Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeasts Cultures and Microbial Media
2.2. Wort Production
2.3. Fermentation Trials
2.4. Physicochemical Analysis
2.5. Aroma Volatile Compounds Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. pH Evolution and Alcohol Production during Fermentation
3.2. Main Physicochemical Characteristic of the Beers
3.3. Volatile Compound Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The Soul of Beer’s Aroma—A Review of Flavour-Active Esters and Higher Alcohols Produced by the Brewing Yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libkind, D.; Hittinger, C.T.; Valério, E.; Gonçalves, C.; Dover, J.; Johnston, M.; Gonçalves, P.; Sampaio, J.P. Microbe Domestication and the Identification of the Wild Genetic Stock of Lager-Brewing Yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 14539–14544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. New Lager Yeast Strains Generated by Interspecific Hybridization. J. Ind. Microbiol. Biotechnol. 2015, 42, 769–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Dörnberg, T.; Michel, M.; Wagner, R.; Jacob, F.; Hutzler, M. Genetic and Phenotypic Characterization of Different Top-Fermenting Saccharomyces cerevisiae Ale Yeast Isolates. BrewingScience 2017, 70, 9–25. [Google Scholar]
- Cocolin, L.; Campolongo, S.; Gorra, R.; Rolle, L.; Rantsiou, K. Saccharomyces cerevisiae Biodiversity During the Brewing Process of an Artisanal Beer: A Preliminary Study. J. Inst. Brew. 2011, 117, 352–358. [Google Scholar] [CrossRef]
- Stewart, G.G. Saccharomyces Species in the Production of Beer. Beverages 2016, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, F.; Vidgren, V.; Ruohonen, L.; Gibson, B. Maltose and Maltotriose Utilisation by Group I Strains of the Hybrid Lager Yeast Saccharomyces pastorianus. FEMS Yeast Res. 2016, 16, fow053. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.R.; Storgårds, E.; Krogerus, K.; Vidgren, V. Comparative Physiology and Fermentation Performance of Saaz and Frohberg Lager Yeast Strains and the Parental Species Saccharomyces eubayanus. Yeast 2013, 30, 255–266. [Google Scholar] [CrossRef]
- Villacreces, S.; Blanco, C.A.; Caballero, I. Developments and Characteristics of Craft Beer Production Processes. Food Biosci. 2022, 45, 101495. [Google Scholar] [CrossRef]
- De Simone, N.; Russo, P.; Tufariello, M.; Fragasso, M.; Solimando, M.; Capozzi, V.; Grieco, F.; Spano, G. Autochthonous Biological Resources for the Production of Regional Craft Beers: Exploring Possible Contributions of Cereals, Hops, Microbes, and Other Ingredients. Foods 2021, 10, 1831. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.-M.; Hittinger, C.; Krogerus, K.; Libkind, D.; Louis, E.; Magalhães, F.; Sampaio, J. New Yeasts-New Brews: Modern Approaches to Brewing Yeast Design and Development. FEMS Yeast Res. 2017, 17, fox038. [Google Scholar] [CrossRef]
- Iorizzo, M.; Coppola, F.; Letizia, F.; Testa, B.; Sorrentino, E. Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes 2021, 9, 839. [Google Scholar] [CrossRef]
- Liti, G.; Carter, D.M.; Moses, A.M.; Warringer, J.; Parts, L.; James, S.A.; Davey, R.P.; Roberts, I.N.; Burt, A.; Koufopanou, V. Population Genomics of Domestic and Wild Yeasts. Nature 2009, 458, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, W.; Liti, G.; Wang, S.; Bai, F. Surprisingly Diverged Populations of Saccharomyces cerevisiae in Natural Environments Remote from Human Activity. Mol. Ecol. 2012, 21, 5404–5417. [Google Scholar] [CrossRef]
- Molinet, J.; Cubillos, F.A. Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. Front. Genet. 2020, 11, 589350. [Google Scholar] [CrossRef]
