Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight
Abstract
:1. Introduction
2. Methodology
2.1. Mathematical Modeling
2.2. Saturation Index of Bioscorodite
2.3. Model-Data Fitting Approach
2.4. Software and Simulations
2.5. Global Sensitivity Analysis
2.6. Statistical Analysis
3. The Experiments
4. Results and Discussion
4.1. Sensitivity Analysis
4.2. Parameter Fitting Results and Statistics
4.3. Mathematical Model Validation
4.4. Model-Based Analysis of Controlling Factors on the Bioscorodite Crystallization Process
4.4.1. Cell Concentration
4.4.2. Fe(II) and As(III) Concentrations at Fe/As = 1.4
4.4.3. Analysis of kEPS on the Overall Process
4.4.4. Effect of Oxidation Rate Constants, kFe(II) and kAs(III)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, D.; Adak, S.; Banerjee, N.; Bhattacharjee, P.; Bandyopadhyay, A.K.; Giri, A.K. Evaluation of health effects, genetic damage and telomere length in children exposed to arsenic in West Bengal, India. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018, 836, 82–88. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, 2nd ed.; WHO Press: Geneva, Switzerland, 1993. [Google Scholar]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Int. J. Environ. Res. Public Health 2016, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Coudert, L.; Bondu, R.; Rakotonimaro, T.V.; Rosa, E.; Guittonny, M.; Neculita, C.M. Treatment of As-rich mine effluents and produced residues stability: Current knowledge and research priorities for gold mining. J. Hazard. Mat. 2020, 386, 121920. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Vega-Hernandez, S.; Weijma, J.; Buisman, C.J.N. Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon. J. Hazard. Mater. 2019, 368, 221–227. [Google Scholar] [CrossRef]
- Kowalski, K.P. Advanced arsenic removal technologies review. In Chemistry of Advanced Environmental Purification Processes of Water, 1st ed.; Søgaard, E.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 285–337. [Google Scholar] [CrossRef]
- Mandal, B.K. Changing concept of arsenic toxicity with development of speciation techniques. In Handbook of Arsenic Toxicology, 1st ed.; Flora, S.J.S., Ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 179–201. [Google Scholar] [CrossRef]
- Okibe, N.; Koga, M.; Sasaki, K.; Hirajima, T.; Heguri, S.; Asano, S. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi. Miner. Eng. 2013, 48, 126–134. [Google Scholar] [CrossRef]
- González-Contreras, P.A.; Weijma, J.; Buisman, C.J.N. Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1-1.3. Appl. Microbiol. Biotechnol. 2012, 93, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Li, S.W.; Sheng, G.P.; Cheng, Y.Y.; Yu, H.Q. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.Q.; Shao, W.; Xu, J.; Sheng, G.P. Accurately quantifying the reductive capacity of microbial extracellular polymeric substance by mediated electrochemical oxidation method. Sci. Total Environ. 2019, 673, 541–545. [Google Scholar] [CrossRef]
- Sathishkumar, K.; Li, Y.; Sanganyado, E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer. Chem. Eng. J. 2020, 395, 125077. [Google Scholar] [CrossRef]
- González-Contreras, P.A. Bioscorodite: Biological Crystallization of Scorodite for Arsenic Removal. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2012. [Google Scholar]
- Fujita, T.; Fujieda, S.; Shinoda, K.; Suzuki, S. Environmental leaching characteristics of scorodite synthesized with Fe(II) ions. Hydrometallurgy 2012, 111, 87–102. [Google Scholar] [CrossRef]
- Robins, R.G.; Dove, P.M.; Rimstidt, J.D.; Nordstrom, D.K.; Parks, G.A. Solubility and stability of scorodite, FeAsO4⋅2H2O; discussions and replies. Am. Mineral. 1987, 72, 842–855. [Google Scholar]
- Singhania, S.; Wang, Q.; Filippou, D.; Demopoulos, G.P. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric- pressure conditions. Metall. Mater. Trans. B 2005, 36, 327–333. [Google Scholar] [CrossRef]
- Tanaka, M.; Sasaki, K.; Okibe, N. Behavior of sulfate ions during biogenic scorodite crystallization from dilute As(III)-bearing acidic waters. Hydrometallurgy 2018, 180, 144–152. [Google Scholar] [CrossRef]
- González-Contreras, P.A.; Weijma, J.; Buisman, C.J.N. Arsenic immobilization by biological scorodite crystallization: Effect of high ferric concentration and foreign seeds. Adv. Mater. Res. 2009, 71–73, 629–632. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J. Insights from mathematical modelling into energy requirement and process design of continuous and batch stirred tank aerobic bioreactors. Chemengineering 2019, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Tec-Caamal, E.N.; Rodríguez-Vázquez, R.; Torres-Bustillos, L.G.; Aguilar-López, R. Kinetic analysis via mathematical modeling for ferrous iron oxidation in a class of SBR-type system. Chin. J. Chem. Eng. 2019, 27, 2472–2480. [Google Scholar] [CrossRef]
- Figueroa-Estrada, J.C.; Neria-González, M.I.; Rodríguez-Vázquez, R.; Tec-Caamal, E.N.; Aguilar-López, R. Controlling a continuous stirred tank reactor for zinc leaching. Miner. Eng. 2020, 157, 106549. [Google Scholar] [CrossRef]
- Tec-Caamal, E.N.; Rodríguez-Vázquez, R.; Weijma, J.; Aguilar-López, R. Simulation platform for in-situ Fe(II) oxidation and bioscorodite crystallization in a one-step process for As(V) immobilization from acid wastewater. Miner. Eng. 2021, 172, 107170. [Google Scholar] [CrossRef]
- Fujita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy 2008, 90, 92–102. [Google Scholar] [CrossRef]
- Vega-Hernandez, S.; Weijma, J.; Buisman, C.J.N. Particle size control of biogenic scorodite during the GAC-catalysed As(III) oxidation for efficient arsenic removal in acid wastewaters. Water Resour. Ind. 2020, 23, 100128. [Google Scholar] [CrossRef]
- PAQUES Technology. THIOTEQTM Scorodite. 2020. Available online: https://en.paques.nl/products/other/thioteqscorodite (accessed on 26 August 2022).
