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Abstract: The optimal configuration of flexible workshop resources is critical to production efficiency,
while disturbances pose significant challenges to the effectiveness of the configuration. Therefore, this
paper proposes a hybrid-driven resource dynamic configuration model and an improved Imperialist
Competitive Algorithm hybrid Neighborhood Search (IICA-NS) that incorporates domain knowledge
to allocate resources in flexible workshops. First, a hybrid-driven configuration framework is pro-
posed to optimize resource configuration strategies. Then, in the revolutionary step of the Imperialist
Competitive Algorithm (ICA), the bottleneck heuristic neighborhood structure is adopted to retain
the excellent genes in the imperial so that the updated imperial is closer to the optimal solution;
And a population invasion strategy is proposed further to improve the searchability of the ICA algo-
rithm. Finally, the simulation experiments are carried out through production examples on flexible
workshop production cases, and the proposed algorithm is applied. Compared with traditional
ICA, genetic algorithm (GA), particle swarm optimization algorithm (PSO), moth-flame optimization
(MFO) and sparrow search algorithm (SSA), the proposed method and algorithm effectively solve
flexible workshops’ resource dynamic configuration problems.

Keywords: flexible manufacturing shop; dynamic resource configuration; bottleneck heuristic;
neighborhood structure; imperial competition algorithm

1. Introduction

As one of the pillars of industrialization, manufacturing occupies an essential posi-
tion in the national economy. As well, for a long time, the optimal configuration of job
shop resources has received extensive attention as a standard and essential problem in
manufacturing [1]. The general situation of the issues, similar to real-world scheduling
problems, is NP-hard [2]. In particular, various disturbances in the authentic processing
environment will directly or indirectly lead to abnormal production processes. The change
in real-time working conditions dramatically increases the difficulty of efficient resource
configuration [3]. In addition, the raging new crown epidemic has largely damaged the pro-
ductivity of the global manufacturing industry, and there is an urgent need to improve the
efficiency of resource configuration to increase throughput. Therefore, the research on the
dynamic configuration of flexible workshop resources has important scientific theoretical
significance and practical application value.

The flexible job shop scheduling problem (FJSP) is an abstract model of resource config-
uration problems in many manufacturing enterprises and service industries. Engin et al. [4]
studied the no-waiting job shop, and a scheduling model was used for the no-waiting
job shop; Wu [5], Xiao [6], and Zhang et al. [7] studied the FJSP problem targeting energy
consumption. At the same time, Su [8] et al. believe that bottlenecks, as critical resources,
should be focused on in the configuration process. Berkhout et al. [9] proposed a short-term
production scheduling method based on shifting production bottlenecks. Tonke et al. [10]
proposed a round-robin scheduling strategy to solve the resource configuration problem in
multi-bottleneck systems.
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However, the production process is complex and changeable, and many unexpected
situations hinder the completion of production goals [11–13]. Production exception-driven
rescheduling is often used to adjust the configuration of resources in the manufacturing
process to reduce losses. Nouiri [14,15] and Sun et al. [16] solved the rescheduling issue
under machine failure conditions using a two-stage algorithm; Considering the states of
each machine, Zhang et al. [17–19] proposed a multi-agent-based rescheduling method;
Salido [20] and Zakaria [21] improved the adaptability and effectiveness of the rescheduling
model by researching the rescheduling algorithm. Sun et al. [22] believed that a data-driven
approach could respond to dynamic systems and proposed a control strategy to suppress
the effects of disturbances. Qiu et al. [3] further use thresholds to increase the accuracy of
rescheduling drives. It can be seen that the optimal dynamic configuration of resources is of
great significance to the production goal achievement. However, the dynamic configuration
method research is still in its infancy, so it needs further study.

Effectively solving resource configuration problems has also attracted widespread
attention. Among them, the meta-heuristic algorithms have an excellent ability to solve NP-
hard problems, such as GA [23] and its improved algorithm [24], ant colony optimization
(ACO) [25], PSO [26] and its improved algorithm [27], the ICA [28,29]. The ICA algorithm
has been studied due to its novel mechanism and superiority in large-scale combinatorial
optimization problems. The ICA and its improved algorithm have been successful in
solving resource configuration problems, including multi-objective optimization, single
machine [30], parallel machine [31], assembly shop scheduling [32], and flexible job shop
scheduling problem (FJSP) [33], etc. However, the issue of insufficient local search ability
widely exists in random search algorithms. Karimi [34] et al. calibrated various opera-
tors and parameters using the Taguchi method. Many scholars have studied local search
algorithms, such as simulated annealing(SA) [35], tabu search algorithm (TS) [36,37], neigh-
borhood search algorithm (NS) [28,38,39], and so on. The neighborhood search algorithm is
widely combined with other global search algorithms. Marichelvam et al. [38] improved the
speed of solving shop-floor scheduling optimal solutions by PSO optimization with VNS.
LEI et al. [28] designed a two-stage metaheuristic algorithm based on the ICA and the VNS
for MOFJSP with total energy consumption constraints. In addition, biological evolutionary
algorithms have also been used to solve shop floor resource allocation problems in recent
years [40,41], such as the whale optimization algorithm (WOA), moth-flame optimization
(MFO), and sparrow search algorithm (SSA). The above algorithms are mainly solved and
optimized for standard cases. They are not combined with the production situation and are
difficult to use directly in the workshop resource configuration process.

