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Abstract: The present work discusses the development and application of a machine-learning-based
model to predict the enthalpy of combustion of various oxygenated fuels of interest. A detailed
dataset containing 207 pure compounds and 38 surrogate fuels has been prepared, representing
various chemical classes, namely paraffins, olefins, naphthenes, aromatics, alcohols, ethers, ketones,
and aldehydes. The dataset was subsequently used for constructing an artificial neural network
(ANN) model with 14 input layers, 26 hidden layers, and 1 output layer for predicting the enthalpy
of combustion for various oxygenated fuels. The ANN model was trained using the collected dataset,
validated, and finally tested to verify its accuracy in predicting the enthalpy of combustion. The
results for various oxygenated fuels are discussed, especially in terms of the influence of different
functional groups in shaping the enthalpy of combustion values. In predicting the enthalpy of
combustion, 96.3% accuracy was achieved using the ANN model. The developed model can be
successfully employed to predict the enthalpies of neat compounds and mixtures as the obtained
percentage error of 4.2 is within the vicinity of experimental uncertainty.

Keywords: enthalpy of combustion; machine learning; functional groups; oxygenated fuels

1. Introduction

Thermochemistry is a subfield of chemical thermodynamics that studies the inter-
actions of heat, work, and other forms of energy in the context of chemical and physical
processes. When a system undergoes a change of state, its internal energy, enthalpy, and
associated properties change to account for the energy transfer between the system and
the surroundings. All heat engines around us, including steam power plants, gas power
plants, and automobiles, operate by converting the chemical energy of the fuel into ther-
mal energy, which is subsequently converted to the desired end-use form. In this regard,
the enthalpy of combustion is defined as the quantum of change in enthalpy when any
element/compound undergoes complete oxidation at a given temperature and pressure.
Enthalpies of combustion for various substances are typically measured using a bomb
calorimeter (see Figure 1). However, measuring the enthalpy of combustion of various
fuels, fuel blends, and surrogates is a time-consuming and costly procedure which necessi-
tates the use of alternate approaches. Among the various possible approaches, the use of
machine learning to predict the enthalpy of combustion is promising and has been explored
extensively in this work.
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Figure 1. A cross-sectional view of typical bomb calorimeter.

Machine-learning tools help in predicting the enthalpy of combustion for various
fuels once they have been rigorously tested over a predefined dataset. A number of
machine-learning algorithms have been developed over the years, such as decision trees,
random forests, Naïve Bayes, support vector machines, k-means, etc. Neural networks
are a subset of machine learning and are at the heart of deep learning algorithms. Typical
machine-learning methods are based on the use of neural networks with one or more layers
connecting the desired output to the given input. A neural network is a set of algorithms
that attempts to detect underlying relationships in a piece of data using a technique similar
to the way that the human brain works. In this context, neural networks are systems of
neurons that might be biological or artificial in origin. Due to their excellent adaptability to
changing inputs, neural networks are widely being used to obtain the best possible results
without the need to change the output criterion. Artificial neural networks (ANNs) have
therefore been used in this study to develop the required machine-learning tools.

The use of ANNs for predicting the enthalpy of combustion is rather novel. The few
relevant studies that have utilized multiple approaches for developing predictive models
for the estimation of the enthalpy of combustion are discussed here. Gharagheizi et al. [1]
developed an ANN-based model to predict the enthalpy of combustion of various pure com-
pounds using the group-contribution method. A squared correlation coefficient of 0.99999
with a root-mean-squared error of 12.57 kJ/mol, in comparison with experimental values
from the literature, was reported. Albahri [2] also used the group-contribution method
for predicting the enthalpy of combustion; however, a multivariable nonlinear-regression-
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based method was used for this purpose. The enthalpy of combustion was predicted based
on the molecular structure, with a reported average error of 0.71%. Recently, Dashti et al. [3]
compared three different models, namely a least-squares support-vector machine, genetic
programming, and an adaptive neuro-fuzzy inference system, for predicting the enthalpy
of combustion of several chemical compounds. It was concluded that the particle swarm
optimization–adaptive neuro-fuzzy inference system (PSO–ANFIS) model with four inputs
was the most accurate among the three models. The ANFIS structure contains five layers:
1: the fuzzification layer; 2: the IF layer; 3: the normalization layer; 4: the THEN layer; and
5: the summation layer. In this model, MF variables should be estimated immediately after
the generation of the initial FIS model and the training of the ANFIS. The MF values are
adjusted via PSO algorithms to find the finest structure [3].