- Rossi, S.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Evaluation of Saccharomyces cerevisiae Strains Isolated from Non-brewing Environments in Beer Production. J. Inst. Brew. 2018, 124, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Iorizzo, M.; Letizia, F.; Albanese, G.; Coppola, F.; Gambuti, A.; Testa, B.; Aversano, R.; Forino, M.; Coppola, R. Potential for Lager Beer Production from Saccharomyces cerevisiae Strains Isolated from the Vineyard Environment. Processes 2021, 9, 1628. [Google Scholar] [CrossRef]
- Viana, A.C.; Pimentel, T.C.; do Vale, R.B.; Clementino, L.S.; Ferreira, E.T.J.; Magnani, M.; dos Santos Lima, M. American Pale Ale Craft Beer: Influence of Brewer’s Yeast Strains on the Chemical Composition and Antioxidant Capacity. LWT 2021, 152, 112317. [Google Scholar] [CrossRef]
- Benard, M. Determination of Repeatability and Reproducibility of EBC Accepted Methods: V-Beer. J. Inst. Brew. 2000, 106, 135–138. [Google Scholar] [CrossRef]
- Alvarez, R.; Haya, E.F.; Delgado, M.; Ferrete, F. Vicinal Diketones in Beer. Part I: A Modified EBC Method for the Determination of Diacetyl and Other Vicinal Diketones in Beer. J. Inst. Brew. 1989, 95, 21–23. [Google Scholar] [CrossRef]
- Dukes, B.C.; Butzke, C.E. Rapid Determination of Primary Amino Acids in Grape Juice Using an O-Phthaldialdehyde/N-Acetyl-L-Cysteine Spectrophotometric Assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar]
- Kishimoto, T.; Teramoto, S.; Fujita, A.; Yamada, O. Evaluation of Components Contributing to the International Bitterness Unit of Wort and Beer. J. Am. Soc. Brew. Chem. 2022, 80, 53–61. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer Volatile Fingerprinting at Different Brewing Steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Quek, A.Y.H. Evaluation of Beer Fermentation with a Novel Yeast Williopsis saturnus. Food Technol. Biotechnol. 2016, 54, 403–412. [Google Scholar] [CrossRef]
- Engan, S. Organoleptic Threshold Values of Some Organic Acids in Beer. J. Inst. Brew. 1974, 80, 162–163. [Google Scholar] [CrossRef]
- Zhao, X.; Procopio, S.; Becker, T. Flavor Impacts of Glycerol in the Processing of Yeast Fermented Beverages: A Review. J. Food Sci. Technol. 2015, 52, 7588–7598. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.; Vidgren, V.; Peddinti, G.; Krogerus, K. Diacetyl Control during Brewery Fermentation via Adaptive Laboratory Engineering of the Lager Yeast Saccharomyces pastorianus. J. Ind. Microbiol. Biotechnol. 2018, 45, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; da Costa Mendonça, M.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Roustan, J.L.; Sablayrolles, J.-M. Modification of the Acetaldehyde Concentration during Alcoholic Fermentation and Effects on Fermentation Kinetics. J. Biosci. Bioeng. 2002, 93, 367–375. [Google Scholar] [CrossRef]
- Hua, D.; Xu, P. Recent Advances in Biotechnological Production of 2-Phenylethanol. Biotechnol. Adv. 2011, 29, 654–660. [Google Scholar] [CrossRef]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography. Foods 2020, 9, 1276. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Guido, L. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Ickes, C.M.; Cadwallader, K.R. Effects of Ethanol on Flavor Perception in Alcoholic Beverages. Chemosens. Percept. 2017, 10, 119–134. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active Volatile Compounds in Beer: Production, Regulation and Control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquie-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.-P.; Winderickx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R. Flavor-Active Esters: Adding Fruitiness to Beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort Composition and Its Impact on the Flavour-active Higher Alcohol and Ester Formation of Beer—A Review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Saerens, S.; Delvaux, F.; Verstrepen, K.; Van Dijck, P.; Thevelein, J.; Delvaux, F. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, K.; Tuszyński, T. The Effect of Temperature on Fermentation and Beer Volatiles at an Industrial Scale. J. Inst. Brew. 2018, 124, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the Origin of Free and Bound Staling Aldehydes in Beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef]
