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Abstract: The rising use of renewable energy sources, particularly those that are weather-dependent
like wind and solar energy, has increased the uncertainty of supply in these power systems. In
order to obtain considerably more accurate results in the analysis of power systems, such as in the
planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators
require adequate techniques and procedures to mitigate the negative consequences of the stochastic
behavior of renewable energy generators. Thus, this paper presents a modification of the original
probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed
and solar irradiance modeling because they have a significant error between the real data frequency
distribution and the estimated distribution curve. This modification is using a mixture of probability
distributions, which can improve the fitting of data and reduce this error. The main aim of this paper
is to model wind speed and solar irradiance behaviors using a two-component and a three-component
mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and
Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original
and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (R2),
and the Chi-square error (X2). The results show that the mixture of PDFs gives better fitting criteria
for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters
of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly
algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was
17% more than the best original and the two-component mixture distributions.

Keywords: probability distribution functions; mixture probability distribution functions; metaheuris-
tic optimization methods; Mayfly algorithm; statistical error

1. Introduction

Renewable energy sources are increasingly being included into power systems. They
can be found in a variety of sizes, either as a centralized massive power plant or as a
dispersed generation close to the end-users [1]. Furthermore, a hybrid system can be
used to meet a region’s load requirements by combining several renewable sources [2].
When compared to a single source, combining renewable sources such as wind and solar
with backup units gives a more reliable, environmentally friendly, and cost-effective load
supply [3]. With over 77% of new capacity, wind and solar energy have seen the most
rapid expansion in renewable energy outputs [4]. Renewable energy resources, despite
being a clean and abundant source of energy, suffer from a lack of energy density and
intermittency [5]. Researchers face the greatest difficulty in successfully anticipating and
controlling renewable energy resources. Renewable energy generators, unlike conventional
generators (such as coal or steam turbine power plants), can only generate electricity
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when the renewable resources are available. As a result, the accurate forecasting, control,
and representation of renewable energy systems are critical for ensuring a steady and
uninterrupted energy supply [6]. Historical records of the wind speed or solar radiation
data can be analyzed to precisely assess the renewable energy potentials of any place
for the production of electrical energy. This is the first stage in determining where the
hybrid energy system will be installed. In a wind system, the wind speed variable is
the most essential parameter in wind power modeling [7,8]. Wind speed is a random
variable that varies over time and is influenced by geographical and climatic factors in the
area [9,10]. The solar irradiance variable is the most essential parameter in Photovoltaic
(PV) generation [11].

Forecasting wind speed and solar radiation is essential for determining wind energy
and photovoltaic power generation. Many PDFs are utilized to simulate wind speed and
solar irradiances such as the Weibull distribution, Inverse-Gaussian distribution, Gamma
distribution, Lognormal distribution, and others. Various PDFs have been proposed in the
literature to simulate wind speed and solar irradiance. Many researchers have proposed
the Weibull distribution in wind speed modeling [12,13]. Auwera [14] applied the three-
parameters of the Weibull distribution and he claims that it can more accurately capture
wind speed data than the usual two-parameter Weibull function. JA Carta [15] utilized
mixed distributions to create a bi-modal framework for wind frequency distribution his-
tograms. Celik [16] used Weibull-representative wind data instead of actual time-series
data and discovered that the calculated wind energy was extremely accurate. Khamees [17]
applied a mixture of distribution functions to simulate wind speed frequency distribution
for a site located in the USA. Brano [18] used seven probability distributions and compared
them to determine which was the greatest fit for the urban area. Labeeuw [19] used the
Weibull, Gamma, Lognormal, and Rayleigh distributions to estimate the electricity usage
of various residential homes incorporating PV generation. Salameh [20] provided a prob-
abilistic generation model for solar irradiance uncertainty modeling based on the Beta
distribution. Guangyuan [21] used several probabilistic models to estimate sun irradiation
and evaluate their efficacy using real-world data. Arevalo [22] utilized Lognormal distri-
bution for the solar irradiance probability distribution function to get the uncertainty cost
functions for electrical systems.