This study reports a detailed ANN model to predict the enthalpy of combustion of
compounds (neat and mixtures) and real fuels belonging to different chemical families.
The functional groups present in the fuels are used as input features to the ANN model.
The method of using functional groups for predicting fuel properties has been reported
in a number of recent studies [4–6]. Functional groups present in the fuels are also rel-
evant for surrogate formulation [7], particulate matter formation [8–11], and property
prediction [12–14].

2. Theoretical Background

The enthalpy of combustion is calculated using the data from the bomb calorimeter
using Equation (1):

∆Hc = m × Cp × ∆T (1)

where ∆Hc is the enthalpy of combustion in kJ, m is the mass of water in kg, Cp is the
specific heat capacity of water in kJ/kg ◦C, and ∆T is the temperature change of water in
◦C. After obtaining these enthalpies of combustion from the literature, each compound
was defined with a specific variable according to a convention so that the machine could
relate the given enthalpy of combustion to the corresponding compound. To define each
compound, 13 variables were assigned to each compound. These variables, along with
their definitions, are presented in Table 1.

Table 1. Variables, along with their definitions.

No. Variables Definitions

1 P.CH3 (wt %) Weight percentage of paraffinic CH3 groups in the compound
2 P.CH2 (wt %) Weight percentage of paraffinic CH2 groups in the compound
3 P.CH (wt %) Weight percentage of paraffinic CH groups in the compound
4 Olef (wt %) Weight percentage of olefin groups in the compound
5 Naph (wt %) Weight percentage of naphthene groups in the compound
6 Arom (wt %) Weight percentage of aromatic groups in the compound
7 Alc OH (wt %) Weight percentage of alcohol groups in the compound
8 Ether O (wt %) Weight percentage of ether groups in the compound
9 Aldeh CHO (wt %) Weight percentage of aldehyde groups in the compound
10 Ketone CO (wt %) Weight percentage of ketone groups in the compound
11 Ester (wt %) Weight percentage of ester groups in the compound
12 Mol wt Molecular weight of the compound
13 BI Branching index of the compound

BI refers to the branching index of the molecule or mixture. It represents the degree of
branching/linearity of a molecule, while including the impact of paraffinic branches on the
longest chain present in the molecule. More information related to BI has been reported
here [15,16].
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3. Dataset and Machine Learning

The dataset was built using the collection of data from the extensive available liter-
ature on the enthalpy of combustion that meets the criteria that all data should be at the
same condition (i.e., temperature and pressure) and that the method used to obtain these
enthalpies should be consistent (i.e., bomb calorimeter method).

