Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity
Abstract
:1. Introduction
2. Physical Process and Mathematical Models
2.1. Rock Deformation and Fluid Flow Equations
2.2. Hydraulic Fracture (HF) Tip Initiation and Propagation Equation
3. Model Establishment and Input Parameters
4. Results and Analysis
4.1. Interlayer Stress Contrast
4.2. Young’s Modulus
4.3. Rock Tensile Strength
4.4. Treatment Parameters
5. Conclusions
- The larger the stress contrast between the pay zone and interlayer, the smaller the HF height. The stress contrast between layers increases from 3 MPa to 11 MPa, and the HF height decreases by 58.14%. The larger the stress contrast, the narrower the HF width profile and the smaller the variation range of the HF width profile.
- The higher the Young’s modulus of the interlayer, the higher the HF height of the interlayer. The Young’s modulus of interlayer increases from 25 GPa to 35 GPa, and the HF height increases by 42.73%. The larger the Young’s modulus of the interlayer, the narrower the HF width profile and the smaller the variation range of the HF width profile.
- The higher the interlayer tensile strength, the smaller the HF height. The interlayer tensile strength increases from 6 MPa to 18 MPa, and the HF height decreases by 48.55%. The larger the interlayer tensile strength, the narrower the HF width profile and the smaller the variation range of the HF width profile. The HF width in the middle pay zone is nearly the same.
- In a thin interbedded reservoir, the HF width profile is wavy in the longitudinal direction. The influence of the HF width profile on proppant longitudinal placement should be considered in the process of sand-adding fracturing to improve the stimulation effect.
- The larger the fluid injection rate and fracturing fluid viscosity, the smaller the HF length and the larger the HF width. When designing the fracturing construction, the sand-adding effect and reservoir contact area should be taken into account to determine the best fluid injection rate and fracturing fluid viscosity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, H.; Su, J.; Hu, X.; Ma, A.; Dong, Y.; Li, A. Study on Well Logging Technology for the Comprehensive Evaluation of the “Seven Properties” of Shale Oil Reservoirs—An Example of Shale Oil in the Lucaogou Formation in the Jimsar Sag, Junggar Basin. Front. Earth Sci. 2022, 9, 827380. [Google Scholar] [CrossRef]
- Dan, X.U.; Ruilin, H.U.; Wei, G.A.O.; Jiaguo, X. Effects of laminated structure on hydraulic fracture propagation in shale. Pet. Explor. Dev. 2015, 42, 573–579. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, Z.; Zhao, Z.; Song, D.; Wang, L.; Wang, G. Large-Section and Multi-Cluster Fracturing Technology for Horizontal Wells in the Jimsar Shale Oil Reservoir. Pet. Drill. Tech. 2021, 49, 106–111. [Google Scholar] [CrossRef]
- Jianyong, X.; Xinjiang, C.; Wenbo, L.; Jingsheng, Z.; Xiaohu, W.; Yanjie, C.; Jinfeng, Z. Exploration and practice of benefit development of shale oil in Jimsar Sag, Junggar Basin. China Pet. Explor. 2022, 27, 99–110. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Duarte, C.A. Coupled multiphysics 3-D generalized finite element method simulations of hydraulic fracture propagation experiments. Eng. Fract. Mech. 2022, 108874. [Google Scholar] [CrossRef]
- Tan, P.; Jin, Y.; Pang, H. Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method. Eng. Fract. Mech. 2021, 248, 107707. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, H.; Liu, W.D.; Lu, W. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane. Eng. Fract. Mech. 2020, 232, 107056. [Google Scholar] [CrossRef]
- Tan, P.; Jin, Y.; Yuan, L.; Xiong, Z.Y.; Hou, B.; Chen, M.; Wan, L.M. Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations: An experimental investigation. Pet. Sci. 2019, 16, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Miskimins, J.L.; Barree, R.D. Modeling of hydraulic fracture height containment in laminated sand and shale sequences. In SPE Production and Operations Symposium; OnePetro: Oklahoma City, OK, USA, 2003. [Google Scholar]