The original distributions suffer from a notable error between the real readings and
the estimated distribution curve; therefore, this work presents an improvement in the
distribution curves by introducing the two and three-component mixture distributions
between the four original distributions. The Weibull, Lognormal, Gamma, and Inverse-
Gaussian probability distribution functions are presented in this paper to simulate wind
speed and solar irradiance frequency distributions. The two-component mixtures—the
Weibull–Gamma distribution, the Weibull–Lognormal distribution, the mixture of the
Weibull–Inverse-Gaussian distribution, the mixture of the Lognormal distribution, the
mixture of the Weibull distribution, the mixture of the Gamma distribution, and the mix-
ture of the Inverse-Gaussian distribution—are all proposed in this work to improve the
fitting of wind speed and solar irradiance. Moreover, to get more improvement in the
simulation of wind speed and solar irradiance, the three-component mixtures of the Weibull
distributions—the Weibull–Weibull–Gamma and the Weibull–Gamma–Gamma—are pre-
sented. Three statistical errors are used to test and compare all distributions. The correlation
coefficient (R2), chi-square (X2), and root mean square error (RMSE) were employed in this
study as statistical errors. The results show that the two-component mixture distributions
improve data fitting more than the four original distributions, and the three-component
mixture distributions improve data fitting more than the two-component mixture distribu-
tions and provide the best fit for the wind speed and solar irradiance being studied. This
work proposed a novel metaheuristic method called the Mayfly algorithm [23] to optimize
the parameters of the original and the mixture of PDFs. This method’s goal is to reduce
the RMSE between the real data and the simulated data from the distribution curve. The
performance of the MA method is better than the numerical methods in terms of finding
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the parameters of the PDFs [8]. This paper utilizes wind speed and solar irradiations’ data
collected from locations in the USA for 5 years [24,25].

The remainder of this paper is arranged as follows: Section 2 presents the four original
distribution functions utilized to simulate wind speed and solar irradiance, the two and
three-component mixtures of PDFs, the statistical errors utilized in this study, and the
Mayfly algorithms. The results and discussion of the wind speed simulation are described
in Section 3. Section 4 presents the results and discussion of the solar irradiance simulation.
Finally, the conclusion is presented in Section 5.

2. Mathematical Modeling
2.1. The Original Probability Distribution Functions

There are a variety of statistical distribution functions that can be used to model the
behavior of wind speed and solar irradiance data over time; this paper will cover the most
well-known four distributions.

2.1.1. The Weibull Distribution

The Weibull PDF was developed by W. Weibull [26]. The probability density function
fw(x, k, c) is given by:

fw(x, k, c) =
k
ck xx−1exp(−

( x
c

)k
) (1)

where the shape and scale parameters are k and c, respectively.

2.1.2. The Lognormal Distribution

The Lognormal distribution is a type of normal distribution that includes a random
variable, where the logarithm has a normal distribution [27].

The Lognormal distribution fl(x, α, β) is given by:

fl(x, α, β) =
1

xβ
√

2π
exp(−1

2

(
ln x− α

β

)2
) (2)

where α and β are the mean and standard deviation, respectively.

2.1.3. The Gamma Distribution

The Gamma distribution models the sums of exponentially distributed random vari-
ables and is a generalization of the chi-square and exponential distributions. [28].

The Gamma distribution fG(x, a, b) is given by:

fG(x, a, b) =
1

ba Γ(a)
xa−1 e−

x
b (3)

where the shape and scale parameters are a and b, respectively.

2.1.4. The Inverse-Gaussian Distribution

To describe nonnegative positively skewed data, the Inverse-Gaussian Distribution
is utilized. In many ways, it mimics standard Gaussian (normal) distributions, making it
helpful in inferential statistics [29].

The Inverse-Gaussian distribution f IG(x, λ, µ) is given by:

f IG(x, λ, µ) =

√
λ

2πx3 exp

(
−λ (x− µ)2)

2µ2x

)
(4)

where the shape and scale parameters are λ and µ, respectively.
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2.2. The Two-Component Mixture of Probability Distribution Functions

The two-component mixture of probability distribution functions is an integration
of two PDFs from the same type or from different types for which each PDF is given a
specific weight (w). This work presents seven two-component mixtures of distribution
functions generated from various integrations of the Weibull, Gamma, Lognormal, and
Inverse-Gaussian distributions.