After the collection of all the possible data, Tables 2 and S1–S10 were generated.
Tables S1–S10 are provided in the Supplementary Materials. Table 2 shows the enthalpy
of combustion for 204 compounds from the literature. Edwards and Maurice (2001) [17],
estimated the enthalpy of combustion for five surrogates (S1–S5), containing a total of
38 compounds, as shown in Table S1. Similarly, Huber et al. (2009) [18] reported the en-
thalpy of combustion for two surrogates (S6 and S7), consisting of a total of five compounds,
as shown in Table S2. Table S3 represents the enthalpy of combustion for six surrogates
(S8–S13), containing a total of five components, as studied by Shrestha (2014) [19]. Similarly,
Kalghatgi et al. (2011) [20] calculated the enthalpy of combustion for three surrogates
(S14–S16), containing a total of three compounds, as shown in Table S4. Table S5 shows
the enthalpy of combustion for two surrogates (S17–S18), comprising a total of nine com-
ponents, as studied by Huber et al. (2010) [21]. In a same way, Eddings et al. (2005) [22]
estimated the enthalpy of combustion for two surrogates (S19–S20), containing a total of
six compounds, as shown in Table S6. Table S7 shows the enthalpy of combustion for two
surrogates (S21, S22), comprising a total of three fuel constituents, as studied by Naik et al.
(2010) [23]. Grubinger et al. (2021) [24] estimated the enthalpy of combustion for three
surrogates (S23–S25), containing a total of 11 compounds, as shown in Table S8. Similarly,
Table S9 shows the enthalpy of combustion for 9 surrogates (S26–S34), containing a total of
17 compounds, as reported by Xu et al. (2015) [25]. Grubinger et al. (2021) [24] reported the
enthalpy of combustion for four surrogates (S35–S38), containing a total of six compounds,
as shown in Table S10.

Table 2. Enthalpy of combustion of different compounds from the literature.

Sr. No. Compound Name Compound
Formula

Enthalpy of
Combustion
(Kcal/mol)

References

1 Ethane C2H6 372.82

[26]

2 Propane C3H8 530.605
3 n-Butane C4H10 687.982
4 n-Pentane C5H12 838.8
5 n-Hexane C6H14 995.01
6 n-Heptane C7H16 1151.27
7 n-Octane C8H18 1307.53
8 n-Nonane C9H20 1463.3
9 n-Decane C10H22 1620.06

10 n-Undecane C11H24 1776.32
11 n-Dodecane C12H26 1932.59
12 n-Hexadecane C16H34 2557.64
13 2-Methylpropane C4H10 686.342
14 2-Methylbutane C5H12 837.3
15 2,2-Dimethylpropane C5H12 840.49
16 2-Methylpentane C6H14 993.71
17 3-Methylpentane C6H14 994.25
18 2,2-Dimethylbutane C6H14 991.52
19 2,3-Dimethylbutane C6H14 993.05
20 2-Methylhexane C7H16 1149.97
21 3-Methylhexane C7H16 1150.55
22 3-Ethylpentane C7H16 1151.13
23 2,2-Dimethylpentane C7H16 1147.85
24 2,3-Dimethylpentane C7H16 1149.09
25 2,4-Dimethylpentane C7H16 1148.73
26 3,3-Dimethylpentane C7H16 1148.83
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Table 2. Cont.

Sr. No. Compound Name Compound
Formula

Enthalpy of
Combustion
(Kcal/mol)

References

27 2,2,3-Trimethylbutane C7H16 1148.27
28 2-Methylheptane C8H18 1306.28
29 3-Methylheptane C8H18 1306.92
30 4-Methylheptane C8H18 1307.09
31 3-Ethylhexane C8H18 1307.39
32 2,2-Dimethylhexane C8H18 1304.64
33 2,3-Dimethylhexane C8H18 1306.86
34 2,4-Dimethylhexane C8H18 1305.8
35 2,5-Dimethylhexane C8H18 1305
36 3,3-Dimethylhexane C8H18 1305.68
37 3,4-Dimethylhexane C8H18 1307.04
38 2-Methyl-3-ethylpentane C8H18 1307.58
39 3-Methyl-3-ethylpentane C8H18 1306.8
40 2,2,3-Trimethylpentane C8H18 1305.83
41 2,2,4-Trimethylpentane C8H18 1305.29
42 2,3,3-Trimethylpentane C8H18 1306.64
43 2,3,4-Trimethylpentane C8H18 1306.28
44 2,2,3,3-Tetramethylbutane C8H18 1303.03
45 n-Tridecane C13H28 2088.85
46 n-Tetradecane C14H30 2245.11
47 n-Pentadecane C15H32 2401.37
48 n-Heptadecane C17H36 2713.9
49 n-Octadecane C18H38 2870.16
50 n-nonadecane C19H40 3026.43
51 n-Eicosane C20H42 3182.69

