Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. External Wall Structure
Wall Structure | Thickness (m) | Conductivity (W/mK) | Specific Heat (J/kgK) | Density (kg/m3) | Resistance (m2K/W) |
---|---|---|---|---|---|
Internal plaster (lime based) | 0.02 | 0.870 | 840 | 1600 | 0.023 |
Porous concrete block | 0.20 | 0.220 | 840 | 580 | 0.909 |
External plaster (cement based) | 0.03 | 1.400 | 840 | 1450 | 0.021 |
Rip | - | - | 0.040 | ||
Rop | - | - | 0.130 | ||
Rtw | - | - | 1.123 |
2.3. Cooling Degree Day Calculation
2.4. Heat Transfer and Energy Requirement
2.5. Optimum Insulation Thickness
2.6. Energy Savings and Payback Period1
2.7. Spatial Modeling
- (1)
- Fitting theoretical variogram models with empirical variogram values at different lags.
- (2)
- Creating a variogram coefficient matrix and its decomposition.
- (3)
- Obtaining the variogram vector between one unobserved point and all observed points.
- (4)
- Calculating the estimate of an unobserved point by solving the decomposed linear system of equations.
- (5)
- Repeating steps 3 and 4 until all unobserved points have been calculated.
3. Results and Discussion
3.1. Annual Cooling Degree Days
3.2. Optimum Insulation Thickness
3.3. Insulation, Electricity, and Total Costs
3.4. Annual Net Energy Savings
3.5. Payback Periods
4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
OIT | Optimum insulation thickness (m) |
ES | Energy savings (USD/m2) |
PP | Payback period (year) |
EPS | Expanded polystyrene |
XPS | Extruded polystyrene |
RW | Rock wool |
PU | Polyurethane |
CDD | Cooling degree day (°C) |
Nc | Total number of cooling days |
Tr | Cooling reference temperature (°C) |
To | Monthly average outdoor temperature (°C) |
ΔTDc | Mean equivalent temperature difference between outdoor and base temperatures |
U | Coefficient of total heat transfer (W/m2K) |
hi, ho | Inner and outer films’ heat transfer coefficient, respectively (W/m2K) |
δip, δop | Inner and outer films’ thickness, respectively (m) |
δwm, δins | Wall and insulating materials’ thickness, respectively (m) |
kip, kop | Inner and outer plasters’ thermal conductivity, respectively (W/mK) |
kwm, kins | Wall and insulating materials’ thermal conductivity, respectively (W/mK) |
Ri, Ro | Inner and outer films’ thermal resistance, respectively (m2K/W) |
Rip, Rop | Inner and outer plasters’ thermal resistance, respectively (m2K/W) |
Rwm, Rins | Wall and insulating materials’ thermal resistance, respectively (m2K/W) |
Rtw | Total thermal resistance of an uninsulated wall (m2K/W) |
EC | Annual cooling energy requirement (kWh/m2) |
COP | Cooling performance coefficient |
CA,C | Annual cooling energy cost (USD/m2 year) |
LCCA | Life-cycle cost analysis |
PWF | Present-worth factor |
i, g | Interest and inflation rates, respectively (%) |
N | Lifetime of the building (years) |
Ce | Cost of electricity (USD/kWh) |
k | Thermal conductivity of insulation material (W/mK) |
Cins | Cost of insulation material (USD/m3) |
x | Insulation thickness (m) |
EC,noins | Annual energy requirement for cooling uninsulated building (kWh/m2) |
EC,withins | Annual energy requirement for cooling insulated building (kWh/m2) |
LCTnoins | Life cycle total cost for uninsulated building (USD/m2) |
LCTwithins | Life cycle total cost for insulated building (USD/m2) |
OK | Ordinary Kriging |
Z(x0) | Estimated values |
Z(xi) | Measured values |
λi | Kriging weight |
γij | Variogram value between point i and point j |
μ | Lagrange multiplier |
References
- Küçüktopcu, E.; Cemek, B. A study on environmental impact of insulation thickness of poultry building walls. Energy 2018, 150, 583–590. [Google Scholar] [CrossRef]
- Turkey 2021 Energy Policy Review. Available online: https://www.iea.org (accessed on 5 July 2022).