- Okibe, N.; Koga, M.; Morishita, S.; Tanaka, M.; Heguri, S.; Asano, S.; Sasaki, K.; Hirajima, T. Microbial formation of crystalline scorodite for treatment of As (III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 2014, 143, 34–41. [Google Scholar] [CrossRef]
- Sheng, Y.; Kaley, B.; Bibby, K.; Grettenberger, C.; Macalady, J.L.; Wang, G.; Burgos, W.D. Bioreactors for low-pH iron(II) oxidation remove considerable amounts of total iron. RSC Adv. 2017, 7, 35962–35972. [Google Scholar] [CrossRef] [Green Version]
- Pesic, B.; Oliver, D.J.; Wichlacz, P. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 1989, 33, 428–439. [Google Scholar] [CrossRef]
- Kirby, C.S.; Thomas, H.M.; Southam, G.; Donald, R. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl. Geochem. 1999, 14, 511–530. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H.E.; Ulstrup, J.; Zhao, F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci. Adv. 2017, 3, e1700623. [Google Scholar] [CrossRef] [Green Version]
- González-Contreras, P.A.; Weijma, J.; Buisman, C.J.N. Bioscorodite crystallization in an airlift reactor for arsenic removal. Cryst. Growth Des. 2012, 12, 2699–2706. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- González-Contreras, P.A.; Weijma, J.; Buisman, C.J.N. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. Water Res. 2012, 46, 5883–5892. [Google Scholar] [CrossRef] [PubMed]
- Mbamba, C.K.; Batstone, D.J.; Flores-Alsina, X.; Tait, S. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water Res. 2015, 68, 342–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dove, P.M.; Rimstidt, J.D. The solubility and stability of scorodite, FeAsO4⋅2H2O. Am. Mineral. 1985, 70, 838–844. [Google Scholar]
- Tanaka, M.; Okibe, N. Factors to enable crystallization of environmentally stable bioscorodite from dilute As(III)-contaminated waters. Minerals 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, A.M.; Liu, Y.; Cogan, N.G.; Hussaini, M.Y. Global sensitivity analysis used to interpret biological experimental results. J. Math. Biol. 2015, 71, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Sainte-Marie, J.; Cournède, P.H. Insights of global sensitivity analysis in biological models with dependent parameters. J. Agric. Biol. Environ. Stat. 2019, 24, 92–111. [Google Scholar] [CrossRef]
- Vega-Hernandez, S.; Sánchez-Andrea, I.; Weijma, J.; Buisman, C.J.N. An integrated green methodology for the continuous biological removal and fixation of arsenic from acid wastewater through the GAC-catalyzed As(III) oxidation. Chem. Eng. J. 2021, 421, 127758. [Google Scholar] [CrossRef]
- Barahona, S.; Herrera, E.; Jara, A.; Castro-Severyn, J.; Gallardo, K.; Fuentes, G.; Dorador, C.; Saavedra, C.; Remonsellez, F. Arsenopyrite Dissolution and Bioscorodite Precipitation by Acidithiobacillus ferrivorans ACH under Mesophilic Condition. Minerals 2022, 12, 520. [Google Scholar] [CrossRef]
- Tanaka, M.; Hirajima, T.; Sasaki, K.; Okibe, N. Optimization of bioscorodite crystallization for treatment of As(III)-bearing wastewaters. Solid State Phenom. 2017, 262, 555–558. [Google Scholar] [CrossRef]
- Vanlier, J.; Tiemann, C.A.; Hilbers, P.A.J.; van Riel, N.A.W. Parameter uncertainty in biochemical models described by ordinary differential equations. Math. Biosci. 2013, 246, 305–314. [Google Scholar] [CrossRef]
- Orell, A.; Schopf, S.; Randau, L.; Vera, M. Biofilm Lifestyle of Thermophile and Acidophile Archaea. In Biocommunication of Archaea, 1st ed.; Witzany, G., Ed.; Springer: Cham, Switzerland, 2017; pp. 133–146. [Google Scholar] [CrossRef]