2.2.1. The Two-Component Mixture of the Weibull Distribution

The mixture of the Weibull distribution f2w(x, k, c) is made up of two Weibull distri-
butions, each with different scale and shape parameters and a different weight applied to
each distribution function:

f2w(x, k, c) = w ∗ fw(x, k1, c1) + (1− w) ∗ fw(x, k2, c2) (5)

where 0 ≤ w ≤ 1.

2.2.2. The Two-Component Mixture of the Gamma Distribution

The mixture of the Gamma distribution f2G(v, a, b) is made up of two Gamma distri-
butions, each with different parameters and a different weight applied to each distribu-
tion function:

f2G(x, a, b) = w ∗ fG(x, a1, b1) + (1− w) ∗ fG(x, a2, b2) (6)

2.2.3. The Two-Component Mixture of the Lognormal Distribution

The mixture of the Lognormal distribution f2L(v, α, β) is made up of two Lognor-
mal distributions, each with different parameters and a different weight applied to each
distribution function:

f2L(x, α, β) = w ∗ fL2(x, α1, β1) + (1− w) ∗ fL2(x, α2, β2) (7)

2.2.4. The Two-Component Mixture of the Inverse-Gaussian Distribution

The mixture of the Inverse-Gaussian distribution f2IG(v, λ, µ) is made up of
two Inverse-Gaussian distributions, each with different parameters and a different weight
applied to each distribution function:

f2IG(x, λ, µ) = w ∗ f IG(x, λ1, µ1) + (1− w) ∗ f IG(x, λ2, µ2) (8)

2.2.5. The Two-Component Mixture of the Weibull–Gamma Distribution

The PDF of the mixture of the Weibull–Gamma distribution fw−G(x, k, c, a, b) can be
written as:

fw−G(x, k, c, a, b) = w ∗ fw(x, k, c) + (1− w) ∗ fG(x, a, b) (9)

2.2.6. The Two-Component Mixture of the Weibull–Lognormal Distribution

The PDF of the mixture of the Weibull–Lognormal distribution fw−L(x, k, c, α, β) can
be written as:

fw−G(x, k, c, α, β) = w ∗ fw(x, k, c) + (1− w) ∗ fl(x, α, β) (10)

2.2.7. The Two-Component Mixture of the Weibull–Inverse-Gaussian Distribution

The PDF of the mixture of the Weibull–Inverse-Gaussian distribution fw−IG(x, k, c, λ, µ)
can be written as:

fw−IG(x, k, c, λ, µ) = w ∗ fw(x, k, c) + (1− w) ∗ f IG(x, λ, µ) (11)
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2.3. The Three-Component Mixture of Probability Distribution Functions

The three-component mixture of probability distribution functions is an integration
of three PDFs from the same type or from different types for which each PDF is given a
specific weight (w). This study presents three three-component mixtures of distribution
functions generated from the integration of the Weibull and Gamma distributions.

2.3.1. The Three-Component Mixture of the Weibull Distribution

The mixture of the Weibull distribution f3w(x, k, c) is made up of three families of
Weibull distributions, each with a different scale and shape parameter and a different
weight applied to each distribution function:

f3w = w1 ∗ fw(x, k1, c1) + w2 ∗ fw(x, k2, c2) + w3 ∗ fw(x, k3, c3) (12)

where w1 + w2 + w3 = 1.

2.3.2. The Three-Component Mixture of the Weibull–Weibull–Gamma Distribution

The PDF of the mixture of the Weibull–Weibull–Gamma distribution fW−W−G can be
written as:

fW−W−G = w1 ∗ fw(x, k1, c1) + w2 ∗ fw(x, k2, c2) + w3 ∗ fG(x, a, b) (13)

2.3.3. The Three-Component Mixture of the Weibull–Gamma–Gamma Distribution

The PDF of the mixture of the Weibull–Gamma–Gamma distribution fW−G−G can be
written as:

fW−G−G = w1 ∗ fw(x, k, c) + w2 ∗ fG(x, a1, b1) + w3 ∗ fG(x, a2, b2) (14)

2.4. Statistical Error Anaylsis

Statistical error techniques are used to examine and compare the performance and
accuracy of the distribution functions provided in this work. The statistical error procedures
that were employed are the root mean square error (RMSE), chi-square error (X2), and
correlation coefficient (R2). The following is a summary of these [30]:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (15)

R2 =
∑n

i=1(yi −m)2 −∑n
i=1(xi −m)2

∑n
i=1(yi −m)2 (16)

X2 =
1

N − n

n

∑
i=1

(yi − xi)
2 (17)

where n is the number of frequency distribution classes, N is the number of observations,
yi is the real data from the site, xi is the estimated data from the distribution function, and
m is the average of the collected data.