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Kürekci, N.A. Optimum insulation thickness for cold storage walls: Case study for Turkey. J. Therm. Eng. 2020, 6, 873–887. [Google Scholar] [CrossRef]
- Reilly, A.; Kinnane, O. The impact of thermal mass on building energy consumption. Appl. Energy 2017, 198, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Evin, D.; Ucar, A. Energy impact and eco-efficiency of the envelope insulation in residential buildings in Turkey. Appl. Therm. Eng. 2019, 154, 573–584. [Google Scholar] [CrossRef]
- Dombaycı, Ö.A. The environmental impact of optimum insulation thickness for external walls of buildings. Build. Environ. 2007, 42, 3855–3859. [Google Scholar] [CrossRef]
- Tekin, P.; Erol, R. A new dynamic pricing model for the effective sustainability of perishable product life cycle. Sustainability 2017, 9, 1330. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, N.; Jalpaiguri, W.B.I. Heat conduction model development of a cold storage using EPS insulation. Model. Meas. Control B 2016, 85, 18–27. [Google Scholar]
- Richman, R.; Pasqualini, P.; Kirsh, A. Life-cycle analysis of roofing insulation levels for cold storage buildings. J. Archit. Eng. 2009, 15, 55–61. [Google Scholar] [CrossRef]
- Evans, J.; Hammond, E.; Gigiel, A.; Fostera, A.; Reinholdt, L.; Fikiin, K.; Zilio, C. Assessment of methods to reduce the energy consumption of food cold stores. Appl. Therm. Eng. 2014, 62, 697–705. [Google Scholar] [CrossRef]
- Wu, D.; Shen, J.; Tian, S.; Zhou, C.; Yang, J.; Hu, K. Experimental study of temperature characteristic and energy consumption of a large-scale cold storage with buried pipe cooling. Appl. Therm. Eng. 2018, 140, 51–61. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Huang, R.; Wu, H.; Sun, Y.; Huang, G.; Xu, T. Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate. Sustain. Cities Soc. 2020, 52, 101840. [Google Scholar] [CrossRef]
- Küçüktopcu, E.; Cemek, B. The use of artificial neural networks to estimate optimum insulation thickness, energy savings, and carbon dioxide emissions. Environ. Prog. Sustain. Energy 2021, 40, e13478. [Google Scholar] [CrossRef]
- Hasan, A. Optimizing insulation thickness for buildings using life cycle cost. Appl. Energy 1999, 63, 115–124. [Google Scholar] [CrossRef]
- Mohsen, M.S.; Akash, B.A. Some prospects of energy savings in buildings. Energy Convers. Manag. 2001, 42, 1307–1315. [Google Scholar] [CrossRef]
- Çomaklı, K.; Yüksel, B. Optimum insulation thickness of external walls for energy saving. Appl. Therm. Eng. 2003, 23, 473–479. [Google Scholar] [CrossRef]
- Al-Khawaja, M.J. Determination and selecting the optimum thickness of insulation for buildings in hot countries by accounting for solar radiation. Appl. Therm. Eng. 2004, 24, 2601–2610. [Google Scholar] [CrossRef]
- Bolattürk, A. Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey. Appl. Therm. Eng. 2006, 26, 1301–1309. [Google Scholar] [CrossRef]
- Bolattürk, A. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Build. Environ. 2008, 43, 1055–1064. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Ge, H.; Fazio, P.; Chen, G.; Guo, X. Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China. Energy Build. 2015, 109, 361–368. [Google Scholar] [CrossRef]
- Ucar, A.; Balo, F. Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Appl. Energy 2009, 86, 730–736. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Tian, L.; Liao, D. A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Appl. Energy 2009, 86, 2520–2529. [Google Scholar] [CrossRef]
