among technological innovation, industrial transformation and environmental efficiency: A case study of the Huaihai Economic Zone, China. Chin. Geogr. Sci. 2022, 32, 686–706. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Y. Spatio-Temporal differentiation characteristics and determinants of coupling coordination degree in technological innovation-industrial upgrading-ecological environment system: A case study of Jiangsu Province, China. Pol. J. Environ. Stud. 2021, 30, 3341–3355. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Tian, G. Research on the coupling of technological innovation, talent accumulation and ecological environment. Ekoloji 2018, 27, 1735–1742. [Google Scholar]
- Yin, K.; Zhang, R.; Jin, X.; Yu, I. Research and optimization of the coupling and coordination of environmental regulation, technological innovation, and green development. Sustainability 2022, 14, 501. [Google Scholar] [CrossRef]
- Wu, D. Research on regional technology—Economy—Ecology coordination evaluation system in China. In 1st International Symposium on Innovative Management and Economics (ISIME 2021); Atlantis Press: Paris, France, 2021; pp. 108–120. [Google Scholar]
- Liu, Z.; Li, K.W.; Tang, J.; Gong, B.; Huang, J. Optimal operations of a closed-loop supply chain under a dual regulation. Int. J. Prod. Econ. 2021, 233, 107991. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, X.X.; Li, D.F.; Liao, C.N.; Sheu, J.B. A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns. Transp. Res. Part E Logist. Transp. Rev. 2021, 147, 102237. [Google Scholar] [CrossRef]
- Liu, C.; Gao, M.; Zhu, G.; Zhang, C.; Zhang, P.; Chen, J.; Cai, W. Data driven eco-efficiency evaluation and optimization in industrial production. Energy 2021, 224, 120170. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.; Liu, F.; Zhang, Y.; Liu, C. Promoting the efficiency of scientific and technological innovation in regional industrial enterprises: Data-driven DEA-Malmquist evaluation model. J. Intell. Fuzzy Syst. 2022, 43, 4911–4928. [Google Scholar] [CrossRef]
- Li, J.; Fang, H.; Fang, S.; Siddika, S.E. Investigation of the relationship among university–research institute–industry innovations using a coupling coordination degree model. Sustainability 2018, 10, 1954. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhao, X.; Gong, Q.; Ji, Z. Measurement of regional green economy sustainable development ability based on entropy weight-topsis-coupling coordination degree—A case study in Shandong Province, China. Sustainability 2019, 11, 280. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Longwu, L.; Zhenbo, W.; Liangkan, C.; Faming, Z. Exploration of coupling effects in the economy–society–environment system in urban areas: Case study of the Yangtze River Delta urban agglomeration. Ecol. Indicat. 2021, 128, 107858. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Hu, M. Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, T.; Xia, L. Spatial-temporal differentiation of carbon efficiency and coupling coordination degree of Chinese county territory and obstacles analysis. Sustain. Cities Soc. 2022, 76, 103429. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, R.; Wang, F.; Huang, H.; Wang, J. Investigation on spatial and temporal variation of coupling coordination between socioeconomic and ecological environment: A case study of the Loess Plateau, China. Ecol. Indicat. 2022, 136, 108667. [Google Scholar] [CrossRef]
- Hou, C.; Chen, H.; Long, R. Coupling and coordination of China’s economy, ecological environment and health from a green production perspective. Int. J. Environ. Sci. Technol. 2022, 19, 4087–4106. [Google Scholar] [CrossRef]
- Pan, Y.; Weng, G.; Li, C.; Li, J. Coupling coordination and influencing factors among tourism carbon emission, tourism economic and tourism innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhang, Y.; Liu, C. Data-driven coupling coordination development of regional innovation EROB composite system: An integrated model perspective. Mathematics 2022, 10, 2246. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R.; Wang, M.; Xu, J. Measurement and prediction of regional tourism sustainability: An analysis of the Yangtze River economic zone, China. Sustainability 2018, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Robin, Q.; Liu, Y. Evaluation of regional land use performance based on entropy TOPSIS model and diagnosis of its obstacle factors. Trans. Chin. Soc. Agric. Eng. 2016, 32, 243–253. [Google Scholar]
- Zhang, F.; Sun, C.; An, Y.; Luo, Y.; Yang, Q.; Su, W.; Gao, L. Coupling coordination and obstacle factors between tourism and the ecological environment in Chongqing, China: A multi-model comparison. Asia Pac. J. Tour. Res. 2021, 26, 811–828. [Google Scholar] [CrossRef]