- Sellke, T.; Bayarri, M.J.; Berger, J.O. Calibration of p values for testing precise null hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
- Garcia-Rios, M.; De Windt, L.; Luquot, L.; Casiot, C. Modeling of microbial kinetics and mass transfer in bioreactors simulating the natural attenuation of arsenic and iron in acid mine drainage. J. Hazard. Mater. 2021, 405, 124133. [Google Scholar] [CrossRef]
- Higashidani, N.; Kaneta, T.; Takeyasu, N.; Motomizu, S.; Okibe, N.; Sasaki, K. Speciation of arsenic in a thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi, and its culture medium by inductively coupled plasma–optical emission spectroscopy combined with flow injection pretreatment using an anion-exchange mini-column. Talanta 2014, 122, 240–245. [Google Scholar] [CrossRef]
- Bertoldo, C.; Dock, C.; Antranikian, G. Thermoacidophilic microorganisms and their novel biocatalysts. Eng. Life Sci. 2004, 4, 521–532. [Google Scholar] [CrossRef]
- Nemati, M.; Harrison, S.T.L. A comparative study on thermophilic and mesophilic biooxidation of ferrous iron. Miner. Eng. 2000, 13, 19–24. [Google Scholar] [CrossRef]
Chemical Specie | Reaction | Ki | pK |
---|---|---|---|
As(V) | KAs,1 | 2.27 | |
KAs,2 | 6.94 | ||
KAs,3 | 11.51 | ||
Fe(III) | KFe,1 | 2.18 | |
KFe,2 | 3.47 | ||
KFe,3 | 6.31 | ||
KFe,4 | 9.57 |
System Name | Inoculum (Cells mL−1) | Fe(II)0 (mM) | As(III)0 (mM) | Fe/As Molar Ratio (–) | Yeast Extract (%, w/v) | Seeding Material |
---|---|---|---|---|---|---|
S-1 a | 1 × 107 | 6.58 | 4.7 | 1.4 | 0.02 | Scorodite |
S-2 b | 1 × 107 | 9 | 6.5 | 1.4 | 0.01 | - |
S-3 b | 1 × 107 | 18 | 13 | 1.4 | 0.01 | - |
S-4 b | 1 × 108 | 18 | 13 | 1.4 | 0.01 | - |
Parameters | Experiments | ||||
---|---|---|---|---|---|
Symbol | Description | Units | S-1 | S-2 | S-3 |
kAs(III) c | Arsenite oxidation rate constant | mM (d gbiomass)−1 | 501.38 ± 3.36 | 395.9 ± 65.53 | 109.17 ± 14.14 |
kAs(V) c | Arsenate precipitation constant | L (mM d)−1 | 0.004 ± 0.0008 | 0.006 ± 0.001 | 0.018 ± 0.002 |
kFe(II) c | Ferrous iron oxidation rate constant | mM (d gbiomass)−1 | 38,577.03 ± 8744.07 | 4553.4 ± 1174.79 | 3896.2 ± 310.83 |
kEPS a | Arsenite oxidation rate constant for the EPS region | mM2 d−1 | 0.0002856 ± 1 × 10−6 | 0.0012 ± 0.03 | 0.0154 ± 0.009 |
KsAs(III) a | Affinity constant for arsenite | mM | 1.82 ± 0.51 | 1.82 ± 0.51 | 1.82 ± 0.51 |
KsFe(II) a | Affinity constant for ferrous iron | mM | 36.67 ± 3.42 | 36.67 ± 3.42 | 36.67 ± 3.42 |
Lc b | Characteristic crystal size | µm | 0.305 | 0.305 | 0.32 |
Global R2 | Global determination coefficient | Dimensionless | 0.96 | 0.95 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-López, R.; Medina-Moreno, S.A.; Sharma, A.; Tec-Caamal, E.N. Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight. Processes 2022, 10, 2363. https://doi.org/10.3390/pr10112363
Aguilar-López R, Medina-Moreno SA, Sharma A, Tec-Caamal EN. Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight. Processes. 2022; 10(11):2363. https://doi.org/10.3390/pr10112363
Chicago/Turabian StyleAguilar-López, Ricardo, Sergio A. Medina-Moreno, Ashutosh Sharma, and Edgar N. Tec-Caamal. 2022. "Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight" Processes 10, no. 11: 2363. https://doi.org/10.3390/pr10112363
APA StyleAguilar-López, R., Medina-Moreno, S. A., Sharma, A., & Tec-Caamal, E. N. (2022). Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight. Processes, 10(11), 2363. https://doi.org/10.3390/pr10112363