- Zhu, P.; Huckemann, V.; Fisch, M.N. The optimum thickness and energy saving potential of external wall insulation in different climate zones of China. Procedia Eng. 2011, 21, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Lianying, Z.; Yuan, W.; Jiyuan, Z.; Xing, L.; Linhua, Z. Numerical Study of Effects of Wall’s Insulation Thickness on Energy Performance for Different Climatic Regions of China. Energy Procedia 2015, 75, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Nyers, J.; Kajtar, L.; Tomić, S.; Nyers, A. Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy Build. 2015, 86, 268–274. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Raminosoa, C.R.; Mamiharijaona, R.; René, T.; Orosa, J.A.; Elvis, W.; Meukam, P. Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon. Renew. Sustain. Energy Rev. 2015, 50, 1192–1202. [Google Scholar] [CrossRef] [Green Version]
- Aydin, N.; Biyikoğlu, A. Determination of optimum insulation thickness by life cycle cost analysis for residential buildings in Turkey. Sci. Technol. Built Environ. 2021, 27, 2–13. [Google Scholar] [CrossRef]
- Cemek, B.; Güler, M.; Arslan, H. Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey. Theor. Appl. Climatol. 2017, 128, 1–11. [Google Scholar] [CrossRef]
- Cromley, E.K.; McLafferty, S.L. GIS and Public Health; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Pierce, F.J.; Clay, D.E. GIS Applications in Agriculture; CRC Press: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Dobesch, H.; Dumolard, P.; Dyras, I. Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Average External Weather Temperatures of Cities. Available online: https://www.mgm.gov.tr (accessed on 5 July 2022).
- Tükel, M.; Tunçbilek, E.; Komerska, A.; Keskin, G.A.; Arıcı, M. Reclassification of climatic zones for building thermal regulations based on thermoeconomic analysis: A case study of Turkey. Energy Build. 2021, 246, 111121. [Google Scholar] [CrossRef]
- Akan, A.E. Determination and Modeling of Optimum Insulation Thickness for Thermal Insulation of Buildings in All City Centers of Turkey. Int. J. Thermophys. 2021, 42, 1–34. [Google Scholar] [CrossRef]
- Physical Properties of the External Wall and Insulation Materials. Available online: https://designbuilder.co.uk/ (accessed on 5 July 2022).
- Matzarakis, A.; Balafoutis, C. Heating degree-days over Greece as an index of energy consumption. Int. J. Climatol. J. R. Meteorol. Soc. 2004, 24, 1817–1828. [Google Scholar] [CrossRef]
- Thom, H. Seasonal degree-day statistics for the United States. Mon. Weather Rev. 1952, 80, 143–147. [Google Scholar] [CrossRef]
- El-Shaarawi, M.; Al-Masri, N. Weather data and heating-degree days for Saudi Arabia. Energy 1996, 21, 39–44. [Google Scholar] [CrossRef]
- Şen, Z.; Kadioglu, M. Heating degree-days for arid regions. Energy 1998, 23, 1089–1094. [Google Scholar] [CrossRef]
- Kadioglu, M.; Şen, Z. Degree-day formulations and application in Turkey. J. Appl. Meteorol. 1999, 38, 837–846. [Google Scholar] [CrossRef]
- Büyükalaca, O.; Bulut, H.; Yılmaz, T. Analysis of variable-base heating and cooling degree-days for Turkey. Appl. Energy 2001, 69, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, I.; Sosaoglu, B. Spatial distributions of heating, cooling, and industrial degree-days in Turkey. Theor. Appl. Climatol. 2007, 90, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Batiha, M.A.; Marachli, A.A.; Rawadieh, S.E.; Altarawneh, I.S.; Al-Makhadmeh, L.A.; Batiha, M.M. A study on optimum insulation thickness of cold storage walls in all climate zones of Jordan. Case Stud. Therm. Eng. 2019, 15, 100538. [Google Scholar] [CrossRef]
- Alghoul, S.K.; Gwesha, A.O.; Naas, A.M. The effect of electricity price on saving energy transmitted from external building walls. Energy Res. J. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jraida, K.; Farchi, A.; Mounir, B.; Mounir, I. A study on the optimum insulation thicknesses of building walls with respect to different zones in Morocco. Int. J. Ambient Energy 2017, 38, 550–555. [Google Scholar] [CrossRef]
- Interest and Inflation Rates. Available online: https://tradingeconomics.com (accessed on 4 July 2021).