In conclusion, most current research on configuration methods is based on idealized
mathematical models divorced from actual production situations. When there are abnor-
mal situations in the production process, such as emergency order insertion, tool wear,
machine tool failure, etc., the configuration method often fails. Therefore, this paper pro-
poses a state-based hybrid-driven dynamic resource configuration framework considering
the actual production situation and designs a hybrid evolutionary algorithm integrating
manufacturing domain knowledge to embed the framework. The main contributions of
this paper are as follows:

1. A state-based hybrid driven resource configuration method is proposed and com-
bined with the traditional cycle-driven method to form a new resource dynamic
configuration framework.

2. To realize the dynamic configuration of resources driven by the real-time state of the
workshop, two novel bottleneck heuristic neighborhood structures are designed
and integrated into the ICA optimization algorithm to enhance the algorithm’s
optimization ability.

3. Introducing the invasion strategy to improve the ICA to avoid the algorithm falling
into local optimum.

The rest of this paper is organized as follows. In Section 2, a dynamic resource
configuration framework is proposed, and its problem description and modeling are carried
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out; The hybrid evolutionary algorithm IICA-NS is proposed in Section 3; In Section 4, the
superiority of the IICA-NS algorithm is verified by comparing it with different algorithms.
As well, the effectiveness of the resource dynamic configuration framework is verified
through the workshop case; The summary of the full text is presented in Section 5.

2. Resource Dynamic Configuration Framework and Problem Description
2.1. Resource Dynamic Configuration Framework

The ultimate goal of resource optimal configuration is to formulate a clear process
plan to satisfy the constraints of the production process, coordinate and organize the pro-
duction activities among resources, and ensure that the manufacturing system’s production
efficiency or production cost is optimized. Wang et al. [27] proposed a digital twin-based
resource configuration framework. But this framework aims to coordinate the configuration
of resources across organizations and cannot guide the dynamic configuration of manufac-
turing resources in the production process. Therefore, this paper proposes a framework for
the optimal configuration of manufacturing resources, as shown in Figure 1. The resources
mainly include manufacturing resources and raw material resources. The dynamic con-
figuration process is driven by both tasks and constraints. First, the material requirement
plan is prepared according to the master production plan, and the gross capacity and the
acceptable ability plan are ready simultaneously; The scheduling center then assigns tasks
to the machining center, and each team formulates detailed process plans; Finally, the
resource configuration results are presented as a disjunctive graph and Gantt charts. The
dispatch center must monitor production execution in real-time during the configuration
process. When delayed delivery or bottleneck drift occurs, resources should be reconfigured
immediately to ensure smooth production.
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2.2. Problem Description and Mathematical Model

The problem of resource configuration in the manufacturing process emphasizes how
to rationally use the multi-attribute resources of the job shop to achieve the established
production goals. According to product manufacturing needs and the process route, the
processing equipment is reasonably selected, and the processing tasks are allocated. The
general workshop resource configuration problem can be summarized as follows: n tasks
need to be assigned to m available resources within a specified time, and the configuration
process needs to meet constraints such as industrial routes and processing time. For the
convenience of discussion, the description of the symbols involved in the model is shown
in Table 1.

Table 1. The symbols involved in the mathematical model and their definitions.

Symbol Definition

n the total number of workpieces
m the total number of machines
Ni the number of processes of the workpiece i
Ci the completion time of workpiece i

xijr
the decision variable for the machine selection of the process: when the process

Oij selects the machine r, xijr = 1. Otherwise, xijr = 0
Cijr the completion time of the j-th process of the i-th workpiece on the machine r
pijr the processing time of the l-th process of the k-th workpiece on the machine r

Si(j+1)
the process completion time of the j-th process of the i-th workpiece, and the

process start time of the j + 1-th procedure of the i-th workpiece
Sklr the start time of the l-th process of the k-th workpiece on the machine r
Cklr the completion time of the l-th process of the k-th workpiece on the machine r

L a sufficiently large positive number

yijklr
the decision variable chosen for the process: when the process Oij is processed

later than Okl on the machine r, yijklr = 0, otherwise, yijklr = 1
M the machine set of the workshop
mij the processing machine of the processing process Oij

Mij the optional machine set of the processing process Oij, Mij⊆M

T(r)
idle

the set consisting of the idle time of machine r

T(r)
capacity

the available processing capacity of the machine r

Eq the machine with the maximum bottleneck degree at different times
gef the shifting bottleneck degree of machine e in time window f
ar the duration of effective state in the station r

amin
the minimum value of the duration of effective state of all machines in

a particular stage

Ur the blockage time of station r
Wr the starvation time of station r
Zf the length of the current time window

The objective function of minimizing the maximum makespan time is given based on
the above definition, as shown in Formula (1).