2.5. The Mayfly Algorithm

One method to get the best solutions to problems such as those outlined in this paper is
to use artificial intelligence optimization algorithms [31]. The majority of these algorithms
are based on natural events, with an objective function serving as a distance requirement
for the best solutions. The selection of the goal function has the most impact on the results.
The Mayfly algorithm [23] is one of the artificial intelligence optimization algorithms.

The mayfly is a type of insect that belongs to the Balaenoptera family. Mayflies emerge
as aquatic nymphs from their eggs, then ascend to the surface when fully grown, where they
live for only a few days before reproducing and dying. To mate with a Female Mayfly (FM),
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a Male Mayfly (MM) performs a nuptial dance movement around a water body; FMs mate
with MMs in the air and eventually drop offspring/eggs, and the life cycle continues. In
this study, the populations in the search space are representing the distribution parameters
and the weight of each distribution in the mixture of components.

The Mayfly algorithm can be divided into four categories as follows:

2.5.1. The Males’ Movement

Swarms of MMs assemble around a body of water. This means that their position and
movement speed change in reaction to the other mayflies in the swarm. The following is
how MMs can be described:

xt+1
i = xt

i + vt+1
i (18)

where x and v are the position and velocity of the Male Mayflies, respectively.
The velocity of MMs can be calculated as:

vt+1
i = vt

i + ae−βrp
2(

pbesti − xt
i
)
+ be−βrg

2(
gbest− xt

i
)

(19)

where a and b are constants; pbest and gbest are the local and global best positions, re-
spectively; the distance between the current position and best position is rp; the distance
between the current position and the global best position is rg.

In this study, xi represents the distribution parameters and the weight of each distri-
bution in the mixture of components, and pbest and gbest are representing the local and
global values of RMSE, respectively.

2.5.2. The Females’ Movement

Females do not cluster in swarms, they move to the male’s position to reproduce. To
calculate the change in this position, use the equations below:

yt+1
i = yt

i + wt+1
i (20)

where y and w are the position and velocity of the Female Mayflies, respectively.
In this study, yi represents the distribution parameters and the weight of each distri-

bution in the mixture components.
The velocity of FM can be calculated as:

wt+1
i = wt

i + be−βrm
2(

xt
i − yt

i
)

(21)

where rm is the distance between the Males and Females.

2.5.3. Mating

The offspring are chosen in the same way that the Females choose their breeding
Males. The best Male couples with the best Female to develop and produce progeny. The
rankings of all the Males and Females are the same. The MA crossover is calculated using
the following equations:

o f f spring1 = L× xi + (1− L)× yi (22)

o f f spring2 = L× yi + (1− L)× xi (23)

where L is a random value 0 ≤ L ≤ 1.

2.5.4. Mutation

The offspring are altered to prevent the process from becoming stuck on a local
minimum, which may be expressed as the equation:

o f f spring′n = o f f springn + N(0,1) (24)



Processes 2022, 10, 2446 7 of 16

where N(0,1) is the Normal PDF with µ = 0 and σ = 1.
The flowchart of the MA is shown in Figure 1.
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3. Wind Speed Modelling

Hourly mean wind speed (m/s) data obtained from a wind farm in the USA for
5 years [24] was used for the modelling. This study assesses the different original and
mixed probability distribution functions to test their usefulness to simulate wind speed.
The original PDFs used here are the Weibull, Lognormal, Gamma, and Inverse-Gaussian
distribution functions. Combinations of PDFs from various types or the same types consti-
tute the mixture distributions. This study compares the performance between the original,
the two-component mixture, and the three-component mixture probability distribution
functions using three statistical errors. The MA technique is used to estimate the PDFs’
parameters, and the goal of the MA is to minimize the RMSE.

3.1. The Original Probability Distribution Functions

Four original PDFs are presented in this case. Table 1 shows the statistical errors and
the distribution parameters for the four PDFs by using the MA approach. The Gamma
distribution produces the best results because it has the lowest RMSE and X2 and the
highest R2. Figure 2 shows the fitting of the four original PDFs with wind speed frequency
distribution where it is evident that the Gamma distribution has the best fitting. The
Gamma distribution decreases the RMSE by 38%, 74%, and 45% compared to the Weibull,
Lognormal, and Inverse-Gaussian distributions, respectively.

