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Abstract: Approach for the description of chemical equilibrium shifts in the systems with free and
connected chemical reactions was elaborated. Driving forces of chemical equilibrium shifts were
temperature change (at P = const), pressure change (at T = const), and input or output of reagents or
products (at T, P = const). It was demonstrated how the conditions for passing through the extremes
of the state parameters (T, P, and components molar numbers) in one of the reactions transmitted to
other reactions, connected with the first one by reagents or products.

Keywords: chemical equilibrium shift; dependence of chemical variables on state parameters; isolated
and concurrent connected chemical reactions; extreme composition transfer between connected reactions

1. Introduction

The conditions of chemical equilibrium shifts in the systems with single chemical
reaction were elaborated in the classical thermodynamic works and are well-known as Le
Chatelier-Braun principle or simply Le Chatelier principle. This principle was repeatedly
supplemented, justified, and commented on in a number of thermodynamic works, for
example, classical monographs [1–7]. Aside from the original author of the principle (Le
Chatelier’s original article is [8]), it should be noted the fundamental role of J. W. Gibbs
in substantiating this principle [4–6]. The authors consider the presentation in the mono-
graph [9] to be the most successful in terms of simplicity, consistency, and generality.

The following paragraph was inserted into Introduction. Let us allow ourselves a
digression related to the prehistory of the issue. The principle of Le Chatelier—Brown itself
was formulated in 1884 “If a system in stable equilibrium is acted upon from the outside,
changing any of the equilibrium conditions (temperature, pressure, concentration, external
electromagnetic field etc), then the processes directed to side of resistance to change”. Henri
Le Chatelier (France) formulated this thermodynamic principle of moving equilibrium,
later generalized by Karl Braun. The principle is applicable to equilibrium of any nature:
mechanical, thermal, chemical, and electrical. If external conditions change, this leads to
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a change in the equilibrium concentrations of substances. In this case, one speaks of a
violation or shift in chemical equilibrium. The chemical equilibrium shifts in one direction
or another when any of the following parameters change:

• temperature of the system, that is, when it is heated or cooled;
• pressure in the system, that is, when it is compressed or expanded;
• concentration of one of the participants in the reversible reaction.

All these variants of external influences are considered in this article. This principle, in
an exceptionally simple and illustrative form, formulates the direction of displacement of
the equilibrium state under external action on the system and is truly universal. Despite the
fact that the principle itself was formulated a very long time ago and is very well known,
the authors dare to assume that they propose some (albeit not too significant) change and
expansion of the interpretation of the original principle stated earlier by the authors-Henri
Le Chatelier and Karl Braun.

In the opinion of the authors, the scientific novelty of the presented work consists of
two main aspects:

(A) Attempts to extend the well-known principle of shifting chemical equilibrium to
systems, in the case of the initial substances or reaction products belonging to phases
with large (sometimes extremely large) positive deviations from ideality. In these cases,
the contribution of the excess partial thermodynamic functions of the components
to the equilibrium shift may be comparable and even exceed the contribution of the
standard thermodynamic functions of the reaction participants. This aspect, in the
opinion of the authors, has not been considered before.

(B) Attempts to extend the well-known principle of shifting chemical equilibrium to
systems of several chemical reactions with common reagents, products, or intermedi-
ates. In these cases, there is competition between several chemical reactions for both
participants in the reaction, and the displacement of the equilibrium in one reaction
affects the displacement of the equilibrium in the other reaction. This aspect has not
been considered before, as far as the authors know.

Thus, the main goal and results of this work was an attempt to extend the well-
known principle of equilibrium displacement to complex interrelated chemical processes
occurring in highly nonideal systems. The methodology of consideration, in the opinion
of the authors, is quite traditional and corresponds to the general principles of chemical
thermodynamics. The poet does not need an additional description.

We also included links to the latest works for 2021 and 2022 in the text (see, for
example articles [10,11]). These works (as well as earlier ones) were carried out within the
framework of the standard and generally accepted methodology in thermodynamics.

2. Isolated “Free” Reaction Systems

Let us consider isolated equilibrium reactions, where reactions have no common
reagents or products. This allows us to consider any reaction separately without taking
into account other reactions.

Let us consider equilibrium chemical reaction:

n1

∑
reagents,i=1

νi Ai =
n

∑
products,i=n1+1

νi Ai (1)

where νi is stoichiometric coefficient of molecular Ai in reaction (1), n1 and n are number of
reagents and number of all participants in the reaction (1). Assume, that

νi < 0 for reagents 1 ≤ i ≤ n1; νi > 0 for products n1 ≤ i ≤ n (2)



Processes 2022, 10, 2493 3 of 20

We can simplify Equation (1):

n

∑
i=1

νi Ai = 0 (3)

Differential equation of chemical equilibrium conservation will be the following:

n

∑
i=1

νidµi = 0 (4)

Differentiating Equation (4) by temperature (T), pressure (P), and molar number of all
components (ni), we get the expression:

− ∆S(r)dT + ∆V(r)dP− ∆A f (r)dξ = 0 (5)

where

∆S(r) =
n

∑
i=1

νiSi (6)

∆V(r) =
n

∑
i=1

νiVi (7)

∆A f (r)dξ =
n

∑
i=1

νi(dµi)P,T =
n

∑
i=1

n

∑
j=1

νiνjGijdξ (8)

∆G(r) =
n

∑
i=1

νiµi = 0 (9)

∆H(r) =
n

∑
i=1

νi Hi (10)

In Equations (6)–(10):
Si = −(dµi/dT)P,nj 6=i

(11)

Vi = (dµi/dP)T,nj 6=i
;Hi = µi + TSi (12)

are partial molar entropy, partial molar volume and enthalpy of i-th component; ∆A f (r) is
chemical affinity of reaction (3), ξ is its chemical variable, and Gij = (∂2G/∂ni∂nj)T,P,nk 6=j

.