E = min(maxn
i=1Ci) (1)

And satisfies the following constraints:

m

∑
r=1

xijr = 1, ∀i ∈ [1, n], ∀j ∈ [1, Ni] (2)

Cijr ≤ Si(j+1)r, ∀i ∈ [1, n], ∀j ∈ [1, Ni − 1], ∀r ∈ [1, m] (3)

Sij + xijr × pijr ≤ Cij, ∀i ∈ [1, n], ∀j ∈ [1, Ni − 1], ∀r ∈ [1, m] (4)
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Cijr ≤ Sklr + L(1− yijklr), ∀i, k ∈ [1, n], ∀j, l ∈ [1, Ni], ∀r ∈ [1, m] (5)

Cklr ≤ Sijr + Lyijklr, ∀i, k ∈ [1, n], ∀j, l ∈ [1, Ni], ∀r ∈ [1, m] (6)

n

∑
i=1

Ni

∑
j=1

(Cijr − Sijr) ≤ T(r)
capacity, ∀i ∈ [1, n], ∀j ∈ [1, Ni − 1], ∀r ∈ [1, m] (7)

Sijr ≥ 0, ∀i ∈ [1, n], ∀j ∈ [1, Ni], ∀r ∈ [1, m] (8)

Among them, Equation (2) indicates that a workpiece can only be processed on
one machine at the same time; Equations (3) and (4) indicate that each process needs to
be processed in order according to the process route; Equations (5) and (6) indicate that
one machine can only process one workpiece at the same time; Equation (7) indicates the
limited machinability of equipment r; Equation (8) indicates that the start processing time
of all operations is greater than 0;

∀mij ∈ Mij, ∀i, [1, n], ∀j ∈ [1, Ni] (9)

T(r)
idle ∩

[
Sijr, Cijr

]
6= , ∀i ∈ [1, n], ∀j ∈ [1, Ni − 1], ∀r ∈ [1, m] (10)

B =
{

Eq
∣∣gq1 =max(g11, · · · , ge1), gq2 = max(g12, · · · , ge2), · · · , gq f = max

(
g1 f , · · · , ge f

)}
, ∀q, e ∈ [1, m] (11)

ge f = ω1
ar

amin
+ (1−ω1)

(Ur−1 −Ur) + (Wr+1 −Wr)

Z f
(12)

Equation (9) represents the collection of optional processing equipment for a process;
Equation (10) represents the optional processing time of the process on different ma-
chines; Equation (11) represents the dynamic bottleneck state of the manufacturing system;
Equation (12) is the bottleneck degree calculation formula.

3. Hybrid Evolutionary Algorithm IICA-NS

Because the ICA algorithm has a fast convergence speed, flexible structure, and robust
searchability, it is always used to optimize single-objective or multi-objective problems [28].
This paper proposed two neighborhood structures to improve the local optimization ability
of the ICA. The improved hybrid evolutionary algorithm IICA-NS process is shown in
Figure 2.

3.1. Encoding and Decoding

Four workpieces processed on five machines is taken as an example to introduce
the encoding and decoding method proposed in this paper, in which each workpiece
has three processes to be processed. In the IICA-NS, each country is a feasible solution,
which is composed of machine code and operation code. The resource configuration
problem should not only consider the workpiece’s processing sequence, but also select the
corresponding processing equipment for the process. Therefore, the process sequences
and machine sequences are placed in two dimensions, and two-stage coding is used. The
process code and machine code are shown in Figure 3. The operation code composed of
the workpiece number records the order in which the operation is processed. The process
number of the workpiece is represented by the number of times the workpiece appears.
The first number, 4, in the process code in Figure 3, illustrates the first operation O41 of
workpiece 4. The machine code represents the processing machine of each process. Each
digit is arranged from the first workpiece’s first process to the last workpiece’s last process.
In particular, machine sets are introduced to avoid generating infeasible solutions when
encoding machine codes. The number in the machine code represents the sequence number
of the processing machine in the optional processing machine set. The first integer 2 is the
second machine of the optional machine set {M2, M3, M4} in the process O11, that is, M3.
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Operate the machine code after operating the process code when decoding. The
process code is decoded into the sequence of process processing; When the machine code
is decoded, the processing machine is found by querying the machine set corresponding
to the process in turn, and then the processing start and end time of each process are
calculated, and finally decoded into activity scheduling.
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3.2. Imperial Creation and Initialization

First, among the initialized α countries, the β countries with the shortest maximum
completion time are selected as imperialist countries: imp, and the remaining α-β countries
are used as colonial countries: col. They are allocated to β imperialist countries according
to a certain probability.
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Usually, at least one of the colonial countries will have a normalized cost of zero
and a power of zero, so these colonial countries cannot be assigned to any colonies. The
corresponding initial imperial is difficult to assimilate and revolutionize because it has no
settlements, affecting ICA’s search efficiency. To this end, a new calculation formula for the
normalized cost is given, as shown in Equation (13).

Cimp = 2×max
{

c1, c2, · · · , cβ

}
− cimp, β = 1, 2, · · · , (13)

The standardized sphere of influence Limp of an imperialist country is shown in
Equation (14).

Limp = |2×max
{

c1, c2, · · · , cβ

}
− cimp/∑β

i cβ|, β = 1, 2, · · · , (14)

Finally, calculate the number of colonies for the first β-1 colonizing countries and
randomly assign territories to each colonizing country. The initial number of colonies
owned by the n-th colonizing country is NCimp, as shown in Formula (15).

NCimp = round
{

Limp × Ncol
}

(15)

3.3. Intra-Empire Competition
3.3.1. Assimilation Mechanism

Assimilation is a process in which colonial countries gradually tend to become imperi-
alist countries. It is achieved by copying the excellent genetic fragments of the imperialist
countries to the colonial countries. The assimilation process is divided into process se-
quence assimilation and machine sequence assimilation. Multipoint crossover mutation is
used to select machines. The specific process is: randomly select r positions, replace the
information of the r positions of the colonial country with the corresponding places in the
colony, and keep the rest of the position information unchanged; the process sorting part
adopts the method of workpiece exchange, the processing part of the colony is exchanged
with the processing part of the colonial country, and the processing part of the colony
is updated.