Table 1. The probability distribution parameters for original PDFs in wind speed modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Weibull k = 1.7253
c = 3.3935 0.00624 0.99289 0.00021

Lognormal α = 1.1559
β = 1 0.02495 0.80767 0.00336

Gamma a = 2.6061
b = 1.2364 0.00384 0.99728 0.00007

Inverse-Gaussian µ = 3.6769
λ = 6.8869 0.00707 0.99027 0.00027
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3.2. The Two-Component Mixtures of Probability Distribution Functions

In this case, seven two-component mixture distribution functions were studied to
indicate the best curve that fits the wind speed frequency distribution. Table 2 shows
the seven mixtures of PDFs being studied combined with their optimal parameters and
statistical error calculations. The two-component mixtures, the Weibull and the mixture of
the Weibull–Gamma PDFs, produce the best results because they have the lowest RMSE and
X2 and the highest R2. In addition, the results show that the statistical error calculations of
the two-component mixture of PDFs are better than the four original distribution functions.
Figure 3 shows the fitting of the seven two-component mixtures of PDFs to the wind speed
frequency distribution. It is notable that the two-component mixtures of the Weibull and
the Weibull–Gamma decrease the RMSE by 32%, and 30% respectively, when compared to
the Gamma distribution.

Table 2. Probability distribution parameters for the two-component mixture PDFs in the wind
speed modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Two-component Mixture of Weibull

C1 = 5.934
K1 = 2.553
C2 = 2.800
K2 = 1.970
W = 0.265

0.002599 0.99873 0.00003

Two-component Mixture
of Gamma

a1 = 2.9609 b1 = 1
a2 = 2.083
b2 = 1.982
W = 0.689

0.0033555 0.99788 0.00006

Two-component Mixture of Lognormal

α1 = 1.155
β1 = 1

α2 = 1.155 β2 = 1
W = 0.203

0.02495 0.80767 0.0033685

Two-component Mixture of
Inverse-Gaussian

µ1 = 1
λ1 = 6.128
µ2 = 3.704

λ2 = 10
W = 0.1

0.0029649 0.99835 0.0000475

Weibull–Gamma Mixture

k1 = 1.9781
C1 = 2.5913
a2 = 5.0456

b2 = 1
W = 0.31

0.0026499 0.99867 0.000037

Weibull–Lognormal Mixture

k = 1.7371
c = 3.3862
α = 4.5158
β = 3.5407

W = 0.9927

0.0062237 0.9929 0.0002096

Weibull–Inverse-Gaussian Mixture

K = 1.7826
C = 3.2469
µ = 4.0216
λ = 6.9001
W = 0.5695

0.0039661 0.99702 0.00008
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3.3. The Three-Component Mixtures of Probability Distribution Functions

To get more improvement in the calculations of the statistical errors, the three-component
mixtures of PDFs were used to simulate wind speed frequency distribution. As indicated
in the previous section, the two-component mixtures of the Weibull and Weibull–Gamma
PDFs have the best fitting criteria for wind data among the original and two-component
mixture distributions. Therefore, in this case, we study the three-component mixtures of the
Weibull, Weibull–Weibull–Gamma, and Weibull–Gamma–Gamma. Table 3 shows the three-
component mixtures of the PDFs being studied combined with their optimal parameters
and statistical error calculations. Figure 4 shows the fitting of the three-component mixtures
of PDFs to the wind speed frequency distribution. The three-component mixtures of the
Weibull–Gamma–Gamma PDFs produces the best results because it has the lowest RMSE
and X2 and the highest R2. In addition, the results show that the statistical error calculations
of the three-component mixture PDFs are better than the four original distributions and
the seven two-component mixtures of the distribution functions being studied. From the
results, it is apparent that the three-component mixture of the Weibull decreases the RMSE
by 71%, 57%, and 58% when compared to the Gamma, the two-component Weibull and the
Weibull–Gamma mixture distributions, respectively.
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Table 3. Probability distribution parameters for the three-component mixtures of PDFs in wind
speed modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Three-component Mixture of Weibull