According to the physical sense, ∆S(r), ∆V(r), ∆A f (r), ∆G(r), are change of entropy, volume,
chemical affinity, and Gibbs energy in the isotherm-isobaric process of the formation of νi
moles of product Ai(i = n1 + 1, n1 + 2, . . . n) from νi moles of reagent Ai(i = 1, 2, . . . n1) in
the mixed phase (or phases) with infinitely large mass, which contains both reagents and
products. According to the sense of ξ:

dnj = νjξ (13)

Bilinear form:

∆A f (r) =
n

∑
i=1

n

∑
j=1

νiνjGij > 0 (14)

According to Sylvester’s criterion, because determinant of the matrix of second deriva-
tives is positive,

∆(n) =

∣∣∣∣ G11 . . . G1n
Gn1 . . . Gnn

∣∣∣∣ > 0 (15)

where upper index symbolizes determinant dimension. All minors of main diagonal of
∆(n) are positive also.

∆(n−1) > 0, ∆(n−2) > 0 . . . ∆(1) > 0 (16)
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According to the criterion of phase diffusional stability with respect to infinitesimal
state changes. Thus, one can directly determine the signs of the derivatives:

(dξ/dT)P = ∆S(r)/∆A f (r) = ∆H(r)/∆A f (r)T > (< or =)0, if ∆S(r) or ∆H(r) > (< or =)0 (17)

(dξ/dP)T = −∆V(r)/∆A f (r) > (< or =)0, if ∆V(r)> (< or =)0 (18)

(dP/dT)ξ = ∆S(r)/∆V(r) = ∆H(r)/∆V(r)T > (<)0
if ∆V(r) and ∆S(r)have the same (opposite) sign

(19)

Comparison of Equations with the Classical Formulation of the Le Chatelier-Brown Principle for
Chemical Equilibrium Shift

Standard well-known equations of the Le Chatelier principle for chemical equilibrium
shift are the following [8]:

(d ln Ke/dT)P = d/dT[
n

∑
i=1

νi ln ai]
P

= ∆H(0)/RT2 (20)

(d ln Ke/dP)T = d/dP[
n

∑
i=1

νi ln ai]
T

= −∆V(0)/RT (21)

where Ke is equilibrium constant of reaction (3); ai is activity of i-th component; ∆H(0) and
∆V(0) are the standard change of enthalpy and standard change of volume in the reaction
(3), where the formation of νi moles of pure products Ai(i = n1 + 1, n1 + 2, . . . n) from νi
mole of pure reagents Ai(i = 1, 2, . . . n1) occurs. Moreover, all reagents and products are
separated from each other and belong to different pure phases.

(d ln Ke/dT)P = [
n

∑
i=1

νi
2(∂µi/∂ni)]

T,P,nj 6=i

(dξ/dT)P = Z(dξ/dT)P (22)

(d ln Ke/dP)T = [
n

∑
i=1

νi
2(∂µi/∂ni)]

T,P,nj 6=i

(dξ/dP)T = Z(dξ/dP)T (23)

where

Z = 1/RT
n

∑
i=1

νi
2(∂µi/∂ni)]T,P,nj 6=i > 0 (24)

As (∂µi/∂ni)T,P,nj 6=i
> 0 for all components, according to the criterion of diffusional

stability, one can postulate, that, according to the Le Chatelier principle:

(dξ/dT)P = 1/Z(∆H(0)/RT2) > (< or =)0, if ∆H(0) > (< or =)0 (25)

(dξ/dP)T = −1/Z(∆V(0)/RT) > (< or =)0, if ∆V(0) < (> or =)0 (26)

This form is very similar to the Equations (17) and (18).
Let us assume a difference.

∆H(r) = ∆H(0) + ∆H(mix); ∆S(r) = ∆S(0) + ∆S(mix); ∆V(r) = ∆V(0) + ∆V(mix) (27)

where ∆F(mix) = ∆H(mix); ∆S(mix); ∆V(mix) are enthalpy, entropy, and volume of mixing of
reagents-components in the reaction (3) phase, respectively. If products or reagents belong
to the different phases with constant composition of ∆F(mix) = 0; or, if they form ideal
phases-solutions (for example ideal gaseous solutions), then ∆H(mix) = 0, ∆V(mix) = 0,
and Equations (25) and (26) become identical to Equations (17) and (18). In the other cases,
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when products or reagents belong to the same non-ideal phases, as a rule, the following
relations between the functions ∆F(mix) and ∆F(0) are observed:

∆F(mix) << ∆F(0)(F = H, S, V) (28)

Really typical values of ∆H(mix) and ∆H(0) by absolute values are:

∆H(mix) = 0− 10kJ/mole; ∆H(0) = 0− 1000kJ/mole (29)

For ∆V(mix) and ∆V(0), gaseous solutions at moderate pressures and temperatures are
rare and strongly non-ideal:

∆V(mix) = 0− 10−4m3/mole; ∆H(0) = 0− 10−1m3/mole (30)

Therefore, approximate identification of Equations (25) and (26) and Equations (17)
and (18) is also justified.

Two exceptions are the following:

(A) The extremely unlikely variant of random coincidences: ∆H(0) ≈ 0; ∆V(0) ≈ 0, when
values of ∆H(mix); ∆V(mix) can become decisive.

(B) Very high and extreme values of positive deviations of excess partial molar functions
(activity coefficients -γi from the ideality). These cases are realized, particularly in
the systems with strong hierarchical association, when standard state of dissolved
component (normalized on infinitely diluted solution) is far away from its state in real
solutions with finite concentrations. Example of such systems are UO2Cl2 − H2O at
25 ◦C, where in the solutions close to saturation γUO2Cl2 ≈1500–1700 a.u. [11].Another
examples are C60Subn − H2O systems at 25 ◦C (C60Subn is water soluble deriva-
tive of fullerene C60, Sub¯ is substituent—carboxy, hydroxy, amino-acid, protein etc.
residues), where in the comparatively concentrated (but diffusionally stable) solutions:
ln γC60Subn ≈10–100 a.u. [12].