3.3.2. Revolutionary Mechanism Based on Neighborhood Search

The revolution consists of two parts: the selection of machines and the sequencing
of processes. The former replaces the bottleneck machine with other machines in the
machine set; The latter exchange the position information of the two bottleneck processes
in the process sequence part. The revolution of the original ICA algorithm is carried out
randomly, and it is improved using the bottleneck heuristic neighborhood structure to
make the solution approach the optimal solution efficiently.

There are generally multiple bottleneck processes in workshop resource configuration
that limit the system’s throughput. Among them, the length of the bottleneck process
determines the completion time of the entire scheduling. Therefore, changing the bottleneck
process can change the completion time to the greatest extent possible. The domain
structure can effectively explore the local solution space. Usually, the bottleneck process
continuously processed by the same machine is called the process block, the first process in
the process block is called the blockhead process, and the last process is called the block
tail process. The process with the red frame in Figure 4 is the bottleneck process. For
the identification method of the bottleneck process, see the literature [8,42,43]. Taking the
bottleneck process on machine 2 as an example, [O21, O11, O43] are process blocks, and O21
is the first process of the block. O43 is the block-end process.
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Based on the above definition, the bottleneck heuristic neighborhood algorithm uses
two effective neighborhood structures: exchanging the processing order of two adjacent
processes on the bottleneck machine (exact machine neighborhood search), and assigning
new equipment to operations on the bottleneck process block (cross-machine neighborhood
search). These two types of neighborhoods only include those new solutions that are likely
to be improved and exclude the scheduling that is impossible to improve, thus significantly
improving the efficiency of the search.

The meanings of the symbols involved in the neighborhood structure are shown
in Table 2.

Table 2. Symbols in neighborhood structure and their interpretations.

Symbols Description

OS, MS Initial operation and machine code
OS′, MS′ Updated operation and machine code sequence

O Bottleneck operation
M(O) Machine for processing the bottleneck operation O

to, tv ′ , tu ′ Processing time of operation o, v, u
x1 , x2 Machining operation on M(v′) and M(o)

u, v Processes that are moved backward and forward
JP[i], MP[i] Workpiece and machine pre-process of the process i

JS[i], MS[i] Subsequent operations on the workpiece and machine sequence
of operation i

SE[i], CE[i] The earliest start and completion time of operation i
SL[i], CL[i] The latest start and completion time of the process i

(1) Neighborhood search for the same bottleneck machine

The same machine neighborhood search process is shown in Figure 5. The first line’s
two numerical fives in the machine code sequence represent the first and second processes
processed by the fifth machine in the optional equipment set. The index O23 and the index
O33 locate the two processes to the second initial process code sequence and exchange the
two processes for obtaining the third same-machine neighborhood solution.
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For the same-bottleneck equipment neighborhood search problem, refer to the related
neighborhood structures designed for the resource configuration, such as N2, N3, N4, N5,
N6, and N7 [44]. Since the number of scales of the neighborhood mentioned above design,
the moving process is too small, and its searchability is limited, carrying a more significant
number of processes simultaneously is the key to further improving the performance of
the neighborhood structure. Based on the neighborhood structures N2 and N5, this paper
proposes a new neighborhood search structure with the multi-process linkage of the same
bottleneck equipment, as shown in Algorithm 1. The core operation of this structure is to
exchange the bottleneck process block with two blockhead and two block tail processes. At
the same time, move JP[v] to the idle time slot of other machinable machines (or swap JP[v]
and MP[JP[v]]), and move JS[u] to the idle time slot of other machinable machines (or swap
JS[u] with MS[JS[u]]). Then, consider the following situation:

• If the earliest completion time of JP[v] is later than the earliest start time of process u,
the earliest start time of process v must be later than the earliest start time of process u
after exchanging process u and process v. Then the whole solution time extends.

• If the earliest start time of JP[v] is equal to the earliest completion time of JP[JP[v]],
then exchanging JP[v] and MP[JP[v]] will not shorten the start time of JP[v]. The same
is true for the post-shifting process. Based on the above situation, the algorithm of the
same-bottleneck machine neighborhood search designed in this paper is as follows:

Algorithm 1: neighborhood search in the same bottleneck machine

Input: u, v, v′, u′, x1, MS, OS
Output: OS′

while The operation block is the operation block on the bottleneck machine do
Swap u and v
u′ = Ø
v′ = Ø
if JP[v] 6= Ø and cE(JP[v]) > sE(u)
v′ = JP[v]
while v′ = Ø
if [cE(x1),sL(MS[x1])]∩[cE(JP[v′]),sL(v)] > tv ′

Move v′ between x1 and MS[x1] for processing
else if MP[v′] 6= and cE(MP[v′]) = sE(v′)
Swap MP[v′] and v′

else
v′ = JP[v′]
end
end
end
if JS[u] 6= Ø and sL(JS[u]) < cL(v)
u′ = JS[u]
while u′ = Ø
if [cE(x1),sL(MS[x1])]∩[cE(u′),sL(JS[u′])] > tu ′

Move u′ between x1 and MS[x1] for processing
else if MS[u′] 6= and cL(u′) = sL(MS[u′])
Swap MS[u′] and u′

else
u′ = JS[u′]
end
end
end
Update OS encoding
end
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(2) Neighborhood search across bottleneck machines