- Dong, L.; Piao, Y.; Zhang, X.; Zhao, C.; Hou, Y.; Shi, Z. Analysis of Volatile Compounds from a Malting Process Using Headspace Solid-Phase Micro-Extraction and GC–MS. Food Res. Int. 2013, 51, 783–789. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Miró, P.; Serra-Cayuela, A.; Buxaderas, S.; López-Tamames, E. Assessment of the Aroma Profiles of Low-Alcohol Beers Using HS-SPME–GC-MS. Food Res. Int. 2014, 57, 196–202. [Google Scholar] [CrossRef]
- King, A.; Dickinson, J.R. Biotransformation of Monoterpene Alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 2000, 16, 499–506. [Google Scholar] [CrossRef]
- King, A.J.; Dickinson, J.R. Biotransformation of Hop Aroma Terpenoids by Ale and Lager Yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar] [CrossRef]
- Takoi, K.; Itoga, Y.; Koie, K.; Kosugi, T.; Shimase, M.; Katayama, Y.; Nakayama, Y.; Watari, J. The Contribution of Geraniol Metabolism to the Citrus Flavour of Beer: Synergy of Geraniol and Β-citronellol under Coexistence with Excess Linalool. J. Inst. Brew. 2010, 116, 251–260. [Google Scholar] [CrossRef]
41CM Ale | S-04 Ale | |
---|---|---|
pH | 4.43 ± 0.03 a | 4.43 ± 0.02 a |
Acetic acid (mg/L) | 60.86 ± 0.50 a | 80.89 ± 0.40 b |
Ethanol (% v/v) | 4.20 ± 0.02 a | 4.47 ± 0.04 b |
Glycerol (mg/L) | 1556.66 ± 68.24 a | 1685.33 ± 26.02 b |
D,L-lactic acid (mg/L) | 47.90 ± 2.72 a | 57.80 ± 3.30 b |
Diacetyl (mg/L) | 0.10 ± 0.01 a | 0.12 ± 0.01 b |
Acetaldehyde (mg/L) | 2.10 ± 0.06 a | 2.40 ± 0.03 b |
Density (g/cm3) | 1.010± 0.01 a | 1.011± 0.01 a |
41CM Lager | W-34/70 Lager | |
---|---|---|
pH | 4.50 ± 0.01 a | 4.48 ± 0.04 a |
Acetic acid (mg/L) | 70.37 ± 0.70 a | 90.88 ± 0.90 b |
Ethanol (% v/v) | 4.05 ± 0.07 a | 4.51 ± 0.06 b |
Glycerol (mg/L) | 1289.33 ± 13.05 a | 1196.01 ± 13.52 b |
D,L-lactic acid (mg/L) | 20.73 ± 0.73 a | 28.23 ± 0.40 b |
Diacetyl (mg/L) | 0.11 ± 0.01 a | 0.29 ± 0.02 b |
Acetaldehyde (mg/L) | 1.33 ± 0.06 a | 1.40 ± 0.04 a |
Density (g/cm3) | 1.013 ± 0.01 a | 1.012 ± 0.01 a |
Peak No. | Compound | R.T. | RILit. 2 | RIExp. 3 | 41CM Ale Area (%) ± S.E. 1 | S04 Ale Area (%) ± S.E. 1 | 41CM Lager Area (%) ± S.E. 1 | W-34/70 Lager Area (%) ± S.E. 1 |
---|---|---|---|---|---|---|---|---|
Alcohols: | ||||||||
1 | Ethyl alcohol | 2.63 | - | <500 | 42.85 ± 0.55 | 48.73 ± 0.68 | 50.54 ± 1.01 | 37.65 ± 0.42 |
2 | 1-butanol, 3-methyl- | 4.36 | 731 | 734 | 0.64 ± 0.03 | 2.70 ± 0.06 | 3.25 ± 0.06 | 1.64 ± 0.05 |
3 | 1-butanol, 2-methyl- | 4.41 | 735 | 736 | 4.71 ± 0.06 | 3.35 ± 0.07 | 2.86 ± 0.06 | 2.28 ± 0.06 |
4 | 1-Hexanol | 7.66 | 868 | 870 | 0.13 ± 0.01 | 0.17 ± 0.01 | - | 0.08 ± 0.01 |
7 | 1-Heptanol | 10.97 | 963 | 966 | - | 0.12 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 |
11 | 1-Hexanol, 2-ethyl | 12.9 | 1031 | 1026 | 0.14 ± 0.01 | 0.93 ± 0.04 | 0.19 ± 0.01 | 0.13 ± 0.01 |
12 | 1-Octanol | 14.26 | 1060 | 1063 | 0.12 ± 0.01 | 0.16 ± 0.02 | 0.21 ± 0.03 | 0.11 ± 0.01 |
16 | Phenethyl alcohol | 15.7 | 1119 | 1121 | 9.11 ± 0.15 | 13.07 ± 0.21 | 11.67 ± 0.11 | 7.26 ± 0.21 |
22 | 1-Decanol | 20.19 | 1275 | 1279 | 0.05 ± 0.01 | 0.11 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.00 |