Naturally, use of classical formulations, such as Equations (25) and (26) is very conve-
nient, because data concerning ∆H(0) and ∆V(0) for the reaction are available, and may be
simply calculated from tabulated data for all participants of the reaction: standard heats of
formation: ∆H f ,i

(0), or standard heats of combustion: ∆Hc,i
(0); isobar heat capacity: Cp,i;

standard molar volume: Vi
(0)(T, P). However, namely the cases (A) and (B) in practice

Equations (25) and (26) were not valid for the description of chemical equilibrium shift in
an equilibrium mixture of substances in a natural phase state and not formally separated
on the pure components, so Equations (17) and (18) look preferable.

3. Once Connected “Un-Free” Reaction Systems

Before consideration of the connection by common reagents or products, equilibrium
chemical reaction let us formulate an obvious lemma.

Lemma. If any chemical reactions are carried out in the chemically equilibrium reaction
phase (we will call them natural reactions or simply reactions), then any linear combinations
of these reactions are carried out there (we will call them quasi-reactions).

Let k be the number of reactions. If for j-th reaction,
n
∑

i=1
ν
(j)
i Ai = 0; 1 ≤ j ≤ k, then :

k

∑
j=1

α(j)
n

∑
i=1

ν
(j)
i Ai = 0;

α(j) has arbitrary sign or may be equal to zero.
Here is the simplest example of 2 connected reactions:

A = B (reaction-1); A = C (reaction-2);
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2A = B + C (quasi-reaction-1=sum reaction-1 and reaction-2);

B = C (quasi-reaction-2 = difference of reaction-2 and reaction-1);

C = B (quasi-reaction-3 = difference of reaction-1 and reaction-2); etc.

We treat the reaction phase as a “black box” in which we placed a single reagent, A,
and then discovered two more products, B and C. If we do not consider the mechanism
of the reactions, then we are deprived of the opportunity to figure out how the sum
process proceeded:

as a combination of two 1 and 2 reactions;
as 1 quasi-reaction;
as a combination of any reaction with 1 quasi-reaction;
as a combination of any reaction with 2 or 3 quasi-reaction.
The last variant may be realized according to schemes:

A = B; B = C; or A = C; C = B

Naturally, all changes of state functions in such quasi-reactions (∆F) should be linear
combinations of changes of state functions in these reactions (∆Fi) with the same coefficients:

∆F =
k

∑
i=1

α(i)∆Fi (31)

4. Un-Free Connected Reactions

Let us consider once connected “un-free” equilibrium reactions, where two or more
reactions have common reagents or products, or reagent of one reaction is the product of the
other. Consider a pair of connected reactions. This will allow us to consider the competition
between two connected reactions for the supplied thermal energy and mechanical energy
(relative shift of chemical equilibrium when temperature or pressure changes).

4.1. Case of Common Reagents or Common Products

n

∑
i=1

ν
(1)
i Ai = 0(reaction− 1) (32)

n

∑
i=1

ν
(2)
i Ai = 0(reaction− 2) (33)

where ν
(j)
i is stoichiometric coefficient of molecular Ai in reaction (j), n are number of all

participants in both reactions (1 and 2). Assume, that:
ν
(j)
i > 0 for products;

ν
(j)
i < 0 for reagents;

ν
(j)
i = 0 for compounds, not involved in the j-th reaction.

Assign a number 1 to the common participant of 1 and 2 reaction and divide reaction-1
to ν

(1)
1 and reaction-2 to ν

(2)
1 . Therefore, Equations (32) and (33) may be rewritten as:

n

∑
i=1

ν̃
(1)
i Ai = 0(reaction− 1) (34)

n

∑
i=1

ν̃
(2)
i Ai = 0(reaction− 2) (35)

where:
ν̃
(1)
i = ν

(1)
i /ν

(1)
1 ; ν̃

(2)
i = ν

(2)
i /ν

(2)
1 (36)
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Then, we subtract from the Equations (34) and (35):

n

∑
i=2

ν̃
(12)
i Ai = 0(quasi− reaction− 12) (37)

where:
ν̃
(12)
i = ν̃

(1)
i − ν̃

(2)
i (38)

According to previous terminology, a quasi-reaction (37) is isolated and can be consid-
ered the way as in Section 1.

∆S̃(12) =
n

∑
i=2

ν̃
(12)
i Si = ∆S(1)/ν

(1)
1 − ∆S(2)/ν

(2)
1 (39)

∆Ṽ(12) =
n

∑
i=2

ν̃
(12)
i Vi = ∆V(1)/ν

(1)
1 − ∆V(2)/ν

(2)
1 (40)

∆H̃(12) =
n

∑
i=2

ν̃
(12)
i Hi = ∆H(1)/ν

(1)
1 − ∆H(2)/ν

(2)
1 (41)

∆Ã f (12) =
n

∑
i=2

ν̃
(12)
i A fi = ∆A f (1)/ν

(1)
1 − ∆A f (2)/ν

(2)
1 (42)

dξ(12) = dξ(1)/ν
(1)
1 − dξ(2)/ν

(2)
1 (43)

Therefore:

−[∆S(1)/ν
(1)
1 − ∆S(2)/ν

(2)
1 ]dT + [∆V(1)/ν

(1)
1 − ∆V(2)/ν

(2)
1 ]dP+

+[∆A f (1)/ν
(1)
1 − ∆A f (2)/ν

(2)
1 ](dξ(1)/ν

(1)
1 − dξ(2)/ν

(2)
1 ) = 0

(44)

Again note that:

∆Ã f (12) =
n

∑
i=2

n

∑
j=2

ν̃
(12)
i ν̃

(12)
j Gij > 0 (45)

according to Sylvester’s criterion, because the determinant of the matrix of second deriva-
tives and all minors of main diagonals are positive.