- Yang, L.; Jingen, D.; Baohua, Y.; Liu, W.; Chen, J. Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment. Pet. Drill. Tech. 2014, 42, 80–86. [Google Scholar]
- Wang, Y.; Hou, B.; Wang, D.; Jia, Z. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs. Pet. Explor. Dev. 2021, 48, 402–410. [Google Scholar] [CrossRef]
- Fu, S.; Hou, B.; Xia, Y.; Chen, M.; Wang, S.; Tan, P. Hydraulic fracture height growth law for deep coal measures shale reservoir. Fault Block Oil Gas Field 2021, 28, 555–560. [Google Scholar]
- Liu, Y.; Tang, D.; Xu, H.; Zhao, T.; Hou, W. Effect of interlayer mechanical properties on initiation and propagation of hydraulic fracturing in laminated coal reservoirs. J. Pet. Sci. Eng. 2022, 208, 109381. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Shauer, N.; Duarte, C.A. Propagation mechanisms and parametric influence in multiple interacting hydraulic fractures: A 3-DG/XFEM hydro-mechanical modeling. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 2033–2059. [Google Scholar] [CrossRef]
- Gonzalez-Chavez, M.; Dahi Taleghani, A.; Olson, J.E. A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations. In Proceedings of the Spe Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 3–5 February 2015. [Google Scholar]
- Wang, B.; Zhou, F.; Wang, D.; Liang, T.; Yuan, L.; Hu, J. Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM. J. Nat. Gas Sci. Eng. 2018, 55, 368–381. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Alves, P.D.; Duarte, C.A. Validation of a 3-D adaptive stable generalized/eXtended finite element method for mixed-mode brittle fracture propagation. Int. J. Fract. 2020, 225, 129–152. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Hu, J. Numerical simulation method of in-fracture temporary plugging and diversion fracturing. Bull. Pet. Sci. 2021, 6, 10. [Google Scholar]
- Du, J.; Chen, X.; Liu, P.; Zhao, L.; Chen, Z.; Yang, J.; Miao, W. Numerical Modeling of Fracture Height Propagation in Multilayer Formations Considering the Plastic Zone and Induced Stress. ACS Omega 2022, 7, 17868–17880. [Google Scholar] [CrossRef] [PubMed]
Item | Parameter | Pay Zone | Interlayer |
---|---|---|---|
Rock parameter | Young’s modulus (GPa) | 20 | 25 |
Possion ratio | 0.25 | 0.2 | |
Filtration coefficient (m/s) | 3 × 10−4 | 1.2 × 10−5 | |
Cohesive element property | Tensile strength/(MPa) | 3 | 6 |
Energy release rate (N/m) | 12,000 | 16,000 | |
Leak off coefficient (m3/(Pa·s)) | 10−13 | 10−14 | |
In situ stress | The effective minimum horizontal principal stress (MPa) | 20 | 23 |
The effective maximum horizontal principal stress (MPa) | 28 | 31 | |
The effective vertical principal stress (MPa) | 38 | 38 | |
Fluid property | Fluid viscosity (mPa·s) | 100 | 100 |
Injection rate (m3/min) | 4 | 4 | |
Initial condition | Pore pressure (MPa) | 37 | 35 |
Porosity ratio | 0.12 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, B.; Liu, Y.; Zhang, B.; Luo, S.; Wei, L.; Li, L.; He, J. Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity. Processes 2022, 10, 2449. https://doi.org/10.3390/pr10112449
Wan B, Liu Y, Zhang B, Luo S, Wei L, Li L, He J. Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity. Processes. 2022; 10(11):2449. https://doi.org/10.3390/pr10112449
Chicago/Turabian StyleWan, Bingqian, Yancheng Liu, Bo Zhang, Shuai Luo, Leipeng Wei, Litao Li, and Jiang He. 2022. "Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity" Processes 10, no. 11: 2449. https://doi.org/10.3390/pr10112449
APA StyleWan, B., Liu, Y., Zhang, B., Luo, S., Wei, L., Li, L., & He, J. (2022). Investigation of the Vertical Propagation Pattern of the 3D Hydraulic Fracture under the Influence of Interlayer Heterogeneity. Processes, 10(11), 2449. https://doi.org/10.3390/pr10112449