52 Ethylene C2H4 337.25

[27]

53 Propylene C3H6 419.9
54 n-1-Butene C4H8 649.66
55 n-1-Pentene C5H10 806.78
56 n-1-Hexene C6H12 963.9
57 n-1-Heptene C7H14 1120.9
58 n-1-Octene C8H16 1277.97
59 n-1-Nonene C9H18 1434.9
60 n-1-Decene C10H20 1591.95

61 Benzene C6H6 3267.49
[28]62 Toluene C7H8 3909.9

63 Naphthalene C9H10 5157

64 2-Methyl-2-butene C13H12 3362.2
[29]65 1-Methyl-1-cyclohexene C7H12 4353

66 1-Pentanol C5H12O 3329.96

[30]
67 1-Octanol C8H18O 5292.5
68 1-Butanol C4H10O 2675.61
69 1-Decanol C10H22O 10,468.26

70 1,2,3-trimethylcyclohexane C12H10O2 5837.7
71 Ethylcyclohexane C12H10O2 5059.1
72 methylcyclohexane C12H10O2 4565.9
73 2-Methylheptane C12H10O2 5464.7
74 Bicyclohexane C6H10 3818.8
75 1,3-Dimethylcyclopentane C7H14 4561.3
76 1,2,4-Trimethylcyclopentane C8H16 5208.3
77 1,1-Dimethylcyclohexane C8H16 5196.1
78 1,3-Dimethylcyclohexane C8H16 5177.3
79 1,4-Dimethylcyclohexane C8H16 5138.8
80 1,2,3-Trimethylcyclohexane C9H18 5837.7
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Table 2. Cont.

Sr. No. Compound Name Compound
Formula

Enthalpy of
Combustion
(Kcal/mol)

References

81 1,3,3-Trimethylcyclohexane C9H18 5832.6

[29]

82 3,3-Dimethylcyclohexene C9H18 4995.4
83 Bicycloheptane C7H12 4308.7
84 Ethylenecyclohexane C10H18 5059.1
85 Isopropyl-1-cyclohexene-1 C9H16 5611.2
86 o-Xylene C8H10 4578.1
87 m-Xylene C8H10 4567.7
88 p-Xylene C8H10 4556.8
89 Diamylene C10H20 6616.8
90 1-methyl-3-cyclohexene C7H12 4364.3
91 Phenyl-1-butene-2 C10H12 5702.1
92 Isopropyl alcohol C3H3O 1985.6
93 Ethylvinyl carbinol C5H10O 3148.6
94 Pinacolyl alcohol C6H14O 3925.2
95 1,3-Dimethylcyclohexanol-5 C8H16O 4949
96 Trimethyl carbinol C4H10O 2631.7
97 Dimethylethyl carbinol C5H12O 3281.2
98 1,3-Dimethylcyclohexanol-2 C8H16O 5001.7
99 2-Methyl-2-propanol C4H10O 2631.7