Note also, that:

dξ(12)(>;<;=)0, then : dξ(1)/ν
(1)
1 (>;<;=)dξ(2)/ν

(2)
1 (46)

Thus, to formulate the corollaries of Equation (44):

(dξ(12)/dT)P = ∆S̃(12)/∆Ã f (12) = ∆H̃(12)/T∆Ã f (12)(>;<;=)0,
i f : ∆S̃(12)(∆H̃(12))(>;<;=)0

(47)

(dξ(12)/dP)T = −∆Ṽ(12)/∆Ã f (12)(>;<;=)0, i f : ∆Ṽ(12))(<;>;=)0 (48)

(dP/dT)ξ(12) = ∆S̃(12)/∆Ṽ(12)(>;<;=)0 (49)

To verbally formulate the Le Chatelier’s principle of chemical equilibrium shift
(CES-principle):

• With an increase in temperature for a pair of once-connected reactions, the equilibrium
shifts towards products more (less) for the reaction, whose specific heat (normalized
by 1 mole of the common component) is greater (lower) than the other reaction;

• With an increase in pressure for a pair of once-connected reactions, the equilib-
rium shifts towards products more (less) for the reaction, whose specific volume
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change (normalized by 1 mole of the common component) is lower (greater) than the
other reaction;

If there is a system of q once connected equilibrium reactions (it is not necessary that
the common products or reagents are the same), we can consider a system of independent
pairwise quasi reactions of the type (37) without common participants. One can write the
following equation system:

− ∆S̃(pr)dT + ∆Ṽ(pr)dP + ∆Ã f (pr)dξ(pr) = 0 (50)

where 1 ≤ p; r ≤ q; p 6= r. All corollaries of the type (47)–(49) will also be valid. All q
reactions should be linearly independent, so the rang of matrix of stoichiometric coefficients
for the reaction system ‖ν(j)

i ‖ with the dimension nq should be:

rang‖ν(j)
i ‖ = q (51)

All quasi-reactions naturally are linearly dependent on the reaction system.

4.2. Case of Common Reagent of One Reaction and Product of Other Reaction

Let us consider the system of sequential reactions. Assign again a number 1 to the
common participant of the reactions (product for reaction-1, and reagent for reaction-2) and
divide reaction-1 to ν

(1)
1 and reaction-2 to ν

(2)
1 . Therefore, Equations (34) and (35) maybe be

rewritten, as earlier:
n

∑
i=1

ν̃
(1)
i Ai = 0(reaction− 1) (52)

n

∑
i=1

ν̃
(2)
i Ai = 0(reaction− 2) (53)

where again:
ν̃
(1)
i = ν

(1)
i /ν

(1)
1 ; ν̃

(2)
i = ν

(2)
i /ν

(2)
1 (54)

We then add Equations (52) and (53) and exclude 1 component from quasi-reaction:

n

∑
i=2

ν̃
(12)
i Ai = 0(quasi− reaction− 12) (55)

and contrast with Equation (38):

ν̃
(12)
i = ν̃

(1)
i + ν̃

(2)
i (56)

According to previous terminology, quasi-reactions are isolated and can be considered
as previously in Section 3. Thus:

− ∆S̃(12)dT + ∆Ṽ(12)dTdP + ∆Ã f (12)dξ(12) = 0 (57)

where:

∆S̃(12) =
n

∑
i=2

ν̃
(12)
i Si = ∆S(1)/ν

(1)
1 + ∆S(2)/ν

(2)
1 (58)

∆Ṽ(12) =
n

∑
i=2

ν̃
(12)
i Vi = ∆V(1)/ν

(1)
1 + ∆V(2)/ν

(2)
1 (59)

∆H̃(12) =
n

∑
i=2

ν̃
(12)
i Hi = ∆H(1)/ν

(1)
1 + ∆H(2)/ν

(2)
1 (60)
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∆Ã f (12) =
n

∑
i=2

ν̃
(12)
i A fi = ∆A f (1)/ν

(1)
1 + ∆A f (2)/ν

(2)
1 (61)

dξ(12) = dξ(1)/ν
(1)
1 + dξ(2)/ν

(2)
1 (62)

Naturally, the positive definiteness of the bilinear form (45) is also valid in this case:

∆Ã f (12) =
n

∑
i=2

n

∑
j=2

ν̃
(12)
i ν̃

(12)
j Gij > 0 (63)

Note also, that if:

dξ(12) = dξ(1)/ν
(1)
1 + dξ(2)/ν

(2)
1 (>;<;=)0 (64)

then:
dξ(1)/ν

(1)
1 (> ′ <;=)− (dξ(2)/ν

(2)
1 ) (65)

In other words, equilibrium molar numbers of common components in the reactions-
1,2 increases, decreases, and becomes constant. We then formulated the corollaries of
Equation (57), which completely matched with the Equations (47)–(49), excluding the signs
in definitions in the Equations (39)–(43) and (58)–(62).

• With an increase in temperature for a pair of once-connected reactions, common
component-intermediate was accumulated (consumed) in the reaction phase, if sum
heat of the reactions (normalized by 1 mole of the common component) was positive
(negative);

• With an increase in pressure for a pair of once-connected reactions, the common
component-intermediate was accumulated (consumed) in the reaction phase, if sum
volume change of the reactions (normalized by 1 mole of the common component)
was negative (positive).