- Nematchoua, M.K.; Ricciardi, P.; Reiter, S.; Yvon, A. A comparative study on optimum insulation thickness of walls and energy savings in equatorial and tropical climate. Int. J. Sustain. Built Environ. 2017, 6, 170–182. [Google Scholar] [CrossRef]
- Arslan, H.; Ayyıldız Turan, N.; Demir, Y.; Güngör, A.; Cemek, B. Assessment of spatial and seasonal changes in groundwater nitrate pollution of agricultural lands through ordinary and indicator kriging techniques. Arch. Agron. Soil Sci. 2017, 63, 907–917. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hu, H.; Shu, H. An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging interpolation. Comput. Geosci. 2015, 78, 44–52. [Google Scholar] [CrossRef]
- Mishra, V.; Gamage, T. Postharvest Handling and Treatments of Fruits and Vegetables. In Handbook of Food Preservation; Rahman, M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 49–72. [Google Scholar]
- Rahman, M.S. Food preservation: Overview. In Handbook of Food Preservation; Rahman, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 3–17. [Google Scholar]
- Selim, S.; Koc-San, D.; Selim, C.; San, B.T. Site selection for avocado cultivation using GIS and multi-criteria decision analyses: Case study of Antalya, Turkey. Comput. Electron. Agric. 2018, 154, 450–459. [Google Scholar] [CrossRef]
- Alver, F.; Saraç, B.A.; Şahin, Ü.A. Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos. Pollut. Res. 2018, 9, 822–828. [Google Scholar] [CrossRef]
- Arapgirlioğlu, K.; Baykan, D.A. Urban agriculture as a tool for sustainable urban transformation: Atatürk Forest Farm, Ankara. In Sustainable Urban Agriculture and Food Planning; Routledge: London, UK, 2016; pp. 187–205. [Google Scholar]
- Bayat, G. Traditional Dishes Consumed in the Eastern Anatolian Region of Turkey; Livre de Lyon: Lyon, France, 2021. [Google Scholar]
- Tekin, M.K.; Tatli, H.; Koç, T. Climate classification in Turkey: A case study evaluating Holdridge life zones. Theor. Appl. Climatol. 2021, 144, 661–674. [Google Scholar] [CrossRef]
- Dombaycı, Ö.A. Degree-days maps of Turkey for various base temperatures. Energy 2009, 34, 1807–1812. [Google Scholar] [CrossRef]
- Kaynakli, O. Economic thermal insulation thickness for pipes and ducts: A review study. Renew. Sustain. Energy Rev. 2014, 30, 184–194. [Google Scholar] [CrossRef]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy efficient design of building: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Kaynakli, O. A review of the economical and optimum thermal insulation thickness for building applications. Renew. Sustain. Energy Rev. 2012, 16, 415–425. [Google Scholar] [CrossRef]
- Valladares-Rendón, L.; Schmid, G.; Lo, S.-L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. Energy Build. 2017, 140, 458–479. [Google Scholar] [CrossRef]