- Çalışkan, H.K. Technological change and economic growth. Procedia Soc. Behav. Sci 2015, 195, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y. The impact of innovation efficiency factors on the level of regional economic development. Open J. Soc. Sci. 2020, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Leyden, D.P. Public-sector entrepreneurship and the creation of a sustainable innovative economy. Small Bus. Econ. 2016, 46, 553–564. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Yu, S.; Li, M.; Cheng, Y. Coupling coordination and spatiotemporal evolution between carbon emissions, industrial structure, and regional innovation of counties in Shandong Province. Sustainability 2022, 14, 7484. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, X.; Chen, J. Exploring the governance dilemma of nuclear wastewater in Fukushima: A tripartite evolutionary game model. Ocean. Coast. Manag. 2022, 225, 106220. [Google Scholar] [CrossRef]
- Buesa, M.; Heijs, J.; Pellitero, M.M.; Baumert, T. Regional systems of innovation and the knowledge production function: The Spanish case. Technovation 2004, 26, 463–472. [Google Scholar] [CrossRef]
- Zhao, S.L.; Cacciolatti, L.; Lee, S.H.; Song, W. Regional collaborations and indigenous innovation capabilities in China: A multivariate method for the analysis of regional innovation systems. Technol. Forecast. Soc. Chang. 2015, 94, 202–220. [Google Scholar] [CrossRef] [Green Version]
- Efrat, K. The direct and indirect impact of culture on innovation. Technovation 2014, 34, 12–20. [Google Scholar] [CrossRef]
- Shan, D. Research of the construction of regional innovation capability evaluation system: Based on indicator analysis of Hangzhou and Ningbo. Procedia Eng. 2017, 174, 1244–1251. [Google Scholar] [CrossRef]
- Li, X. Empirical analysis on the change of China’s regional innovation capability: Based on the viewpoint of innovation system. Manage World 2007, 12, 18–22. [Google Scholar]
- Tonghui, D.; Junfei, C. Evaluation and obstacle factors of coordination development of regional water-energy-food-ecology system under green development: A case study of Yangtze River Economic Belt, China. Stoch. Environ. Res. Risk Assess. 2021, 1–17. [Google Scholar] [CrossRef]
- Polina, E.A.; Solovyeva, I.A. Methodology for comprehensive assessment of regional innovative development. R-Economy 2019, 5, 79–91. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous technological change. J. Political Econ. 1990, 5, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Sleuwaegen, L.; Boiardi, P. Creativity and regional innovation: Evidence from EU regions. Res. Policy 2014, 43, 1508–1522. [Google Scholar] [CrossRef]
- Xu, M.Y.; Chen, C.T.; Deng, X.Y. Systematic analysis of the coordination degree of China’s economy-ecological environment system and its influencing factor. Environ. Sci. Pollut. Res. 2019, 26, 29722–29735. [Google Scholar] [CrossRef]
- Lanchun, L.; Wei, C.; Kaimo, G.; Fang, Y.; Yun, T.; Ke, Z. Research on the evaluation system construction of county innovation driven development-based on evaluation and measurement model. In Artificial Intelligence in China; Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z., Eds.; Springer: Singapore, 2022; pp. 218–225. [Google Scholar]
- Deng, M.; Chen, J.; Tao, F.; Zhu, J.; Wang, M. On the coupling and coordination development between environment and economy: A case study in the Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2022, 19, 586. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing indicator based on the pressure-state-response framework to assess regional ecological change. Environ. Sci. Pollut. Res. 2019, 26, 5381–5393. [Google Scholar] [CrossRef]
- Lai, S.; Sha, J.; Eladawy, A.; Li, X.; Wang, J.; Kurbanov, E.; Lin, Z.; Wu, L.; Han, R.; Su, Y.C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Shmeleva, I.A. Global urban sustainability assessment: A multidimensional approach. Sustain. Dev. 2018, 26, 904–920. [Google Scholar] [CrossRef]
- Su, Y.; Liang, D.; Guo, W. Application of multiattribute decision-making for evaluating regional innovation capacity. Math. Probl. Eng. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Xu, K.; Loh, L.; Chen, Q. Sustainable innovation governance: An analysis of regional innovation with a super efficiency slack-based measure model. Sustainability 2020, 12, 3008. [Google Scholar] [CrossRef] [Green Version]
- Neri, A.C.; Dupin, P.; Sanchez, L.E. A Pressure-State-Response Approach to Cumulative Impact Assessment. J. Clean. Prod. 2016, 126, 288–298. [Google Scholar] [CrossRef]
- Anhui Provincial Bureau of Statistics. Available online: http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.html (accessed on 10 December 2021).