Let us give examples of the reactions (for example in A3-B5 systems), once-connected by:
reagents:

In + As = InAs (reaction-1);
Ga + As = GaAs (reaction-2);

In + GaAs = Ga + InAs (quasi-reaction-12)
(66)

products:
InAs + GaSb = InSb + GaAs (reaction-1);

Ga + As = GaAs (reaction-2);
InAs + GaSb = Ga + As + InSb (quasi-reaction-12)

(67)

sequential reaction:

In + As = InAs (reaction-1);
InAs + AlP = InP + AlAs (reaction-2);

In + As + AlP = InP + AlAs(quasi-reaction-12)
(68)

5. Case of Several (More Than One) Common Reagents or Common Products with the
Proportional (in Particular, Equal) Stoichiometric Coefficients of Common Participants

Let us give examples of multi-connected (by products or reagents) reactions with equal
stoichiometric coefficients for participants. Let us give the example:

C6H5CH3 + Br2 = 1,2-C6H4CH3Br + HBr (reaction-1);
C6H5CH3 + Br2 = 1,4-C6H4CH3Br + HBr(reaction-2);
1,2-C6H4CH3Br = 1,4-C6H4CH3Br(quasi-reaction-12)

(69)
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In a common case, we will denote all common participants for two reactions as
1, 2 . . . k. We can hardly imagine a pair of connected reactions where the number of
connected components would be k > 3, so reactions are twice or thrice connected.

ν
(1)
1 /ν

(2)
1 = ν

(1)
2 /ν

(2)
2 = . . . = ν

(1)
k /ν

(2)
k (70)

In this case, similarly to what we did in Section 3, we can exclude common participants
from the reactions, form quasi-reactions, and get all the conclusions, which completely
match with the Equations (47)–(49) (CES-principle). A quasi-reaction is naturally formed as
a sum (not difference) of equilibrium reactions, and the result is a result similar to the one
previously obtained in Section 3.

6. About the Possibility of Passing of Composition Variables, Temperature, and
Pressure in the System of Components, Connected by Chemical Reaction, through
the Extreme

Isotherm-isobar conditions (dT = dP = 0).
Let us assign the number 1 to the common component. Imagine that molar number of

some non-common 2-d participant of the 1-st from pair of (1 and 2) once-connected reactions
(n2

(1)) passes through the extreme at P=const and T=const. Naturally in these cases:

dn(1)
2 = 0

Simultaneously:
dξ(1) = 0 (71)

Let us use it now in Equation (57) for such reactions at P = const and T = const:

∆Ã f (12)dξ(12) = 0; (dξ(12))P,T = dξ(1)/ν
(1)
1 ± dξ(2)/ν

(2)
1 = 0; (dξ(2))P,T = 0 (72)

(dn(1)
i )P,T = 0; (dn(2)

i )P,T = 0(i = 1, 2 . . . n) (73)

In other words, molar numbers of all participants of the reactions-1,2 pass through
the extreme at P = const and T = const simultaneously. If quasi-reaction-1,2 (pair of once-
connected reactions-1 and -2) is connected with the other (−1r) or (−2t) quasi-reactions by
one common component (it is not necessary that the same as for quasi-reaction)-1,2, then
the following is also valid:

(dξ(1r))P,T = 0; (dξ(2t))P,T = 0; (dξ(r))P,T = 0;

(dξ(t))P,T = 0(dn(r)
i )P,T = 0; (dn(t)

i )P,T = 0(i = 1, 2 . . . n)
(74)

Thus, one can postulate that the condition of the extreme of molar numbers of the
participants of chemical reactions or the condition of extreme of chemical variable in
the system of once-connected equilibrium chemical reactions is transmitted from one
reaction to another reaction through a common participant in the reaction. The same
conclusion was made for twice or thrice connected to each other reactions, with proportional
stoichiometric coefficients of common participants. Unfortunately, in more complex cases
of connected reactions, the authors fail to establish the transmission of the extremeness of
the composition.

Transfer of the condition of extremeness of the composition from one connected re-
action to another can be explained, if we take into account that when the composition
changes, there is competition between connected reactions for a common reagent or com-
mon product.

One important moment. In our system of connected reactions should be the compo-
nents not involved in the connected reactions at T, P = const. Otherwise, the number of
thermodynamic degrees of freedom will be equal to zero, and system will be non-variant.
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We will give the simplest scheme of extreme transfer between connected reactions as
an example. Let us consider the reactions scheme at P = const and T = const:

A = B (reaction-1); A = C (reaction-2); C = D (reaction-3); D = E (reaction-4).

According to chemical equilibrium shift differential equation, one can write that when
(dµA)P,T = 0:

(dµA)P,T = (dµB)P,T = (dµC)P,T = (dµD)P,T = (dµE)P,T = 0 (75)

In our conditions, when (dnA)P,T = 0, then:

(dnA)P,T = (dnB)P,T = (dnC)P,T = (dnD)P,T = (dnE)P,T = 0 (76)

or all molar numbers simultaneously pass through the extreme.
At the same time, there should be some other components in the systems, F, G, H . . . ,

for which:
(dµF)P,T 6= (dµG)P,T 6= (dµH)P,T = . . . 6= 0 (77)

(dnF)P,T 6= (dnG)P,T 6= (dnH)P,T = . . . 6= 0 (78)

Condition of constancy of chemical potentials of components, which also corresponds
to the Equation (75), may also be valid. However, for some components, according to the
conditions of diffusional stability, derivatives should be:

(dµi/dnk)P,T,nJ 6=k
6= 0 (79)

Therefore, input (or output) of not those involved in the connected reactions compo-
nents to the reaction phase cannot make chemical potentials of the last ones constant.

Reaction phase composition may change in different ways: adding or removing
component or components (products or reagents) in real experiment, for example, moving
along isotherm-isobar curves of multi-phase equilibrium (also in experiment or in correct
thermodynamic modeling calculation); moving along curves of open phase processes
(when one from several equilibrium phase it is constantly being removed from the sphere
of phase equilibrium); and moving along curves of thermodynamic simplification or curves
of incomplete extremes etc. (see, for example [9]). In the last cases, it is enough to change
in the experiment, the gross composition of heterogeneous system as a whole.

