UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst
Abstract
:1. Introduction
2. Conditions for UPLC Analysis of Medicinal Substances
2.1. Cardiovascular Drugs
2.2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)
2.3. Antibiotics
2.4. Antifungal and Anthelmintic Drugs
2.5. Antipsychotics, Antidepressants, and Drugs Used in Diseases of the Nervous System
2.6. Antiviral Drugs
2.7. Antihistamine Drugs
2.8. Other Drugs
2.9. Summary
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MacNair, J.E.; Lewis, K.C.; Jorgenson, J.W. Ultrahigh-pressure reversed-phase liquid chromatography in packe capillary columns. Anal. Chem. 1997, 69, 983–989. [Google Scholar] [CrossRef]
- Chawla, G.; Ranjan, C. Principle, instrumentation and applications of UPLC: A novel technique of liquid chromatography. Open Chem. J. 2016, 3, 1–16. [Google Scholar] [CrossRef]
- Chesnut, S.M.; Salisbury, J.J. The role of UHPLC in pharmaceutical development. J. Sep. Sci. 2007, 30, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hodges, C.C. Assay transfer from HPLC to UPLC for higher analysis throughput. Waters Sep. Sci. Redef. 2005, 5, 31–35. [Google Scholar]
- Szulfar, J. Transfer metod HPLC do UHPLC. Laborant 2010, 1, 8–14. [Google Scholar]
- Patil, V.P.; Tathe, R.D.; Devdhe, S.J.; Angadi, S.S.; Kale, S.H. Ultra performance liquid chromatography: A review. Int. Res. J. Pharm. 2011, 2, 39–44. [Google Scholar]
- Plumb, R.S.; Castro-Perez, J.; Granger, J.H.; Beattie, I.; Joncour, K.; Wright, A. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2331–2337. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Qiao, G.; Qiu, Z.; Wen, Z.; Wen, X. Optimizing the supercritical carbon dioxide extraction of sweet cherry (Prunus avium L.) leaves and UPLC-MS/MS analysis. Anal. Methods 2020, 12, 3004–3013. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Cathey, S.; Pollard, L.; Wood, T. UPLC-MS/MS analysis of urinary free oligosaccharides for lysosomal storage diseases: Diagnosis and potential treatment monitoring. Clin. Chem. 2018, 64, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Weng, Q.; Ma, J. A new UPLC-MS/MS method validated for quantification of jervine in rat plasma and the study of its pharmacokinetics in rats. J. Anal. Meth. Chem. 2019, 2019, 5163625. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Wang, H.; Lin, H.; Liu, J.; Zhou, B.; Chen, X.; Wang, C.; Liu, J.; Li, P. Comprehensive metabolomics analysis based on UPLC-Q/TOF-MSE and the anti-COPD effect of different parts of Celastrus orbiculatus Thunb. RSC Adv. 2020, 10, 8396–8420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathod, R.H.; Chaudhari, S.R.; Patil, A.S.; Shirkhedkar, A.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: Analysis of drugs and pharmaceutical formulations. Future J. Pharm. Sci. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lu, J.; Zhang, Y.; Tian, Y.; Yuan, H.; Xu, Y. Applications and challenges in using LC-MS/MS assays for quantitative doping analysis. Bioanalysis 2016, 8, 1307–1322. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, G.; Nair, A.; Sharma, R. UPLC: A preeminent technique in pharmaceutical analysis. Acta Pol. Pharm. 2012, 69, 371–380. [Google Scholar]
- Pullancheri, D.; Vaidyanathan, G.; Gayathree, N. Qualitative and Quantitative Analyses of Water Soluble Vitamins and Flavonoids in Pomegranate Aril Juice, Skin, and Commercially Available Fruit Juice Using the ACQUITY UPLC H-Class with PDA Detector. WATERS Application Note, APNT134731961. 2013. Available online: https://gimitec.com/file/720004644en.pdf (accessed on 16 October 2022).