C1 = 5.2195
K1 = 2.1407
C2 = 2.6216
K2 = 1.9431
C3 = 2.9419

K3 = 10
W1 = 0.39092
W2 = 0.59452

0.0010965 0.99977 0.0000065

Three-component Mixture of
Weibull–Weibull–Gamma

C1 = 5.336
K1 = 2.0162
C2 = 3.0395
K2 = 5.2403
a = 2.7292
b = 1.0015

W1 = 0.27047
W2 = 0.05

0.00073657 0.9999 0.0000029

Three-component Mixture of
Weibull–Gamma–Gamma

C1 = 3.0208
K1 = 5.2757
a1 = 5.6276

b1 = 1
a2 = 2.7443

b2 = 1
W1 = 0.05

W2 = 0.1904

0.00068585 0.99991 0.0000025

4. Solar Irradiation Modelling

Using daily solar irradiance
(
kwh/m2) obtained from a solar farm in the USA for

5 years [25], this study examines the suitability of several original and mixed probability
distribution functions for simulating solar irradiation. The Weibull, Lognormal, Gamma,
and Inverse-Gaussian distribution functions are examined as original PDFs. Combinations
of the PDFs from the various types or the same types constitute the mixture distributions.
Using three statistical errors, this study examines the performance of the original, the two-
component mixtures, and three-component mixtures of probability distribution functions.
The MA technique is used to estimate the PDFs’ parameters, and the goal of the MA is to
minimize the RMSE.

4.1. Original Probability Distribution Functions

In this case, four original PDFs are shown. Table 4 shows the statistical errors and the
PDFs’ parameters for the four PDFs using the MA approach. The Weibull distribution gives
the best outcomes because it has the lowest RMSE and X2 and the highest R2. The fitting of
the four original PDFs with the solar irradiance frequency distribution is shown in Figure 5,
with the Weibull distribution having the best fit. It is evident that the Weibull distribution
decreases the RMSE by 7%, 10%, and 11% compared with the Gamma, Lognormal, and
Inverse-Gaussian distributions, respectively.

4.2. The Two-Component Mixtures of Probability Distribution Functions

Seven two-component mixtures of distribution functions are investigated in this
scenario to determine which curve best fits the solar irradiance frequency distribution.
Table 5 shows the seven mixtures of the PDFs being studied combined with their optimal
parameters and statistical error calculations. The two-component mixture of the Weibull
and the Weibull–Gamma mixture of PDFs produces the best results because it has the lowest
RMSE and X2 and the highest R2. Furthermore, the results demonstrate that the statistical
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error estimations of the two-component mixtures of PDFs are superior to the four original
distribution functions. Figure 6 shows the fitting of the seven two-component mixtures of
PDFs to the solar irradiance frequency distribution. It is evident that the two-component
mixture of the Weibull and the Weibull–Gamma mixture decreases the RMSE by 67%, and
70%, respectively, when compared to the Weibull distribution.

Table 4. Probability distribution parameters for the original PDFs in the solar irradiance modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Weibull k = 4.0832
c = 10.7769 0.046732 0.29587 0.48938

Lognormal α = 2.319
β = 0.31785 0.052494 0.16719 0.61751

Gamma a = 10.968
b = 0.9481 0.050583 0.20968 0.57335

Inverse-Gaussian µ = 10.6831
λ = 101.55 0.052646 0.16171 0.62109
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4.3. The Three-Component Mixtures of Probability Distribution Functions

The three-component mixtures of PDFs are utilized to model solar irradiance frequency
distribution in order to enhance the statistical error calculations. Among the original and
two-component mixture distributions, the two-component mixture of the Weibull and
Weibull–Gamma PDFs has the best fitting criteria for solar irradiance, as shown in the
previous section. Therefore, in this case, we study the three-component mixtures of the
Weibull, Weibull–Weibull–Gamma, and Weibull–Gamma–Gamma. Table 6 shows the three-
component mixture of the PDFs being studied combined with their optimal parameters and
statistical error calculations. Figure 7 shows the fitting of the three-component mixtures
of PDFs to the wind speed frequency distribution. The three-component mixture of the
Weibull–Gamma–Gamma PDF gives the best outcomes because it has the lowest RMSE and
X2 and the highest R2. The results also reveal that the statistical error calculations of the
three-component mixtures of PDFs are better than the four original distributions and the
seven two-component mixtures of distribution functions. From the results, it is evident that
the three-component mixture of Weibull–Gamma–Gamma decreases the RMSE by 73%, 17%,
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and 9%, when compared to the distributions of the Weibull, the two-component Weibull,
and the Weibull–Gamma mixture, respectively.