- Eicker, U.; Pietruschka, D.; Haag, M.; Schmitt, A. Systematic design and analysis of solar thermal cooling systems in different climates. Renew. Energy 2015, 80, 827–836. [Google Scholar] [CrossRef]
- Al-Sallal, K.A. Comparison between polystyrene and fiberglass roof insulation in warm and cold climates. Renew. Energy 2003, 28, 603–611. [Google Scholar] [CrossRef]
Insulation Material | Conductivity (W/mK) | Specific Heat (J/kgK) | Density (kg/m3) | Price (USD/m3) |
---|---|---|---|---|
XPS | 0.031 | 1400 | 35 | 180 |
EPS | 0.039 | 1400 | 15 | 120 |
RW | 0.040 | 1030 | 24 | 75 |
PU | 0.024 | 1590 | 35 | 260 |
City | TS 825 | Annual Temperature (°C, Mean ± SD) | 0 °C | −5 °C | −10 °C | −15 °C | −20 °C | −25 °C | −30 °C |
---|---|---|---|---|---|---|---|---|---|
Antalya | 1st zone | 18.98 ± 8.47 | 6901 | 8736 | 10,571 | 12,406 | 14,241 | 16,076 | 17,911 |
Samsun | 2nd zone | 14.68 ± 6.89 | 5357 | 7192 | 9027 | 10,862 | 12,697 | 14,532 | 16,367 |
Ankara | 3rd zone | 12.12 ± 10.09 | 4386 | 6221 | 8056 | 9891 | 11,726 | 13,561 | 15,396 |
Erzurum | 4th zone | 5.75 ± 11.88 | 2863 | 4160 | 5759 | 7594 | 9429 | 11,264 | 13,099 |
Tr (°C) | Insulation Material | Antalya | Samsun | Ankara | Erzurum |
---|---|---|---|---|---|
0 | XPS | 0.029 | 0.022 | 0.016 | 0.006 |
EPS | 0.044 | 0.034 | 0.026 | 0.013 | |
RW | 0.068 | 0.054 | 0.045 | 0.028 | |
PU | 0.020 | 0.014 | 0.010 | 0.003 | |
−5 | XPS | 0.037 | 0.031 | 0.026 | 0.015 |
EPS | 0.055 | 0.046 | 0.040 | 0.025 | |
RW | 0.082 | 0.070 | 0.062 | 0.043 | |
PU | 0.026 | 0.021 | 0.018 | 0.009 | |
−10 | XPS | 0.044 | 0.038 | 0.034 | 0.024 |
EPS | 0.065 | 0.057 | 0.051 | 0.037 | |
RW | 0.095 | 0.084 | 0.077 | 0.058 | |
PU | 0.031 | 0.027 | 0.024 | 0.016 | |
−15 | XPS | 0.051 | 0.046 | 0.042 | 0.032 |
EPS | 0.074 | 0.067 | 0.062 | 0.049 | |
RW | 0.106 | 0.097 | 0.090 | 0.073 | |
PU | 0.036 | 0.032 | 0.029 | 0.022 | |
−20 | XPS | 0.057 | 0.052 | 0.049 | 0.040 |
EPS | 0.083 | 0.076 | 0.071 | 0.059 | |
RW | 0.117 | 0.108 | 0.102 | 0.087 | |
PU | 0.040 | 0.037 | 0.034 | 0.028 | |
−25 | XPS | 0.063 | 0.058 | 0.055 | 0.047 |
EPS | 0.091 | 0.084 | 0.080 | 0.069 | |
RW | 0.127 | 0.119 | 0.113 | 0.099 | |
PU | 0.045 | 0.041 | 0.039 | 0.033 | |
−30 | XPS | 0.068 | 0.064 | 0.061 | 0.053 |
EPS | 0.098 | 0.092 | 0.088 | 0.077 | |
RW | 0.137 | 0.129 | 0.123 | 0.110 | |
PU | 0.049 | 0.045 | 0.043 | 0.038 |
Tr (°C) | Insulation Material | Antalya | Samsun | Ankara | Erzurum |
---|---|---|---|---|---|
0 | XPS | 1.594 | 1.038 | 0.706 | 0.226 |
EPS | 1.753 | 1.179 | 0.834 | 0.329 | |
RW | 2.100 | 1.484 | 1.110 | 0.552 | |
PU | 1.485 | 0.942 | 0.619 | 0.156 | |
−5 | XPS | 2.285 | 1.701 | 1.346 | 0.631 |
EPS | 2.464 | 1.864 | 1.497 | 0.755 | |
RW | 2.854 | 2.218 | 1.826 | 1.024 | |
PU | 2.162 | 1.590 | 1.242 | 0.547 | |
−10 | XPS | 2.999 | 2.396 | 2.025 | 1.180 |