24 | 2-Undecanol | 20.98 | 1301 | 1303 | - | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 |
Total alcohols | 57.75 ± 0.83 | 69.37 ± 1.11 | 68.87 ± 1.30 | 49.27 ± 0.78 | ||||
Esters: | ||||||||
5 | 3-methylbutyl ester | 7.91 | 874 | 876 | 5.82 ± 0.06 | 2.57 ± 0.05 | 5.44 ± 0.07 | 2.31 ± 0.05 |
9 | Hexanoic acid, ethyl ester | 11.94 | 995 | 996 | 2.97 ± 0.06 | 3.16 ± 0.04 | 2.64 ± 0.05 | 3.02 ± 0.04 |
10 | Acetic acid, hexyl ester | 12.4 | 1015 | 1017 | 0.10 ± 0.03 | 0.12 ± 0.02 | 0.32 ± 0.03 | 0.13 ± 0.02 |
13 | Heptanoic acid, ethyl ester | 15.13 | 1092 | 1095 | 0.05 ± 0.00 | 0.11 ± 0.02 | 0.89 ± 0.04 | 0.10 ± 0.01 |
18 | Octanoic acid, ethyl ester | 18.11 | 1194 | 1196 | 18.14 ± 0.28 | 14.03 ± 0.28 | 8.19 ± 0.17 | 31.12 ± 0.41 |
21 | Acetic acid, 2-phenylethyl ester | 19.85 | 1253 | 1255 | 1.54 ± 0.04 | 1.55 ± 0.05 | 3.09 ± 0.07 | 1.61 ± 0.05 |
23 | Nonanoic acid, ethyl ester | 20.85 | 1291 | 1294 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.04 ± 0.00 | 0.08 ± 0.01 |
26 | 9-Decenoic acid, ethyl ester | 23.24 | 1382 | 1387 | 5.19 ± 0.06 | 3.67 ± 0.04 | 1.94 ± 0.05 | 5.54 ± 0.05 |
27 | Decanoic acid, ethyl ester | 23.43 | 1393 | 1397 | 6.45 ± 0.06 | 2.67 ± 0.04 | 5.26 ± 0.06 | 4.77 ± 0.06 |
28 | Octanoic acid, isopentyl ester | 24.7 | 1441 | 1446 | 0.05 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.00 |
29 | Dodecanoic acid, ethyl ester | 28.16 | 1594 | 1597 | 0.55 ± 0.04 | 0.15 ± 0.02 | 0.66 ± 0.05 | 0.09 ± 0.01 |
Total esters | 40.94 ± 0.64 | 28.14 ± 0.57 | 28.49 ± 0.59 | 48.80 ± 0.71 | ||||
Aldehydes: | ||||||||
15 | Nonanal | 15.33 | 1102 | 1105 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.09 ± 0.01 | 0.08 ± 0.01 |
19 | Decanal | 18.35 | 1203 | 1201 | 0.05 ± 0.00 | 0.09 ±0.01 | 0.12 ± 0.01 | 0.17 ± 0.02 |
Total aldehydes | 0.09 ± 0.00 | 0.13 ± 0.01 | 0.21 ± 0.02 | 0.25 ± 0.03 | ||||
Terpenes: | ||||||||
14 | Linalool | 15.2 | 1108 | 1106 | 0.45 ± 0.03 | 0.66 ± 0.05 | - | 0.62 ± 0.05 |
20 | Citronellol | 18.99 | 1236 | 1232 | 0.16 ± 0.01 | 0.52 ± 0.04 | 0.61 ± 0.04 | 0.47 ± 0.03 |
Total terpenes | 0.61 ± 0.04 | 1.18 ± 0.09 | 0.61 ± 0.04 | 1.09 ± 0.08 | ||||
Others: | ||||||||
8 | Sulcatone | 11.56 | 971 | 974 | 0.10 ± 0.02 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.01 |
17 | Octanoic acid | 17.47 | 1193 | 1191 | 0.20 ± 0.00 | 0.13 ± 0.01 | 0.31 ± 0.02 | 0.12 ± 0.01 |
25 | Gamma-Nonalactone | 22.7 | 1358 | 1361 | - | 0.05 ± 0.01 | 0.10 ± 0.01 | 0.02 ± 0.00 |
Total others | 0.30 ± 0.02 | 0.26 ± 0.03 | 0.49 ± 0.04 | 0.20 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, B.; Coppola, F.; Letizia, F.; Albanese, G.; Karaulli, J.; Ruci, M.; Pistillo, M.; Germinara, G.S.; Messia, M.C.; Succi, M.; et al. Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production. Processes 2022, 10, 2495. https://doi.org/10.3390/pr10122495
Testa B, Coppola F, Letizia F, Albanese G, Karaulli J, Ruci M, Pistillo M, Germinara GS, Messia MC, Succi M, et al. Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production. Processes. 2022; 10(12):2495. https://doi.org/10.3390/pr10122495
Chicago/Turabian StyleTesta, Bruno, Francesca Coppola, Francesco Letizia, Gianluca Albanese, Julian Karaulli, Mamica Ruci, Marco Pistillo, Giacinto Salvatore Germinara, Maria Cristina Messia, Mariantonietta Succi, and et al. 2022. "Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production" Processes 10, no. 12: 2495. https://doi.org/10.3390/pr10122495
APA StyleTesta, B., Coppola, F., Letizia, F., Albanese, G., Karaulli, J., Ruci, M., Pistillo, M., Germinara, G. S., Messia, M. C., Succi, M., Vergalito, F., Tremonte, P., Lombardi, S. J., & Iorizzo, M. (2022). Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production. Processes, 10(12), 2495. https://doi.org/10.3390/pr10122495