For simplicity and certainty, in the condition of isotherm-isobar composition changes,
we shall fix the total number of moles of all components in the reaction phase equal to
1 mole. Then, components molar numbers will convert into molar fractions, n(j)

i = X(j)
i ,

with the conservation all equations and properties of the reaction phase. All extensive
properties in the system will transfer into molar properties, in particular, determinant

∆(n−1) =

∣∣∣∣ G11 . . . G1n−1
Gn1 . . . Gn−1n−1

∣∣∣∣ > 0, losing dimension by one, remains defined positively

with all minors of main diagonal, etc.
In the end of the section, we will give an example of the experiment, where concentra-

tions of participants of the connected reaction simultaneously pass through the extreme
(Figure 1). Here, the composition change is caused by artificial displacement of melt compo-
sition along liquidus isotherm in quaternary In-Ga-As-Sb system and corresponding change
of equilibrium solid solution InxGa1/2-xAsySb1/2-y composition.
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Figure 1. Molar fraction of components A3(In, Ga) and B5(As, Sb), top fragment, compounds A3B 5

(InAs, InSb, GaAs, GaSb), and bottom fragment in solid solution InxGa1/2-xAsySb1/2-y (isoperiodic to
the substrate GaSb)—X(s), depending on the sum molar fraction of B 5 components in the equilibrium

to solid solution melt: X(l)
As + X(l)

Sb at T = 873 K and P = 1 atm. (Points are experimental data, lines are
calculated by EFLCP model for A3-B 5 semiconductor systems [13,14].

6.1. Polytherm Isobar Conditions (dT 6= 0, dP = 0)

Driving force of chemical equilibrium shift is heat supply or removal in the conditions
of mass isolation of the reaction phase. If we consider isolated reactions, then Equation (5)
will be:

− ∆S(r)dT + ∆A f (r)dξ(r) = 0 (80)
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and we can postulate, that:

(dξ(r))P = 0 or (ξ(r))P is in extreme, when : ∆S(r)(∆H(r)) = 0 (81)

Really:
TP 6= const (82)

because the thermal diffusional criterion of the reaction phase is valid, i.e.,:
(dT)P(>;<)0, when heat is supplied or removed.
Connected reaction systems. Let us number common components in the 1-st. Imagine

that molar number of some non-common 2-d participant of the 1-st from pair of (1 and 2)
once-connected reactions passes through the extreme at P = const. Naturally, in these cases:

(dn(1)
2 )P = 0, so : (dξ(1))P = 0 (83)

For the 1-st reaction we can also rewrite Equation (5):

− ∆S(1)dTP + ∆A f (1)(dξ(1))P = 0 (84)

From Equations (83) and (84), we can write that:

(dT)P = 0; TP is in extreme (85)

Using Equations (43) and (44) for quasi-reaction-12 at P = const:

− ∆S̃(12)dT + ∆Ã f (12)dξ(12) = 0; dξ(12) = dξ(1)/ν
(1)
1 − dξ(2)/ν

(2)
1 (86)

Taking into account Equation (85), one can write that:
(dξ(12))P = 0; (ξ(12))P is in the extreme, and from Equations (83) and (86) it follows that:

(dξ(22))P = 0; (ξ(2))P is in extreme (87)

We can postulate that molar number of all participants of the (12) connected reactions
and temperature of the reactions pass through the extreme at P = const simultaneously.

(dn(1)
i )P = 0; (dn(2)

i )P = 0(i = 1, 2 . . . n); dTP = 0 (88)

At the end of the section, we will give an example of an experiment where concen-
trations of participants of the connected reaction and temperature simultaneously passed
through the extreme (Figure 2). Here, the composition change was caused by artificial
displacement of melt composition along liquidus polytherm in quaternary system In-Ga-
As-Sb. In this case, the composition of solid solution was fixed in In0.11Ga0.39As0.08Sb0.42.
This composition corresponds to the pass of the concentrations in solid solution through
the extreme, and this applies both to the simple components A3(In, Ga) and B5(As, Sb),
and “complex compounds” A3B5 (InAs, InSb, GaAs, GaSb), as seen in Figure 1. These data
also correspond to the value of the argument, X(l)

As + X(l)
Sb ≈ 0.5. Temperature of phase

equilibrium in Figure 1 (873 K) should correspond to the extreme of liquidus temperature
at the same value X(l)

As + X(l)
Sb ≈ 0.5. This is confirmed by Figure 2. Justice of Equation (88)

was demonstrated.
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in the equilibrium to solid solution melt:X(l)
As + X(l)

Sb for solid solutions with constant composition
In0.11Ga0.39As0.08Sb0.42. Points are experimental data, line is calculated by EFLCP model [13,14].

6.2. Isotherm Polybar Conditions (dT = 0 or dP 6= 0)

The driving force of chemical equilibrium shift is reaction volume increase or decrease
in the conditions of mass isolation of the reaction phase. Imagine that molar number
of some non-common 2-d participant of the 1-st from pair of (1 and 2) once-connected
reactions passes through the extreme at T = const. Naturally, in these cases:

(dn(1)
2 )T = 0, so : (dξ(1))T = 0 (89)

If we consider isolated reactions, then Equation (5) will be the following:

∆V(r)dPT + ∆A f (r)(dξ(r))T = 0 (90)

From Equations (89) and (90), we can write that:

(dP)T = 0; PT is in extreme, when : ∆V(r) = 0 (91)

Really:
PT 6= const (92)

because the mechanical diffusional criterion of the reaction phase is valid, i.e.,: dPT(>;<)0.
In reality, condition (91) is incomparably milder than a similar condition (81). For

example, the condition is certainly fulfilled for the reaction in ideal gaseous phase (when
molar gaseous numbers of reagents and products are equal). This condition is also approxi-
mately valid for the reaction in the condensed phases, when pressures are not unnecessarily
large.

