The Mechanism Research of Low-Frequency Pressure Oscillation in the Feeding Pipe of Cryogenic Rocket Propulsion System
Abstract
:1. Introduction
2. Numerical Method Description
2.1. Mass and Heat Transfer
2.2. Governing Equations
2.3. Physical Model and Grid
3. Result and Discussion
3.1. Validation for Steam Flow Condensation
3.2. Low-Frequency Pressure Oscillation
3.3. Effect of Oxygen Mass Flow Rate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, E.; Zheng, M.; Fang, H.; Xue, L.; Ma, F. Numerical Study on the Low-Frequency Pressure Fluctuation Characteristics of Liquid Oxygen Delivery System Based on Acoustic Theory. Aerosp. China 2021, 22, 65–72. [Google Scholar]
- Mao, H.; Li, Y.; Zhu, K.; Xie, F.; Li, X.; Zhang, D. Numerical investigation on the direct contact condensation of oxygen jets in a cryogenic pipe. Cryogenics 2021, 119, 103364. [Google Scholar] [CrossRef]
- Yang, C.; Fang, J.; Cai, G.; Tang, Y. Research on influence of pressure wave on mixing and condensation of cryogenic gas-liquid two-phase flow in vertical pipe. J. Rocket. Propuls. 2020, 46, 9–14. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Xing, L. Study on frequency characteristics of oxygen feed system based on gas jet and condensation. Acta Aeronaut. Astronaut. Sin. 2020, 41, 142–151. [Google Scholar]
- Chen, J.; Cao, C.; Yang, Y.; Li, M.; Liu, Y. General technical review of Long March 5 liquid oxygen kerosene engine. J. Deep. Space Explor. 2021, 8, 354–361. [Google Scholar]
- Tanskanen, V.; Jordan, A.; Puustinen, M.; Kyrki-Rajamäki, R. CFD simulation and pattern recognition analysis of the chugging condensation regime. Ann. Nucl. Energy 2014, 66, 133–143. [Google Scholar] [CrossRef]
- Gibou, F.; Chen, L.; Nguyen, D.; Banerjee, S. A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 2007, 222, 536–555. [Google Scholar] [CrossRef]
- Song, S.; Zhao, Q.; Chong, D.; Chen, W.; Yan, J. Numerical investigation on the heat transfer characteristics of unstable steam jet under different operating conditions. Int. J. Heat Mass Transf. 2021, 180, 121761. [Google Scholar] [CrossRef]
- Song, S.; Yue, X.; Zhao, Q.; Chong, D.; Chen, W.; Yan, J. Numerical study on mechanism of condensation oscillation of unstable steam jet. Chem. Eng. Sci. 2020, 211, 115303. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, Y.; Zhou, H.; She, Y.; Guo, L. Flow characteristic of steam jet condensed into a water pipe flow—A numerical study. Appl. Therm. Eng. 2022, 205, 118034. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, C.; Liu, Q.; Zhu, Y.; Zhou, H.; Guo, L. Interfacial characteristics of steam jet condensation in subcooled water pipe flow—An experimental and numerical study. Chem. Eng. Sci. 2022, 251, 117457. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Lu, T. Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model. Prog. Nucl. Energy 2015, 78, 201–215. [Google Scholar] [CrossRef]
- Li, S.; Han, W.; Lu, T.; Feng, L.; Hou, N.; Li, T. Numerical study on oscillation characteristics of large chugging of direct condensation of steam in a Tee junction with flowing sub-cooled water. Prog. Nucl. Energy 2021, 135, 103720. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Y.; Ma, Y.; Wang, J.; Wang, L.; Li, C. Investigation on interphase mixing and flow condensation process in a vertical channel. Exp. Therm. Fluid Sci. 2018, 98, 1–11. [Google Scholar] [CrossRef]
- Anglart, H.; Nylund, O. CFD application to prediction of void distribution in two-phase bubbly flows in rod bundles. Nucl. Eng. Des. 1996, 163, 81–98. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Lu, T. CFD based approach for modeling steam–water direct contact condensation in subcooled water flow in a tee junction. Prog. Nucl. Energy 2015, 85, 729–746. [Google Scholar] [CrossRef]
- Guo, Z.; Fletcher, D.F.; Haynes, B.S. Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels. Appl. Math. Model. 2015, 39, 4665–4686. [Google Scholar] [CrossRef]
- Guo, Z.; Haynes, B.S.; Fletcher, D.F. Simulation of microchannel flows using a 3D height function formulation for surface tension modelling. Int. Commun. Heat Mass Transf. 2017, 89, 122–133. [Google Scholar] [CrossRef]
- Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. Reference Fluid Thermodynamic and Transport Properties; Tech. Report NIST Standard Reference Database 23, Version 9.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Wang, J.; Lu, T.; Deng, J.; Liu, Y.; Lu, Q.; Zhang, Z. Experimental investigation on pressure oscillation induced by steam lateral injection into water flow in a horizontal pipe. Int. J. Heat Mass Transf. 2020, 148, 119024. [Google Scholar] [CrossRef]
- Li, S.; Lu, T.; Wang, L.; Chen, H. Experiment study on steam-water direct contact condensation in water flow in a Tee junction. Appl. Therm. Eng. 2017, 120, 99–106. [Google Scholar] [CrossRef]
- Wang, J.; Lu, T.; Deng, J.; Zhang, Z.; Lu, Q. Investigation on Direct Contact Condensation of Steam with Non-Condensable Gas in a T-Junction. Nucl. Power Eng. 2020, 41, 114–120. [Google Scholar] [CrossRef]
Parameter Item | Value | Unit |
---|---|---|
Back pressure of pipe | 1.22 | MPa |
GOX mass flow rate | 1.5 | kg·s−1 |
LOX mass flow rate | 90 | kg·s−1 |
GOX temperature | 150 | K |
LOX temperature | 90 | K |
Parameter Item | Value | Unit |
---|---|---|
Diameter of the main pipe | 60 | mm |
Length of the main pipe | 500 | mm |
Diameter of branch pipe | 15 | mm |
Length of branch pipe | 1000 | mm |
Steam mass flow rate | 10 | kg·h−1 |
Water temperature | 40 | °C |
Water volume flow rate | 2 (case A), 4 (case B) | m3·h−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Li, Y.; Xie, F.; Wang, L.; Ma, Y. The Mechanism Research of Low-Frequency Pressure Oscillation in the Feeding Pipe of Cryogenic Rocket Propulsion System. Processes 2022, 10, 2448. https://doi.org/10.3390/pr10112448
Zhu C, Li Y, Xie F, Wang L, Ma Y. The Mechanism Research of Low-Frequency Pressure Oscillation in the Feeding Pipe of Cryogenic Rocket Propulsion System. Processes. 2022; 10(11):2448. https://doi.org/10.3390/pr10112448
Chicago/Turabian StyleZhu, Chengfeng, Yanzhong Li, Fushou Xie, Lei Wang, and Yuan Ma. 2022. "The Mechanism Research of Low-Frequency Pressure Oscillation in the Feeding Pipe of Cryogenic Rocket Propulsion System" Processes 10, no. 11: 2448. https://doi.org/10.3390/pr10112448
APA StyleZhu, C., Li, Y., Xie, F., Wang, L., & Ma, Y. (2022). The Mechanism Research of Low-Frequency Pressure Oscillation in the Feeding Pipe of Cryogenic Rocket Propulsion System. Processes, 10(11), 2448. https://doi.org/10.3390/pr10112448