The core idea of the cross-bottleneck machine neighborhood search is to shorten the
critical path and reducing the maximum completion time by moving the bottleneck process
to the idle time of other machinable machines without extending the latest completion time
of different processes. The cross-machine neighborhood search process is shown in Figure 6
and Algorithm 2. The first digital 2 in the second initial machine code sequence represents
the second machine in the optional device set. The cross-machine neighborhood solution is
obtained by changing selection machine 2 to selection machine 5, as shown in the third line.
The expression for judging whether to move is:

[cE(x), sL(MS[x] )] ∩ [cE JP[o], sL(JS[o])] > to (16)

where O is the critical process; x is a process processed on the candidate machine of the
essential process O; to is the processing time of the crucial process O. The algorithm of the
neighborhood search across the machines designed in this paper is as follows:

Algorithm 2: neighborhood search across the machines

Input: o, M(o), M(o), x2, MS, OS
Output: MS′

while Operation block is a bottleneck operation block do
if [cE(x2),sL(MS[x2])]∩[cE (JP[o]),sL(JS[o])] > to
Move o between x2 and MS[x2] for processing
end
Update MS encoding
End
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When the colony has been assimilated and revolutionized, compare the cost of all the
colonies with the imperialist country. The colony replaces the imperialist country as the
new imperialist country within the imperial if its cost is lower than that of the imperialist
country; Otherwise, the colonial state does not change.

3.4. Extra-Empire Competition
3.4.1. Invasion Mechanism

The original algorithm only iterates in randomly generated initial countries. The
algorithm falls into the local optimum if the initial solutions developed are not uniformly
distributed in the solution space. Referring to real society, the invasion of solid external
forces will aggravate the evolution of conflicts. The surviving parties will rapidly become
stronger through the survival of the fittest. Based on this phenomenon, an invasion strategy
of foreign imperial groups is proposed to enhance the search breadth of solutions and bring
the results closer to optimal.

Step 1: Generate a random country group to form a group of foreign invasion
imperial groups.

Step 2: In a binary tournament, the original imperial group and the invading imperial
group run for the victorious country.
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Step 3: The victorious nation will select outstanding colonies with the same number of
colonies as the original imperial to form a victorious nation group and enter the original
imperial group to compete.

3.4.2. Country Competition Extra-Empire

In the algorithm iteration process, extra imperials can acquire weaker colonies in the
imperial (the high-cost colonies in this case) with a certain probability through competition.
When the number of colonies owned by an imperial is less than or equal to the specified
threshold (the threshold in this paper is zero), the imperial is destroyed. The overlord in that
imperial was demoted to the colony, and other imperials will complete it. As the iteration
progresses, weak imperials are continuously deleted, and eventually, only one imperial
remains, or the specified number of iterations has been reached. Use the imperialist country
in the most potent imperial as the optimal output of the algorithm. The evolution diagram
of the improved ICA is shown in Figure 7.
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Release the most expensive colony among the weakest imperials and compete. Gen-
erally, the stronger the imperial, the higher the probability of acquiring the colony. The
competition process is as follows:

Step 1: Calculate the total cost of the imperial, as shown in Equation (15), and normal-
ize it, as shown in Equation (16).

TCimp = Cimp + α×

τ

∑
col=1

Ccol

τ
, τ = 1, 2, · · · , (17)

ETCimp = 2×max{TC1, TC2, · · · , TCτ} − TCimp, τ = 1, 2, · · · , (18)

where τ represents the number of colonies owned by imperialist countries, α is the colony
impact factor, 0 < α < 1, and ETCn represents the normalized cost of the nth imperial.

Step 2: Calculate the probability that each imperial occupies a weak colony, as shown
in Equation (17).

pn =

∣∣∣∣ETCimp/
γ

∑
i=1

ETCi

∣∣∣∣ (19)

where γ represents the number of imperials.
Step 3: The strongest imperialist country attains the freed colonies.
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4. Case Study

This section verifies the effectiveness of the proposed IICA-NS algorithm in solving
the optimal configuration of flexible workshop resources through simulation experiments.

4.1. Basic Data Preparation and Parameter Setting

The workshop of a manufacturing enterprise mainly produces elevator parts, which
have the characteristics of flexible manufacturing. The information on the processed work-
pieces and the processing machines used are shown in Tables 3 and 4 respectively. The
simulation environment for algorithm verification is established based on the discrete man-
ufacturing process data of the workshop. Its parts process route, machine tool processing
parameters, master production plan, and material demand plan are used for algorithm
parameters. The problem of optimal configuration of flexible workshop resources is simpli-
fied as 9 × 13, as shown in Table 5. The values in the table are all dimensionless quantities,
indicating the processing time of each process on the corresponding machine. “-” in the
table shows that the operation cannot be processed on the related machine in this column.

To verify the effectiveness of IICA-NS, the production task set PTS1-PTS9 with different
scales is solved. The task set is composed of nine different combinations at three scale
levels, and each workpiece appears four times to ensure uniform distribution of data and
reduce contingency. The processing tasks included in each production task set are shown
in Table 6. [P1, P5, P8] represent part 1 (brake disc), part 5 (brake arm), and part 8 (pin
shaft) respectively. The classical imperial competition algorithm (ICA), genetic algorithm
(GA), particle swarm optimization (PSO), Moth-flame optimization (MFO), and sparrow
search algorithm (SSA) are used as comparison algorithms The larger the population size is,
the better the algorithm performance is, but the computational cost also increases. In this
paper, the maximum iteration number of 300 and the population size of 200 are selected as
the parameter combination of the algorithm. The remaining characteristic parameters of
each algorithm are shown in Table 7.