Connected reaction systems. Using Equations (43) and (44) for quasi-reaction-12 at
T = const:

∆Ṽ(12)dP + ∆Ã f (12)dξ(12) = 0; dξ(12) = dξ(1)/ν
(1)
1 − dξ(2)/ν

(2)
1 (93)

Taking into account Equation (85), one can write that:
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(dξ(12))T = 0; (ξ(12))T is in the extreme, and from Equations (89) and (90), it follows that:

(dξ(22))T = 0; (ξ(2))T (94)

We can postulate that molar number of all participants of the connected 1,2-reactions
and pressure of the reaction pass through the extreme at T = const simultaneously.

(dn(1)
i )T = 0; (dn(2)

i )T = 0(i = 1, 2 . . . n); dPT = 0 (95)

The last example of the transmission of the state parameters extreme conditions is
represented in Figures 3 and 4.

1→2→3→4→R1→5→6→7→8 shows the method of passing the composition of the so-
lution through R1 point as the result of H2O-add +3NaCl · 4CdCl2 · 14H2O(1→2→3→4→R1)
and H2O-evaporation + 3NaCl · 4CdCl2 · 14H2O-crystallization (R1→5→6→7→8).

In Figure 3, isotherm-isobar (1 atm. of sum pressure) of ternary system NaCl-CdCl2-
H2O system at 25 ◦C consists of four branches: NaCl; congruently soluble compounds,
3NaCl · 4CdCl2 · 14H2O, and 2NaCl · CdCl2 · 3H2O. Diagram contains three non-variant
points Ei, all eutonics [15]. In the diagram, there are two point types. Van Rijn points
in fusibility diagrams, Ri, are realized when all three equilibrium phase points, liquid (l)
(Ri), solid compound (s) (3NaCl · 4CdCl2 · 14H2O and 2NaCl · CdCl2 · 3H2O), and vapor (v)
H2O, belong to the same straight lines [15–17]. In the points, Ri isopotentials of H2O touch
the curves of mono-variant equilibrium (Ei→Rj→Ei+1) when moving along these curves,
and chemical potential H2O in the points Ri passes through the extremes (specifically the
maximum) [17,18], as in Figures 3 and 4.
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Figure 3. Solubility diagrams in ternary NaCl–CdCl2–H2O system at 25 ◦C in rectangular Schreine-
makers concentration triangle in the salt molalities: open black circles, calculated by Extended
Pitzer’s Method [16]; red solid circles, non-variant experimental data [16,17]; blue solid points (Ri),
solubility diagram points type Van Rijn points in fusibility diagrams [17]; little open blue points, H2O
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arrows are nodes: vapor (v), saturated solutions (Ri), and solid compounds (s).
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To describe the behavior of components and molar number during moving liquid
composition along curve (for certainty (E3→R1→E2), imagine a thought experiment. It is
possible to organize such process only with mass transfer. In a mass transfer in heteroge-
neous system or conduct such isotherm-isobar open phase process [19]:

• To the heterogeneous system (liquid is point 1 in Figure 4), add some liquid H2O
(liquid pass to point 2);

• Dissolve part of the equilibrium solid compound 3NaCl · 4CdCl2 · 14H2O in solution
until saturation (liquid pass to point 3);

• Repeat this two-stage process until liquid comes to the point R1 (liquid pass to point 4,
to point 5, . . . to point R1 (Figure 4);

• Evaporate H2O from liquid R1 (liquid pass to point 5);
• Crystallize from supersaturated liquid crystals 3NaCl · 4CdCl2 · 14H2O until liquid

become saturated (liquid pass to point 6);
• Repeat this two-stage process until liquid comes to the point E2 (liquid pass to point 7,

to point 8, . . . to point E2), as in Figure 4.

It is clear, that in the first half of process where 1→2→3→4→R1, molar number
dissolved in liquid 3NaCl · 4CdCl2 · 14H2O increased, so simultaneously increased molar
numbers of NaCl; CdCl2 in liquid. In the second half of process, R1→5→6→7→8, molar
number dissolved in liquid 3NaCl · 4CdCl2 · 14H2O decreased, so simultaneously decreased
molar numbers of NaCl; CdCl2 in liquid. In R1, molar numbers of NaCl; CdCl2 pass through
the extreme. H2O molar numbers in R1 also pass through the maximum, according to
criterion of diffusional liquid stability (values of H2O chemical potential, activity, and
partial pressure always (at P, T = const) change). It is clear that the compound 3NaCl ·
4CdCl2 · 14H2O’s molar number in the solid phase in R1 also passes through the extreme.
Thus, we have confirmed that molar numbers of the substances were connected by a
heterogeneous chemical reaction:

3NaCl(liquid) + 4CdCl2(liquid) + 14H2O(liquid)→ 3NaCl · 4CdCl2 · 14H2O(solid)
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passes through the extreme simultaneously.
To determine the behavior of pressure during moving liquid composition along curve

for certainty (E3→R1→E2), we can use the well-known Gibbs rule [9,20]: Temperature (at
P = const) or pressure (at T = const) passes through the extreme when the composition
of equilibrium coexisting phases were linearly dependent. In our case, the three-phase
equilibrium figurative points of (v)-(l)-(s) are in the points Ri belonging to one curve, as
seen in Figures 3 and 4. From Figure 4, one can see that in Ri, partial pressure (PH2O), but
not sum pressure (P = const = 1 atm), passes through the extreme. The contradiction here is
apparent, because moderate pressure does not have an impact on the equilibrium between
condensed phases. Thus, in experiment, we can remove the main components of the gas
phase (air) from the system and leave only the water vapor equilibrium with the solution,
and this fact should not affect the solubility diagram. In this case, PH2O ≈ P (at T = const)
and pressure in points Ri passes through the extreme.