100 Ethylene glycol C2H6O2 1179.8
101 Propylene glycol C3H8O2 1802.4
102 Phenol C6H6O 3064.3
103 Glycerol C3H8O2 1661.5
104 Anisole C7H8O 3787.8
105 Phenetole C8H10O 4423.1
106 m-Cresol methyl ether C8H10O 4423.6
107 Safrole C10H10O2 5206.6
108 Isosafrole C10H10O2 5163.9
109 Acenaphthene C12H10 6241.1
110 Phenyl-1-butene-2 C12H10 5702.1
111 Phenyl-1-pentene-2 C11H14 6325.4
112 Benzil C14H10O2 6789.9
113 Benzoin C14H10O2 6994.8
114 Furfuraldehyde C5H4O2 2339.8
115 1-Naphthalenol C10H8O 4960.9
116 Vinyl acetate C4H5O2 2084.5
117 Ethylcycloheptane C9H18 5883.2
118 1-Methyl-3-propylcyclohexane C10H20 6285.1
119 Ethyl-1-cyclohexene-1 C8H14 5042.3
120 1-Isopropyl-1-cyclohexene C9H16 5611.2
121 Methylenecyclohexane C7H12 4404.3
122 Propyl benzoate C10H12O2 5250.1
123 1-Methylcyclohexane-1,2-diol C7H14O2 4164.5
124 Diphenylstyrene C20H16 10,493.5
125 Amyl benzoate C12H16O 6568.4
126 Cycloheptene C7H12 4390.7
127 1,2-Propadiene C3H4 1962.05
128 Eugenol acetate C12H14O3 6268.3
129 Phenyl benzoate C13H10O2 6321.4
130 Isopropyltoluene C7H8 5895.9
131 1,2,4-trimethylbenzene C5H10O 5195.3
132 Cyclohexanol C6H12 3724.9
133 Cyclopentanone C7H14 2852.1
134 Isopropenylbenzene C16H32 5218.7
135 Propylbenzene C18H36 5214.9
136 Styrene C13H26 4375
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Table 2. Cont.

Sr. No. Compound Name Compound
Formula

Enthalpy of
Combustion
(Kcal/mol)

References

137 Cyclohexane C6H12 3919.8

[31]

138 Methyl cyclohexane C7H14 4564.3
139 Ethyl cyclohexane C8H16 5222.6
140 Propyl cyclohexane C9H18 5875.8
141 1,1-Dimethyl cyclohexane C8H16 5216
142 1,2-Dimethyl cyclohexane C8H16 5216.5
143 Cyclopentane C5H10 3291.6
144 Propyl cyclopentane C8H16 5245.6
145 Butyl cyclopentane C9H18 5899.9
146 Decyl cyclopentane C15H30 9822.1
147 1,1-Dimethyl cyclopentane C7H14 4583.3
148 1,2-Dimethyl cyclopentane C7H14 4561.3

149 2-Hexanone C6H12O 3754.02

[32]
150 3-Hexanone C6H12O 3755.9
151 3,3-Dimethylbutan-2-one C6H12O 3347.49
152 5-Nonanone C9H18O 5715.81
153 6-Undecanone C11H22O 7024.6

154 2-Pentanone C5H10O 3099.41

155 3-Pentanone C5H10O 3100.19

156 Cyclohexene C6H10 895.27
[33]157 1-Methylcyclopentene C6H10 895.69

158 Cyclohexyl-benzene C12H16 6922.73
[34]159 Phenylbenzene C12H10O2 6245.45

160 Cyclohexyl-cyclohexane C12H22 7578.83

161 Ethylbenzene C8H10 4563.9

[35]

162 Propylbenzene C9H12 5218
163 1,2-Dimethylbenzene C8H10 4552.6
164 1,3-Dimethylbenzene C8H10 4551.6
165 1,4-Dimethylbenzene C8H10 4552.6
166 Heptyl cyclohexane C13H26 8478.5
167 Methanol CH4O 726
168 Ethanol C2H6O 1367.3
169 1-Propanol C3H8O 2021
170 2-Propanol C3H8O 2005.8
171 1-Hexanol C6H14O 3983.8
172 1-Heptanol C7H16O 4637.6
173 Ethan-1,2-diol C2H6O2 1179.5
174 Propan-1,2,3-triol C3H8O3 1655.2
175 2-Methylpropan-2-ol C4H10O 2643.8
176 Cyclohexanol C6H12O 3737
177 Methanal CH2O 570.6
178 Ethanal C2H4O 1167.1
179 Propanal C3H6O 1820.8
180 Butanal C4H8O 2476
181 2-Methylpropanal C4H8O 2468.3
182 Pentanal C5H10O 3166
183 Benzaldehyde C7H6O 3525.1
184 2-Propanone C3H6O 1816.5
185 2-Butanone C4H8O 2441.5
186 3-Methylbutanone C5H10O 3097
187 Cyclohexanone C6H10O 3519.3
188 Phenylethanone C8H8O 4148.7
189 Methyl methanoate C2H4O2 972.6
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Table 2. Cont.