Table 3. Processing parts information.

Order Part Name Order Part Name Order Part Name

1 Brake disc 4 Coupling 7 Absorbent sheet
2 Output shaft 5 Brake arm 8 Pin shaft
3 Traction wheel 6 Clamping piece 9 Iron core

Table 4. Processing machine information.

Name Equipment Type Equipment Model CNC System Main Motor
Power (kW)

Spindle
Speed (rpm)

M1 Drilling and Milling Center 1 TC-R2B CNC-B00 7.5 16,000
M2 Drilling and Milling Center 2 TC-R2B CNC-B00 7.5 16,000
M3 Precision Machine Tool 1 BNC427C FANUC 160i-B 7.5 6000
M4 Precision Machine Tool 2 BNC427C FANUC 160i-B 7.5 6000
M5 Precision Machine Tool 3 BNC427C FANUC 160i-B 7.5 6000
M6 CNC Lathe 1 L200E-M OSP-P200LA-R 11 6000
M7 CNC Lathe 2 L200E-M OSP-P200LA-R 11 6000
M8 CNC Lathe 3 L200E-M OSP-P200LA-R 11 6000
M9 Counter Turning Center 1 LT2000EX OKUMA 5.5 6000

M10 Counter Turning Center 2 LT2000EX OKUMA 5.5 6000
M11 Machining Center 1 LJ-650 FANUC Oi-M 11/15 6000
M12 Machining Center 2 LJ-650 FANUC Oi-M 11/15 6000
M13 Machining Center 3 LJ-650 FANUC Oi-M 11/15 6000
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Table 5. 9 × 13 problem example.

Part Process
Machine Processing Time

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

Part1
O11 6 6 - 9 10 11 4 5 4 7 6 8 9
O12 2 4 3 6 7 2 2 7 5 8 6 2 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part2
O21 9 9 3 7 - 5 6 7 7 7 4 9 9
O22 5 7 8 5 8 5 3 9 4 5 5 4 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part3
O31 9 4 4 5 6 10 10 - 10 5 4 6 10
O32 10 9 7 8 4 9 5 2 8 5 8 8 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part4
O41 8 4 3 7 6 9 10 5 8 5 10 9 10
O42 3 10 4 3 4 2 9 5 10 - 9 10 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part5
O51 6 3 8 5 4 3 3 3 9 6 5 10 3
O52 4 9 8 8 8 5 4 7 10 4 3 7 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part6
O61 9 9 9 9 5 8 6 7 6 3 3 6 10
O62 7 7 10 9 4 9 9 5 7 10 6 5 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part7
O71 8 4 4 7 7 8 8 9 6 6 7 7 9
O72 3 6 6 3 3 7 6 9 6 7 5 7 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part8
O81 9 10 4 7 9 9 5 4 10 5 5 3 6
O82 9 5 8 9 5 3 10 5 7 5 10 6 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part9
O91 5 3 3 10 3 8 3 6 7 7 5 8 4
O92 8 5 6 3 8 8 5 9 7 3 5 5 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 6. Set of production tasks at different levels.

Small Scale Levels Middle Scale Levels Large Scale Levels

1 [P1, P5, P8] 4 [P1, P4, P7, P8, P9] 7 [P2, P3, P4, P6, P7, P8, P9]
2 [P2, P3, P7] 5 [P2, P3, P4, P5, P6] 8 [P1, P3, P4, P5, P6, P8, P9]
3 [P4, P6, P9] 6 [P1, P3, P5, P8, P9] 9 [P1, P2, P3, P5, P7, P8, P9,]

Table 7. Details of algorithm parameters.

Algorithm Parameter Settings

IICA-NS Revolution probability: 0.1; Assimilation probability: 0.9; Intrusion probability: 0.29;
imperialist countries: 15

ICA Revolution probability: 0.1; Assimilation probability: 0.9; imperialist countries: 15
PSO C1, C2 = 2, inertia factor: 0.9
GA Mutation probability: 0.1; Crossover probability: 0.9
SSA Discoverer PD = 20%; Followers SD = 10%; Alert threshold R2 0.8
MFO b = 1; dimension: 13

4.2. Experimental Results and Discussion

The above hybrid algorithm is implemented by Matlab programming. The central
frequency of the test computer CPU is 1.90 GHz, and 2.11 GHz, and the memory is
16 GB. Numerical simulation experiments are carried out under the same conditions. Four
algorithms were used to solve nine production task sets, and each algorithm was run
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independently 30 times. The optimal value (Best), relative deviation (RE), and average
convergence speed (AV (CPU)) of each algorithm are shown in Tables 8–10 respectively.

Table 8. The Best value comparison of sixalgorithms.

Task Set ICA-VNS ICA GA PSO MFO SSA

PTS1 15 15 16 16 15 16
PTS2 16 16 15 16 15 16
PTS3 16 17 16 17 16 16
PTS4 19 19 20 21 21 20
PTS5 19 20 21 21 20 21
PTS6 18 18 19 19 19 19
PTS7 22 23 26 25 25 25
PTS8 23 24 25 26 24 25
PTS9 22 24 24 25 24 24

Table 9. The RE value comparison of six algorithms.