- Rab, R.A.; Zahiruddin, S.; Ibrahim, M.; Husain, F.; Parveen, R.; Khan, W.; Ahmad, F.J.; Khan, A.A.; Ahmad, S. HPTLC and UPLC-MS/MS methods for quality control analysis of itrifal formulations of unani system of medicine. J. AOAC Int. 2020, 103, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, Y.L.; Shen, J.Z. UPLC-ESI-MS/MS analysis of Sudan dyes and Para Red in food. Food Addit. Contam. 2010, 27, 1215–1220. [Google Scholar] [CrossRef]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.N.; Gao, T.C.; Duan, J.S.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- Perkola, N.; Sainio, P. Survey of perfluorinated alkyl acids in finnish effluents, storm water, landfill leachate and sludge. Environ. Sci. Pollut. Res. 2013, 20, 7979–7987. [Google Scholar] [CrossRef] [PubMed]
- Oehrle, S.A. Analysis of explosives using ultra performance liquid chromatography (UPLC®) with UV and/or mass spectrometry detection. J. Energy Mater. 2008, 26, 197–206. [Google Scholar] [CrossRef]
- Mezcua, M.; Agüera, A.; Lliberia, J.L.; Cortés, M.A.; Bagó, B. Application of ultra performance liquid chromatography–tandem mass spectrometry to the analysis of priority pesticides in groundwater. J. Chromatogr. A 2006, 1109, 222–227. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, X.; Wang, R.; Luo, R.; Shi, Y.; Shen, B.; Liu, W.; Yu, Z.; Xiang, P. Simultaneous determination of 11 illicit drugs and metabolites in wastewater by UPLC-MS/MS. Water Sci. Technol. 2020, 82, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Makwana, S.; Patil, V.B.; Patel, M.; Upadhyay, J.; Shah, A. A validated stability-indicating method for separation of prucalopride drug by HPLC: Method transfer to UPLC. Anal. Chem. Lett. 2021, 11, 580–595. [Google Scholar] [CrossRef]
- Gumustas, M.; Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. UPLC versus HPLC on drug analysis: Advantageous, applications and their validation parameters. Chromatographia 2013, 76, 1365–1427. [Google Scholar] [CrossRef]
- Antman, E.M.; Arnold, J.M.O.; Friedman, P.L.; Smith, T.W. Pharmacokinetic drug interactions between digoxin and antiarrhythmic agents and calcium channel blocking agents: An appraisal of study methodology. Cardiovasc. Drugs Ther. 1987, 1, 183–189. [Google Scholar] [CrossRef]
- Ferroni, P.; Della-Morte, D.; Pileggi, A.; Valente, M.G.; Martini, F.; La Farina, F.; Palmirotta, R.; Meneghini, L.F.; Rundek, T.; Ricordi, C.; et al. Impact of statins on the coagulation status of type 2 diabetes patients evaluated by a novel thrombin-generation assay. Cardiovasc. Drugs Ther. 2012, 26, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kaila, T.; Iisalo, E.; Lehtonen, A.; Saarimaa, H. Extent of beta1- and beta2-receptor occupancy in plasma assesses the antagonist activity of metoprolol, pindolol, and propranolol in the elderly. Cardiovasc. Drugs Ther. 1993, 7, 839–849. [Google Scholar] [CrossRef]
- Procaccini, D.E.; Sawyer, J.E.; Watt, K.M. Pharmacology of cardiovascular drugs. In Critical Heart Disease in Infants and Children, 3rd ed.; Ungerleider, R.M., Nelson, K., Cooper, D., Meliones, J., Jacobs, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 192–212. [Google Scholar]
- Antil, P.; Kaushik, D.; Jain, G.; Srinivas, K.S.; Thakur, I. UPLC method for simultaneous determination of valsartan & hydrochlorothiazide in drug products. J. Chromat. Sep. Tech. 2013, 4, 1000182. [Google Scholar]
- Codevilla, C.F.; Lange, A.D.C.; de Mello Andrade, J.M.; Segalin, J.; Fröehlich, P.E.; Bergold, A.M. Photodegradation kinetics of lodenafil carbonate, structure elucidation of two major degradation products using UPLC-MS/MS and in vitro cytotoxicity. Anal. Methods 2013, 5, 6511–6516. [Google Scholar] [CrossRef]
- Devu, S.; Gupta, A.; Srinivas, K.S.; Gupta, R.S.; Semwal, V.P. Development and validation of stability indicating RP-UPLC method for simultaneous determination in fixed dose combination of ezetimibe and simvastatin. J. Chromat. Sep. Tech. 2012, 3, 1000131. [Google Scholar] [CrossRef] [Green Version]
- Dendeni, M.; Cimetiere, N.; Amrane, A.; Ben Hamida, N. Impurity profiling of trandolapril under stress testing: Structure elucidation of by-products and development of degradation pathway. Int. J. Pharm. 2012, 438, 61–70. [Google Scholar] [CrossRef]
- Gomas, A.R.; Ram, P.R.; Srinivas, N.; Sriramulu, J. Degradation pathway for pitavastatin calcium by validated stability indicating UPLC method. Am. J. Anal. Chem. 2010, 2, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, C.; Reddy, A.R.; Kumar, R.; Mukkanti, K. Stability-indicating UPLC method for determination of valsartan and their degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2010, 53, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Kasawar, G.B.; Farooqui, M.N. Simultaneous determination of amlodipine besylate and benazepril hydrochloride in pharmaceutical dosage form by LC. Anal. Sci. 2009, 25, 1495–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.K.; Rao, C.K.; Lakshmi, M.V.; Mukkanti, K. A validated stability indicating RP-UPLC method for atrovastain calcium. Am. J. Anal. Chem. 2012, 3, 392–399. [Google Scholar] [CrossRef]