- National Bureau of Statistics. Available online: http://www.stats.gov.cn (accessed on 10 December 2021).
- Guo, Y.; Ding, H. Coupled and coordinated development of the data-driven logistics industry and digital economy: A case study of Anhui Province. Processes 2022, 10, 2036. [Google Scholar] [CrossRef]
- Glavič, P.; Pintarič, Z.N.; Bogataj, M. Process design and sustainable development—A European perspective. Processes 2021, 9, 148. [Google Scholar] [CrossRef]
System Layer | Criteria Layer | Indicator Layer | Direction |
---|---|---|---|
A. Innovation subsystem | A1 Innovation environment | A11 Number of legal entities in cultural and related industries above designated size/unit | + |
A12 Number of public library institutions/unit | + | ||
A13 Public library collections per unit population/piece | + | ||
A14 Local financial expenditure on education/109 RMB | + | ||
A2 Innovation input | A21 Internal expenditure of R&D funds/million RMB | + | |
A22 Number of college students per 10,000 population/person | + | ||
A23 Full-time equivalent of R&D personnel/person year | + | ||
A24 R&D personnel input/person | + | ||
A3 Innovation output | A31 Technology market turnover/million RMB | + | |
A32 Number of registered scientific and technological achievements at or above the provincial or ministerial level/piece | + | ||
A33 Invention patent authorization/piece | + | ||
A34 Patent application authorization/piece | + | ||
B. Economic subsystem | B1 Economic scale | B11 GDP/10 9 RMB | + |
B12 Total retail sales of consumer goods/109 RMB | + | ||
B13 Total import and export trade/million USD | + | ||
B14 Total investment in fixed assets/million RMB | + | ||
B2 Economic quality | B21 Per capita GDP/RMB | + | |
B22 GDP energy intensity/tons of standard coal/million RMB | − | ||
B23 Urban per capita disposable income/RMB | + | ||
B24 Whole-society productivity/RMB/person | + | ||
B3 Economic structure | B31 Proportion of employees in the tertiary industry/% | + | |
B32 Proportion of added value of the tertiary industry in GDP/% | + | ||
B33 Urbanization rate/% | + | ||
C. Ecological subsystem | C1 Ecological basis | C11 Percentage of forest cover/% | + |
C12 Urban per capita park green area/m2 | + | ||
C13 Area of nature reserve/million hectares | + | ||
C14 Per capita water resources/m3/person | + | ||
C2 Ecological pressure | C21 Industrial wastewater emissions/million tons | − | |
C22 Industrial sulfur dioxide emissions/million tons | − | ||
C23 Industrial solid waste output/million tons | − | ||
C24 Application amount of agricultural chemical fertilizer (converted amount)/million tons | − | ||
C3 Ecological response | C31 Green coverage rate of urban built-up area/% | + | |
C32 Centralized sewage treatment rate/% | + | ||
C33 Comprehensive utilization rate of general industrial solid waste/% | + | ||
C34 Harmless treatment rate of urban domestic garbage/% | + |