Task Set ICA-VNS ICA GA PSO MFO SSA

PTS1 0 0 6.67 6.67 0 6.67
PTS2 6.67 6.67 0 6.67 0 6.67
PTS3 0 6.25 0 6.25 0 0
PTS4 0 0.00 5.26 10.53 10.53 5.26
PTS5 0 5.26 10.53 10.53 5.26 10.53
PTS6 0 0.00 5.56 5.56 5.56 5.56
PTS7 0 4.55 18.18 13.64 13.64 13.64
PTS8 0 4.35 8.70 13.04 4.35 8.70
PTS9 0 9.09 9.09 13.64 9.09 9.09

Table 10. The AV (CPU) value comparison of six algorithms.

Task Set ICA-VNS ICA GA PSO MFO SSA

PTS1 28.94 32.04 10.00 17.51 9.65 10.23
PTS2 29.07 32.18 10.04 17.59 9.84 10.18
PTS3 29.35 32.49 10.14 17.76 9.87 10.37
PTS4 31.71 33.23 10.72 18.18 10.12 11.48
PTS5 31.85 33.37 10.76 18.25 10.25 11.53
PTS6 31.50 33.01 10.66 18.07 10.23 11.44
PTS7 33.78 36.49 10.92 30.12 11.64 12.36
PTS8 34.83 37.62 11.17 31.06 11.43 12.43
PTS9 33.36 36.03 11.82 29.75 11.56 12.29

RE is the relative deviation between the solution result and the optimal value, and the
calculation result is shown in the Formula (20).

RE = (Besti − Bestmin)/Bestmin × 100% (20)

The analysis of the RE value shows that the approximate optimal solution obtained
by PSO is worse than other algorithms when solving the smaller scale PTS1-PTS3; When
solving the slightly larger scale PTS4-PTS6, the performance of GA, MFO and SSA decreases
similarly to PSO. The performance of ICA and IICA-NS is similar and better than them;
when solving the largest PTS7-PTS9, the performance of GA degrades and the performance
gap between SSA, MFO and ICA, IICA-NS increases. In terms of solution speed, regardless
of the scale, GA and PSO are better than the ICA algorithm; with the increase of scale, the
solution speed of the IICA-NS algorithm exceeds ICA and approaches GA and PSO. To
sum up, GA and PSO are faster to solve, SSA and MFO come next, but their solved results
worsen with the increase of the problem size. Although the solution speed of the ICA
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algorithm is not as good as GA and PSO, its solution effect is not lost with the problem size
increase. IICA-NS improves the operation speed to ensure the quality of the solution.

To further understand the reasons for the above results, we discussed them from the
perspective of the algorithm mechanism. First, the computational complexity is slight in
terms of solution speed since GA, MFO, SSA, and PSO are single-structure algorithms. But
ICA and IICA-NS are multi-structure algorithms, and the computational complexity is
enormous. Therefore, the computational speed of GA and PSO is faster than that of ICA and
IICA-NS. In particular, since IICA-NS uses the bottleneck heuristic neighborhood structure,
it speeds up the solution while ensuring its quality. Second, in terms of solution quality,
compared with the single-structure algorithm, the multi-structure algorithm has a more
uniform distribution in the solution space, which gives the multi-structure algorithm a
greater probability of approaching the optimal solution. When the scale of the problem
is small, the difference between the algorithms of the two structures is not apparent
because the distance between the initial solution and the optimal solution is relatively
small. However, the advantages of multi-structure algorithms gradually become more
prominent as the problem scale increases. In addition, PSO, SSA, and MFO have insufficient
population diversity in the late stage and are easy to fall into local optimum. They cannot
jump out of the optimal local solution due to the lack of mutation mechanism in the
optimization direction; GA and ICA avoid falling into the optimal local solution through
mutation and revolution, respectively.

Only the average value and standard deviation of 30 independent operations cannot
fully explain the advantages of ISSA, and statistical tests are required. In order to reflect
fairness, this paper uses the Wilcoxon rank sum test to verify whether ICA-NS results
are significantly different from other algorithms at the significance level of p = 5%. When
p < 5%, it can be considered as rejecting the H0 assumption, indicating that there is a
significant difference between the two algorithms; when p > 5%, it can be considered to
accept the H0 assumption, which indicates that the difference between the two algorithms
is not obvious, that is, the optimization performance of the two algorithms is equivalent.

Table 11 shows the results of ICA-NS and ICA, GA, PSO, MFO, and SSA at a signifi-
cance level p = 5%. When solving small-scale task sets, ICA-NS has significant differences
with ICA and PSO, but no significant differences with GA (PTS2, PTS3), MFO (PTS1-PTS3)
and SSA (PTS3). When the size of the task set is expanded, ICA-NS is significantly different
from all comparison algorithms. In particular, ICA-NS and ICA have significant differences
in all scales, indicating that bottleneck heuristic neighborhood structure and population
intrusion strategy can effectively improve the solving performance of ICA.

Table 11. The Wilcoxon rank sum test p values.