7. About Chemical Equilibrium Shift in the Conditions of Continuous
Isothermal-Isobar Input of Reagents or Output of the Products of the Reaction

Input or output of all reagents or all products in stoichiometric ratios.
In the conditions of continuous isothermal-isobar input of reagents or output of the

products (the last case corresponds to the removal of the products from the reaction phase),
the chemical equilibrium shifts to the products formation. This formulation is at least
ambiguous.

At the same time, we believe that:

(A) Assuming that chemical reaction is in the state of chemical equilibrium, equilibrium
constant (Ke) as well as chemical variable (ξ), corresponds to equilibrium.

(B) Reagents are continuously introduced into reaction phase in stoichiometric ratios, or
products are outputting from reaction phase also in stoichiometric ratios;

(C) Reaction phase are artificially knocked out of equilibrium all and the system strives to
return to it all the time.

(D) Thus, one can write that if one artificially changes molar numbers of components (with-
out system drive to equilibrium constant), then the following inequalities are valid:

(d ln Kune/dnreagents)P,T,nproducts
=

{
d/dnreagents[

n1

∑
i=1

νi ln ai]

}
P,T,nproducts

< 0 (96)

(d ln Kune/dnproducts)P,T,nreagents
=

{
d/dnproducts[

n

∑
i=n1+1

νi ln ai]

}
P,T,nreagents

> 0 (97)

because it is a valid criterion of diffusional stability of the reaction phase:

(∂µi/∂ni)T,P,nproducts(reagents)
= RT(∂ lni /∂ni)T,P,nproducts(reagents)

> 0 (98)

Value Kune in Equation (95) is not equilibrium constant and corresponds to un-
equilibrium, for example, for one of the reagents:

n1
∑

i=1
(∂µk/∂ni)T,P,nproducts

= (∂µk/∂nk)T,P,ni 6=k

n1
∑

i=1
(∂nk/∂ni)T,P] =

= (∂µk/∂nk)T,P,ni 6=k
[1 +

n1
∑

i=1
(∂νi/∂νk)T,P] > 0

(99)
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and for one of the products:

n
∑

i=n1+1
(∂µk/∂ni)T,P,nreagents

= (∂µk/∂nk)T,P,ni 6=k

n
∑

i=n1+1
(∂nk/∂ni)T,P] =

= (∂µk/∂nk)T,P,ni 6=k
[1 +

n
∑

i=n1+1
(∂νi/∂νk)T,P] > 0

(100)

because both multipliers in Equation (96) are positive.
Naturally at the same time:

(dξ/dnreagents)T,P,nproducts
< 0; (dξ/dnproducts)T,P,nreagents

> 0 (101)

because:
(d ln Kune/dnproducts)T,P,nreagents

= Z(dξ/dnproducts)T,P,nreagents
(102)

(d ln Kune/dnreagents)T,P,nproducts
= Z(dξ/dnreagents)T,P,nproducts

(103)

where Z > 0 is determined later (Equation (24)). Chemical variable (ξ) after artificially
changing molar numbers of components also becomes un-equilibrium (ξune).

To return to the state of chemical equilibrium, or to make Kune = Ke; ξune = ξe, one
should transfer some part of reagents into the products (in both cases, of initial input of
reagents or output of the products). In both cases, it is valid that:

dnreagents < 0; dnproducts > 0dnreagents< 0; dnproducts >0 (104)

and in the conditions of inequalities (100) one can say, that in both these processes of
chemical equilibrium recovery:

(dξ)T,P > 0 (105)

i.e., equilibrium shifts to the products.
We can formulate CES-principle-add: In the conditions of continuous isothermal-

isobar input of reagents or output of the products in stoichiometric ratios, the chemical
equilibrium is initially collapsing and shifts to the reagents, and in the process of chemical
equilibrium recovery, it shifts to the products formation.

Input or output of part of reagents or products.
This case covers, in particular, the very popular option of permanent input of only

one reagent to the reaction phase, or output of only one product from the reaction phase
(for example, in the form of a precipitate or gaseous from the liquid phase). Unfortunately,
one cannot formulate in this case some analog of CES-principle-add. It is so because the
principles of the diffusional stability of the reaction phase (Equation (95)) will be valid
only for input or output components, but not for the components not involved in mass-
change process. We denote the components involved in mass change process as j-th and
k-th, and not involved as i-th. Derivatives (∂µi/∂nj)T,P,ni,nk 6=j

= RT(∂ ln ai/∂nj)T,P,ni,nk 6=j
or

(∂µk/∂nj)T,P,ni,nk 6=j
= RT(∂ ln ak/∂nj)T,P,ni,nk 6=j

have an indefinite sign. For example, it is

easy to show that for an ideal reaction phase:

(∂µi/∂nj)T,P,ni,nk 6=j
= (∂/∂nj)[RT(ni/

n

∑
l=1

nl)]
T,P,ni,nk 6=j

= −RT/
n

∑
l=1

nl < 0 (106)

but one cannot determine the sign of the mixed derivatives for arbitrary non-ideal reac-
tion phase. Thus, inequality (99) cannot be established and CES-principle-add cannot be
formulated.

Input or output of all reagents or all products in non-stoichiometric ratios.
In this case, CES-principle-add also cannot be formulated, because the Equations (101)

and (102) cease to be fair due to the sign uncertainty of the function Z (see Equation (24)).
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8. Conclusions

Description of chemical equilibrium shifts in the systems with free and connected
chemical reactions were elaborated in the conditions of temperature change, pressure
change, input or output of reagents or products. The principle itself was supplemented by
considering the states of chemical equilibrium, in the case when the reactants and reaction
products were mixed into a single reaction phase and were not separated in space from each
other. In the considered case, this phase can be arbitrarily imperfect. On the other hand, the
article considers cases of equilibrium shift in a system of several related reactions at once.
This connection can be carried out by any participants in this system of reactions (products,
starting materials, or intermediates). The established principle of the joint passage of the
concentrations of substances of related reactions through an extreme may, in the opinion of
the authors, be of separate interest.
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