System Layer | Criteria Layer | Weight | Indicator Layer | Weight |
---|---|---|---|---|
A. Innovation subsystem | A1 Innovation environment | 0.194 | A11 Number of legal entities in cultural and related industries above designated size/unit | 0.037 |
A12 Number of public library institutions/unit | 0.035 | |||
A13 Public library collections per unit population/piece | 0.069 | |||
A14 Local financial expenditure on education/109 RMB | 0.053 | |||
A2 Innovation input | 0.444 | A21 Internal expenditure of R&D funds/million RMB | 0.076 | |
A22 Number of college students per 10,000 population/person | 0.178 | |||
A23 Full-time equivalent of R&D personnel/person year | 0.103 | |||
A24 R&D personnel input/person | 0.088 | |||
A3 Innovation output | 0.362 | A31 Technology market turnover/million RMB | 0.105 | |
A32 Number of registered scientific and technological achievements at or above the provincial or ministerial level/piece | 0.154 | |||
A33 Invention patent authorization/piece | 0.039 | |||
A34 Patent application authorization/piece | 0.064 | |||
B. Economic subsystem | B1 Economic scale | 0.357 | B11 GDP/109 RMB | 0.091 |
B12 Total retail sales of consumer goods/109 RMB | 0.105 | |||
B13 Total import and export trade/million USD | 0.098 | |||
B14 Total investment in fixed assets/million RMB | 0.063 | |||
B2 Economic quality | 0.402 | B21 Per capita GDP/RMB | 0.091 | |
B22 GDP energy intensity/tons of standard coal/million RMB | 0.111 | |||
B23 Urban per capita disposable income/RMB | 0.077 | |||
B24 Whole-society productivity/RMB/person | 0.123 | |||
B3 Economic structure | 0.242 | B31 Proportion of employees in the tertiary industry/% | 0.115 | |
B32 Proportion of added value of the tertiary industry in GDP/% | 0.054 | |||
B33 Urbanization rate/% | 0.073 | |||
C. Ecological subsystem | C1 Ecological basis | 0.409 | C11 Percentage of forest cover/% | 0.000 |
C12 Urban per capita park green area/m2 | 0.084 | |||
C13 Area of nature reserve/million hectares | 0.250 | |||
C14 Per capita water resources/m3/person | 0.075 | |||
C2 Ecological pressure | 0.345 | C21 Industrial wastewater emissions/million tons | 0.086 | |
C22 Industrial sulfur dioxide emissions/million tons | 0.086 | |||
C23 Industrial solid waste output/million tons | 0.067 | |||
C24 Application amount of agricultural chemical fertilizer (converted amount)/million tons | 0.106 | |||
C3 Ecological response | 0.246 | C31 Green coverage rate of urban built-up area/% | 0.108 | |
C32 Centralized sewage treatment rate/% | 0.070 | |||
C33 Comprehensive utilization rate of general industrial solid waste/% | 0.068 | |||
C34 Harmless treatment rate of urban domestic garbage/% | 0.000 |
Year | ABC | AB | AC | BC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | C | D | Y | C | D | Y | C | D | Y | C | D | |
2014 | 0.096 | 0.650 | 0.249 | 0.073 | 0.565 | 0.203 | 0.077 | 0.552 | 0.206 | 0.137 | 1.000 | 0.371 |