Task Set ICA GA PSO MFO SSA

PTS1 0.0332 1.3082 × 10−7 2.6359 × 10−11 0.2465 1.2086 × 10−7

PTS2 0.0029 0.25 5.4433 × 10−10 0.3993 1.7491 × 10−10

PTS3 3.9370 × 10−7 0.1250 1.9618 × 10−7 0.6250 0.5
PTS4 0.0199 1.3081 × 10−7 2.6359 × 10−11 2.4658 × 10−11 1.2086 × 10−7

PTS5 6.0041 × 10−11 4.6466 × 10−12 2.5995 × 10−12 6.0171 × 10−11 3.9877 × 10−12

PTS6 1.9379 × 10−5 3.2314 × 10−8 1.2699 × 10−8 5.5295 × 10−8 8.4341 × 10−8

PTS7 5.1175 × 10−10 4.4879 × 10−11 4.7816 × 10−11 1.5757 × 10−11 5.4042 × 10−12

PTS8 1.7204 × 10−7 3.2180 × 10−11 5.6686 × 10−12 2.4527 × 10−7 2.4981 × 10−11

PTS9 9.1808 × 10−7 1.8647 × 10−10 2.8719 × 10−11 1.4376 × 10−6 2.7377 × 10−10

The box-plot can not only show the distribution, abnormal value, fluctuation, and
stability of data, but also compare the differences in the distribution of different types of
data. Therefore, the box-plot of six algorithms for TPS8 is given, as shown in Figure 8. The
median of box-plot produced by the ICA-NS is 25, and other medians of box-plot produced
by other algorithms are 26, 27, 28, 26, and 28, respectively. Therefore, the box-plot of the
ICA-NS algorithm is in the lowest position, which indicates that the overall quality of the
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solution generated by the IICA-NS is better than the other five algorithms. As well, the
PSO (35, 36, 38), MFO (34), and SSA (35, 37) generate large outliers in the 30 running times
of the algorithm, indicating that the PSO, MFO and SSA easily fall into the local extremum.
Besides, the IQR of the box-plot generated by the ICA-NS algorithm is 1, and the IQR of the
box-plot generated by the other three algorithms are 2, 2, 3, 3, and 3, respectively, indicating
that the IICA-NS produces the smallest discrete degree, and the stability of the scheduling
results under large-scale data was optimal among the four algorithms. Based on the above
analysis, the IICA-NS is better than the ICA, GA, PSO, MFO and SSA.
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Figure 9 shows the iterative population process of solving the results of TPS8 by the
four algorithms, respectively. It can be seen that the PSO algorithm finds the current optimal
value 26 in the 40th generation (point D); the GA algorithm finds the current optimal value
25 in the 222nd generation (point C); the ICA algorithm finds the current optimal value
25 in the 182nd generation (B point) point) to find the optimal value 24; the IICA-NS
algorithm finds the optimal value 23 at the 149th generation (point A). The MFO found
the current optimal value 24 at the 109th generation (point E); the SSM found the current
optimal value 25 at the 121st generation (point F). In particular, The PSO, SSA and MFO
algorithm have only one convergence stage because it cannot jump out of the optimal local
solution. The other three algorithms have multiple convergence stages, proving that they
can jump out of local optima. In addition, the IICA-NS algorithm outperforms different
algorithms in the solution obtained. The improvement is more significant compared with
the PSO which is 11.538%; Compared with the traditional ICA and MFO, the improvement
is minor, which is 4.167%. The above results show that the IICA-NS algorithm proposed
in this paper is excellent. Because a new neighborhood structure with efficient local
search capability is integrated into the ICA algorithm, the intrusion mechanism can further
search for promising areas around the individual population when the algorithm falls into
a local optimum. It may immediately obtain a higher solution. Even if the quality solution
cannot improve the current optimal solution, it can effectively enhance the diversity of
the current population and lay the foundation for obtaining higher quality solutions in
subsequent operations.

Figure 10 shows the Gantt chart of resource configuration obtained by the IICA-NS
algorithm. There are 13 machines that process nine workpieces in this case. The “3-1”
represents the 1st operation of the 3rd workpiece. The maximum completion time is 23s,
and the maximum completion time is controlled within a reasonable range, which meets
the actual production requirements.
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5. Conclusions

This paper aims to optimize the maximum completion time and dynamically optimize
the configuration of resources for the flexible workshop. A state-driven dynamic resource
configuration framework is proposed to deal with the problem of invalid configuration
results due to environmental changes. As well, a hybrid algorithm that integrates the
manufacturing domain knowledge is proposed to solve the resource configuration problem.
Finally, taking a flexible production workshop as an example, the effectiveness of the
proposed algorithm is verified by numerical simulation experiments, and the improved
IICA-NS is compared with five different algorithms to verify the effectiveness and feasibility
of the algorithm. The main contributions of this paper include:
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(1) The impact of disturbance on resource configuration is clarified, and a state-driven
dynamic resource configuration framework is proposed.

(2) Integrating the knowledge in the manufacturing field, from the perspective of the
critical path, the revolutionary link of the imperial competition algorithm is improved
through the bottleneck heuristic neighborhood structure, and the optimization effi-
ciency of the algorithm is effectively improved. Compared with PSO, the optimal
solution is improved by 8.695%.

(3) Aiming at the problem that the ICA algorithm is easy to fall into the local optimum,
a foreign population invasion strategy is proposed to improve the original algorithm
to strengthen its optimization ability of the algorithm. Compared with ICA, the
optimal solution is improved by 4.348%.

This paper studies the optimal configuration of work-in-progress and machine re-
sources. In the next step, workers and maintenance equipment can also be considered (the
machine resources are further subdivided into the tool, worker, and maintenance resources
(accessories, etc.)). It is also considered to establish a workshop full resource configuration
model to study the optimal configuration of all workshop resources.
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