Table 5. Probability distribution parameters for the two-component mixtures of PDFs in the solar
irradiance modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Two-component Mixture of Weibull

C1 = 11.259
K1 = 21.903
C2 = 8.8788
K2 = 3.2454
W = 0.2777

0.015156 0.92509 0.051472

Two-component Mixture of
Gamma

a1 = 25
b1 = 0.2559

a2 = 25
b2 = 0.4382
W = 0.2464

0.041374 0.44749 0.38359

Two-component Mixture of Lognormal

α1 = 1.8872
β1 = 0.1588
α2 = 2.383
β2 = 0.1416

W = 0.3

0.034767 0.60672 0.27087

Two-component Mixture of
Inverse-Gaussian

µ1 = 10.948
λ1 = 120
µ2 = 10

λ2 = 64.655
W = 0.6760

0.052049 0.18665 0.60707

Weibull–Gamma Mixture

k1 = 21.457
C1 = 11.224
a2 = 8.676
b2 = 0.993

W = 0.2747

0.013752 0.93832 0.042379

Weibull–Lognormal Mixture

k = 3.7122
c = 9.8743
α = 2.3805
β = 0.01052
W = 0.9650

0.042295 0.41596 0.40086

Weibull–Inverse-Gaussian Mixture

K = 13.3938
C = 11.324
µ = 11.489
λ = 31.870
W = 0.4073

0.042353 0.45024 0.40197

Table 6. Probability distribution parameters for the three-component mixtures of PDFs in the solar
irradiance modeling.

Mixture Distribution Function Parameters RMSE R2 X2

Three-component Mixture of Weibull

C1 = 6.9165
K1 = 5.1352
C2 = 10.7532
K2 = 4.1362
C3 = 11.1145

K3 = 20
W1 = 0.24226

W2 = 0.5

0.013409 0.94138 0.04029
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Table 6. Cont.

Mixture Distribution Function Parameters RMSE R2 X2

Three-component Mixture of
Weibull–Weibull–Gamma

C1 = 11.1816
K1 = 17.0393
C2 = 7.8099
K2 = 4.33

a = 15.4322
b = 17.262

W1 = 0.41269
W2 = 0.5

0.014118 0.93492 0.044663

Three-component Mixture of
Weibull–Gamma–Gamma

C = 11.1678
K = 17.0756
a1 = 15.6347
b1 = 0.48253
a2 = 15.4617
b2 = 8.3484

W1 = 0.39194
W2 = 0.49882

0.012515 0.94886 0.035096
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This study presents an enhancement of the most famous four original PDFs, which
are used to simulate wind speed and solar irradiance frequency distribution by using two
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and three-component mixtures of distribution functions. The RMSE is used as an objective
function that must be minimized, and the novel metaheuristic Mayfly algorithm is used to
estimate the parameters of the distribution functions. The weights of mixture distribution
and the parameters of the distribution functions are the optimization algorithm’s control
variables. This study analyses 17 distinct distribution functions for simulating wind speed
and solar irradiance. Original and mixtures of PDFs are used in the wind speed and solar
irradiance modeling. Original PDFs such as the Weibull, Lognormal, Inverse-Gaussian,
and Gamma are proven to be insufficient; therefore, the mixtures of distribution functions
are utilized to better simulate the observed wind speed and solar irradiance data. The
results show that the two-component mixtures of distributions fit the wind and solar
irradiance data better and have lower statistical errors than the original distribution. The
three-component mixtures of distributions have the best statistical error calculations when
compared to the original and the two-component distributions. In simulating wind speed
and solar irradiance frequency distributions, the results show that employing mixtures of
distributions is better than using the original distribution. A mixture of PDFs, particularly
the three-component mixture of the Weibull–Gamma–Gamma distribution, can give a tight
fit to wind speed and solar irradiance frequency distributions, as it reduces the RMSE
by 82% for wind speed modeling and 75% for solar irradiance compared to the original
Gamma distribution function.
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published version of the manuscript.
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