2015 | 0.181 | 0.982 | 0.421 | 0.169 | 0.979 | 0.407 | 0.169 | 0.979 | 0.407 | 0.204 | 1.000 | 0.451 |
2016 | 0.278 | 0.949 | 0.514 | 0.219 | 0.984 | 0.464 | 0.288 | 0.927 | 0.517 | 0.327 | 0.977 | 0.565 |
2017 | 0.379 | 0.956 | 0.602 | 0.312 | 0.976 | 0.552 | 0.378 | 0.935 | 0.595 | 0.446 | 0.989 | 0.664 |
2018 | 0.483 | 0.991 | 0.692 | 0.447 | 0.994 | 0.667 | 0.478 | 0.987 | 0.686 | 0.525 | 0.998 | 0.724 |
2019 | 0.686 | 1.000 | 0.828 | 0.674 | 1.000 | 0.821 | 0.697 | 1.000 | 0.835 | 0.687 | 0.999 | 0.828 |
2020 | 0.925 | 0.998 | 0.961 | 0.947 | 0.999 | 0.973 | 0.939 | 0.998 | 0.968 | 0.888 | 1.000 | 0.942 |
Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|
A1 | 7.07 | 5.81 | 5.21 | 4.30 | 3.84 | 4.25 | 1.08 |
A2 | 16.22 | 16.22 | 18.49 | 19.52 | 21.76 | 17.62 | 0.00 |
A3 | 13.10 | 13.16 | 14.15 | 16.71 | 13.08 | 11.65 | 0.00 |
B1 | 12.51 | 12.63 | 13.23 | 11.56 | 9.94 | 5.41 | 0.00 |
B2 | 10.61 | 11.63 | 13.14 | 14.21 | 15.32 | 20.05 | 45.15 |
B3 | 8.82 | 8.15 | 7.93 | 7.52 | 7.36 | 10.25 | 0.46 |
C1 | 13.96 | 14.15 | 12.78 | 16.57 | 18.78 | 8.28 | 0.00 |
C2 | 9.94 | 11.36 | 7.63 | 6.28 | 7.38 | 12.21 | 12.88 |
C3 | 7.77 | 6.90 | 7.43 | 3.33 | 2.55 | 10.30 | 40.42 |
A | 36.39 | 35.19 | 37.85 | 40.53 | 38.68 | 33.51 | 1.08 |
B | 31.94 | 32.40 | 34.30 | 33.29 | 32.61 | 35.70 | 45.62 |
C | 31.66 | 32.41 | 27.85 | 26.17 | 28.71 | 30.79 | 53.31 |
Year | Indicator Rankings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
Factor | Obstacle Degree | Factor | Obstacle Degree | Factor | Obstacle Degree | Factor | Obstacle Degree | Factor | Obstacle Degree | |
2014 | C13 | 9.13 | A22 | 6.48 | A32 | 5.50 | B24 | 4.49 | B31 | 4.19 |
2015 | C13 | 9.70 | A22 | 6.15 | A32 | 6.08 | B24 | 4.50 | C31 | 4.34 |
2016 | C13 | 10.71 | A22 | 7.85 | A32 | 6.95 | B24 | 5.08 | B31 | 4.52 |
2017 | C13 | 12.45 | A22 | 9.32 | A32 | 8.16 | B24 | 5.30 | B31 | 4.68 |
2018 | C13 | 15.21 | A22 | 11.33 | B22 | 6.34 | A32 | 5.92 | B24 | 5.63 |
2019 | B22 | 11.64 | A22 | 10.36 | B31 | 8.13 | C14 | 7.86 | C33 | 7.19 |
2020 | B22 | 45.15 | C31 | 21.18 | C33 | 19.25 | C23 | 12.88 | A11 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Hu, F.; Ding, L.; Wu, X. Coupling Coordination Analysis of Regional IEE System: A Data-Driven Multimodel Decision Approach. Processes 2022, 10, 2268. https://doi.org/10.3390/pr10112268
Yang Y, Hu F, Ding L, Wu X. Coupling Coordination Analysis of Regional IEE System: A Data-Driven Multimodel Decision Approach. Processes. 2022; 10(11):2268. https://doi.org/10.3390/pr10112268
Chicago/Turabian StyleYang, Yaliu, Fagang Hu, Ling Ding, and Xue Wu. 2022. "Coupling Coordination Analysis of Regional IEE System: A Data-Driven Multimodel Decision Approach" Processes 10, no. 11: 2268. https://doi.org/10.3390/pr10112268
APA StyleYang, Y., Hu, F., Ding, L., & Wu, X. (2022). Coupling Coordination Analysis of Regional IEE System: A Data-Driven Multimodel Decision Approach. Processes, 10(11), 2268. https://doi.org/10.3390/pr10112268