Sr. No. Compound Name Compound
Formula

Enthalpy of
Combustion
(Kcal/mol)

References

190 Cyclopropane C3H6 2091.4

191 Cyclobutane C4H8 2720.9

192 Cycloheptane C7H14 4598.4

193 Cyclooctane C8H16 5266.7

194 Cyclononane C9H18 5932.5

195 Styrene C8H8 4395

196 Acetaldehyde C2H4O 1167 [36]

197 Benzaldehyde C7H6O 843.2

[37]

198 Octaldehyde C8H16O 1218.9
199 Ethanedial C2H2O2 205.76
200 pyrene C16H10 1873.83
201 1,2-benzanthracene C18H12 2144
202 perylene C20H12 2334.6
203 methyl formate C2H4O2 234.1
204 Heptanal C7H14O 1062.2

Once the dataset had been built, the variables were used as inputs to the ANN were
calculated. The procedure for the calculation of 11 variables for specific fuels/chemicals, as
applied to a few examples, is available in our previous publications [15,16]. After defining
all compounds and mixtures, all the definitions and the corresponding enthalpies were
imported to MATLAB to yield a neural network with 14 input layers, 26 hidden layers, and
1 output layer. Finally, to obtain the ANN model for predicting the enthalpy of combustion,
the model needed to be trained to study and evaluate the effects and the relationships
between each of these variables. Some of these effects and relationship are presented in
this study.

4. Results and Discussion

The data used for developing the model was obtained from the literature and imported
into MATLAB. The impact of the functional groups on the enthalpy of combustion was
evaluated by means of various plots. Figures 2–5 show that the enthalpy of combustion
increases with an increase in the weight percentage of the paraffinic CH2 groups present in
various chemical classes of the fuels in the dataset. These groups represent the linearity of
the hydrocarbon molecule and have been shown to have a significant impact on a number
of combustion properties, such as the antiknock rating, ignition quality, flash point, etc.

However, increasing the weight percentage of olefins, alcohols, ketones, and aldehydes
results in decreased enthalpy of combustion (see Figures 6–9). However, these figures
need to be considered carefully as an increase in the weight percentage of olefins is the
result of increasing the CH2 percentage. Overall, increasing the molecular weight of a
compound or a surrogate leads to the increased enthalpy of combustion, as shown in
Figures 10–17. Molecular weight has a significant impact on the physical properties of
pure compounds and blends and is known to influence properties, including viscosity,
density, and surface tension, and also phenomena, such as heating, vaporization, droplet
formation, etc. Figure 18 shows the effect of the branching index on the enthalpy of
combustion for all of the collected data. It can be clearly observed that, as the branching
index increases, the enthalpy of combustion increases for all classes of compounds in the
data. The branching index denotes the linearity/nonlinearity of a compound by considering
the carbon framework of the compound. Inclusion of the branching index as an input
feature has shown to reduce the error in prediction in a large number of studies.
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Figure 18. The effect of branching index on enthalpy of combustion for all collected data.

Subsequently, a neural network model was created and trained in MATLAB, resulting
in an overall accuracy of 96.3% (see Figure 19). A regression coefficient of 0.959 was
obtained when the developed model was applied to the training data, indicating that the
model was able to succeed in learning the impact of the input features on the target (i.e.,
the enthalpy of combustion). The model was validated with approximately 15% of the
dataset and yielded a regression coefficient of 0.97. The final testing of the ANN code was
performed using a test set that was randomly selected by the software. The measured and
predicted enthalpy of combustion values for the 40 compounds of the test set are shown
in Table 3. The average percentage error obtained was 4.2%, which is near the range of
experimental error.
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Table 3. Comparison between the measured enthalpies and the predicted ones.