EPS | 3.197 | 2.579 | 2.198 | 1.326 | |
RW | 3.625 | 2.975 | 2.572 | 1.642 | |
PU | 2.864 | 2.272 | 1.908 | 1.081 | |
−15 | XPS | 3.732 | 3.114 | 2.732 | 1.851 |
EPS | 3.946 | 3.315 | 2.923 | 2.019 | |
RW | 4.410 | 3.749 | 3.338 | 2.382 | |
PU | 3.586 | 2.978 | 2.602 | 1.737 | |
−20 | XPS | 4.478 | 3.849 | 3.458 | 2.552 |
EPS | 4.708 | 4.066 | 3.667 | 2.739 | |
RW | 5.205 | 4.536 | 4.118 | 3.143 | |
PU | 4.322 | 3.701 | 3.316 | 2.425 | |
−25 | XPS | 5.236 | 4.598 | 4.200 | 3.274 |
EPS | 5.480 | 4.829 | 4.424 | 3.478 | |
RW | 6.008 | 5.332 | 4.909 | 3.920 | |
PU | 5.070 | 4.440 | 4.047 | 3.135 | |
−30 | XPS | 6.004 | 5.357 | 4.954 | 4.012 |
EPS | 6.261 | 5.603 | 5.193 | 4.232 | |
RW | 6.819 | 6.136 | 5.710 | 4.709 | |
PU | 5.828 | 5.189 | 4.791 | 3.862 |
Tr (°C) | Insulation Material | Antalya | Samsun | Ankara | Erzurum |
---|---|---|---|---|---|
0 | XPS | 3.304 | 3.750 | 4.144 | 5.129 |
EPS | 3.026 | 3.434 | 3.795 | 4.698 | |
RW | 2.422 | 2.750 | 3.039 | 3.761 | |
PU | 3.494 | 3.965 | 4.382 | 5.424 | |
−5 | XPS | 2.936 | 3.236 | 3.480 | 4.255 |
EPS | 2.689 | 2.964 | 3.187 | 3.897 | |
RW | 2.153 | 2.373 | 2.551 | 3.120 | |
PU | 3.105 | 3.422 | 3.680 | 4.500 | |
−10 | XPS | 2.669 | 2.889 | 3.058 | 3.617 |
EPS | 2.445 | 2.646 | 2.800 | 3.312 | |
RW | 1.957 | 2.118 | 2.242 | 2.652 | |
PU | 2.823 | 3.055 | 3.234 | 3.825 | |
−15 | XPS | 2.464 | 2.633 | 2.760 | 3.149 |
EPS | 2.257 | 2.412 | 2.527 | 2.884 | |
RW | 1.807 | 1.931 | 2.023 | 2.309 | |
PU | 2.606 | 2.785 | 2.918 | 3.331 | |
−20 | XPS | 2.300 | 2.436 | 2.535 | 2.826 |
EPS | 2.106 | 2.231 | 2.321 | 2.588 | |
RW | 1.686 | 1.786 | 1.858 | 2.072 | |
PU | 2.432 | 2.576 | 2.680 | 2.989 | |
−25 | XPS | 2.165 | 2.277 | 2.357 | 2.586 |
EPS | 1.982 | 2.085 | 2.158 | 2.368 | |
RW | 1.587 | 1.669 | 1.728 | 1.896 | |
PU | 2.289 | 2.408 | 2.492 | 2.735 | |
−30 | XPS | 2.051 | 2.145 | 2.212 | 2.398 |
EPS | 1.878 | 1.965 | 2.026 | 2.196 | |
RW | 1.504 | 1.573 | 1.622 | 1.758 | |
PU | 2.169 | 2.269 | 2.339 | 2.536 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçüktopcu, E.; Cemek, B.; Simsek, H. Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage. Processes 2022, 10, 2393. https://doi.org/10.3390/pr10112393
Küçüktopcu E, Cemek B, Simsek H. Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage. Processes. 2022; 10(11):2393. https://doi.org/10.3390/pr10112393
Chicago/Turabian StyleKüçüktopcu, Erdem, Bilal Cemek, and Halis Simsek. 2022. "Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage" Processes 10, no. 11: 2393. https://doi.org/10.3390/pr10112393
APA StyleKüçüktopcu, E., Cemek, B., & Simsek, H. (2022). Application of Spatial Analysis to Determine the Effect of Insulation Thickness on Energy Efficiency and Cost Savings for Cold Storage. Processes, 10(11), 2393. https://doi.org/10.3390/pr10112393