Sr. No. Compound Name Measured/Obtained Enthalpy
of Combustion (KJ/mol)

Predicted Enthalpy of
Combustion (KJ/mol) Error (%)

1 2-Methylhexane 4811.5 4819.7 0.2
2 2,2,3-Trimethylpentane 5463.6 5285.9 3.3
3 n-1-Decene 6660.7 7139.8 7.2
4 Propylbenzene 5214.9 5187 0.5
5 1-Methylcyclopentene 3747.6 4056.3 8.2
6 Diphenylstyrene 10,493.5 10,378 1.1
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Table 3. Cont.

Sr. No. Compound Name Measured/Obtained Enthalpy
of Combustion (KJ/mol)

Predicted Enthalpy of
Combustion (KJ/mol) Error (%)

7 Heptanal 4444.2 4727.3 6.4
8 Phenol 3064.3 3164.8 3.3
9 Glycerol 1661.5 1587.7 4.4
10 Phenetole 4423.1 4150.6 6.2
11 Pinacolyl alcohol 3925.2 3715.4 5.3
12 Methyl methanoate 972.6 1003.5 3.2
13 Ethanedial 860.9 941.3 9.3
14 Sr#2 6937.1 7359.7 6.1
15 Sr#3 6054.9 6282.3 3.8
16 Sr#4 5755.7 5913 2.7
17 Sr#7 6173.8 6128.9 0.7
18 Sr#8 6205.3 5798.3 6.6
19 Sr#9 6241.7 6388.5 2.4
20 Sr#10 6245.4 6225.6 0.3
21 Sr#11 6671 7016.6 5.2
22 Sr#12 6715.9 6989.8 4.1
23 Sr#13 4950.2 5258.2 6.2
24 Sr#14 3930.1 4128.6 5.1
25 Sr#15 4455.3 4271.8 4.1
26 Sr#16 6550 6076.1 7.2
27 Sr#20 4520 4739.6 4.9
28 Sr#22 4347.7 4471.2 2.8
29 Sr#23 3793.2 3704.6 2.3
30 Sr#25 6334.2 6811.6 7.5
31 Sr#26 6493.8 6804.7 4.8
32 Sr#27 6843.3 6916.7 1.1
33 Sr#28 7795.1 8041.5 3.2
34 Sr#29 7640.7 8319.1 8.9
35 Sr#30 7678.7 7683.5 0.1
36 Sr#31 7033.3 7647.5 8.7
37 Sr#32 5778.1 5646.1 2.3
38 Sr#33 7268.4 7297.5 0.4
39 Sr#34 7223.8 7643.7 5.8
40 Sr#36 9921.4 10,002 0.8

5. Conclusions

This study presents an ANN model with 14 input layers, 26 hidden layers, and
1 output layer to predict the enthalpy of combustion of various oxygenated fuels. The
ANN model was built in the MATLAB environment, and it used a detailed dataset of
enthalpy of combustion values from the literature. The model was trained, validated, and
tested using enthalpy of combustion data for various compounds and fuel surrogates,
including numerous chemical classes: paraffins, olefins, naphthenes, aromatics, alcohols,
ethers, ketones, and aldehydes. The influence of various functional groups on the enthalpy
of combustion has been illustrated graphically and discussed. The procedure for the
development of the model has been explained in detail. The overall precision of the
developed ANN model in projecting the enthalpy of combustion was approximately 96.3%,
and the average percentage error of the model, when applied against the test set, was 4.2.
This value is close to that of the experimental uncertainties observed when measuring the
enthalpy of combustion. This supervised machine-learning model can be used to predict
the enthalpies of pure compounds and real petroleum fuels.



Processes 2022, 10, 2384 17 of 18

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr10112384/s1, Table S1. Enthalpy of combustion for surrogates Edwards
& Maurice, 2001 [17], Table S2. Enthalpy of combustion for surrogates Huber et al. (2009) [18],
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