- Kumar, M.N.; Reddy, V.K.; Sharma, H.K.; Kaleemullah, T.; Reddy, T.C.S.; Reddy, G.T.; Sreenivas, N.; Sen, G. A simple and sensitive RP-UPLC method for the simultaneous determination of N-hydroxybenzotriazole, cinchonidine and 1,3-dicyclohexyl urea contents in fosinopril sodium drug substance. E J. Chem. 2012, 9, 2058–2067. [Google Scholar] [CrossRef]
- Kumar, K.K.; Rao, C.K.; Madhusudan, G.; Mukkanti, K. Rapid simultaneous determination of olmesartan, amlodipine and hydrochlorothiazide in combined pharmaceutical dosage form by stability-indicating ultra performance liquid chromatography. Am. J. Anal. Chem. 2012, 3, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kadav, A.A.; Vora, D.N. Stability indicating UPLC method for simultaneous determination of atorvastatin, fenofibrate and their degradation products in tablets. J. Pharm. Biomed. Anal. 2008, 48, 120–126. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; San Miguel, P.R.; Uslu, B.; Ozkan, S.A. Stability-indicating UPLC method for the determination of bisoprolol fumarate and hydrochlorothiazide: Application to dosage forms and biological sample. Chromatographia 2014, 77, 365–371. [Google Scholar] [CrossRef]
- Mallikarjuna, S.; Ramalingam, P.; Sriram, P.; Garima, J.; Srinivas, S.K. Development and validation of stability-indicating RP-UPLC method for simultaneous estimation of amlodipine besylate and atorvastatin calcium in pharmaceutical dosage forms. J. Chromatogr. Sep. Tech. 2013, 4, 1000187. [Google Scholar]
- Nalwade, S.; Reddy, V.R.; Rao, D.D.; Rao, I.K. Rapid simultaneous determination of telmisartan, amlodipine besylate and hydrochlorothiazide in a combined poly pill dosage form by stability-indicating ultra performance liquid chromatography. Sci. Pharm. 2011, 79, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Otašević, B.; Milovanović, S.; Zečević, M.; Golubović, J.; Protić, A. UPLC method for determination of moxonidine and its degradation products in active pharmaceutical ingredient and pharmaceutical dosage form. Chromatographia 2014, 77, 109–118. [Google Scholar] [CrossRef]
- Plumb, R.S.; Jones, M.D.; Rainville, P.D.; Nicholson, J.K. A rapid simple approach to screening pharmaceutical products using ultra-performance LC coupled to time-of-flight mass spectrometry and pattern recognition. J. Chromatogr. Sci. 2008, 46, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Ram, V.; Kher, G.; Dubal, K.; Dodiya, B.; Joshi, H. Development and validation of a stability indicating UPLC method for determination of ticlopidine hydrochloride in its tablet formulation. Saudi Pharm. J. 2011, 19, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, K.; Sahu, S.; Shaharyar, M.; Siddiqui, A.A. Comparative study of forced degradation behavior of telmisartan by UPLC and HPLC and development of validated stability indicating assay method according to ICH guidelines. J. Chromatogr. Sep. Tech. 2012, 3, 1000129. [Google Scholar] [CrossRef] [Green Version]
- Seshadri, R.K.; Desai, M.M.; Raghavaraju, T.V.; Krishnan, D.; Rao, D.V.; Chakravarthy, I.E. Simultaneous quantitative determination of metoprolol, atorvastatin and ramipril in capsules by a validated stability-indicating RP-UPLC method. Sci. Pharm. 2010, 78, 821–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, H.K.; Patel, M.C. Development and validation of a stability-indicating RP-UPLC method for determination of rosuvastatin and related substances in pharmaceutical dosage form. Sci. Pharm. 2012, 80, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Kormány, R.; Molnár, I.; Fekete, J.; Guillarme, D.; Fekete, S. Robust UHPLC separation method development for multi-API product containing amlodipine and bisoprolol: The impact of column selection. Chromatographia 2014, 77, 1119–1127. [Google Scholar] [CrossRef]
- Wingert, N.R.; dos Santos, N.O.; Nunes, M.A.G.; Gomes, P.; Müller, E.I.; Flores, É.M.M.; Steppe, M. Characterization of three main degradation products from novel oral anticoagulant rivaroxaban under stress conditions by UPLC-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 2016, 123, 10–15. [Google Scholar] [CrossRef]
- Dhekale, N.H.; Bindu, K.H.; Kirankumar, K.Y.; Gore, A.H.; Anbhule, P.V.; Kolekar, G.B. Development and optimization of a multivariate RP-UPLC method for determination of telmisartan and its related substances by applying a two-level factorial design approach: Application to quality control study. Anal. Methods 2014, 6, 5168–5182. [Google Scholar] [CrossRef]
- Paczkowska, M.; Zalewski, P.; Garbacki, P.; Talaczyńska, A.; Krause, A.; Cielecka-Piontek, J. The development and validation of a stability-indicating UHPLC-DAD method for determination of perindopril l-arginine in bulk substance and pharmaceutical dosage form. Chromatographia 2014, 77, 1497–1501. [Google Scholar] [CrossRef] [Green Version]
- Uslu, B.; Özden, T. HPLC and UPLC methods for the simultaneous determination of enalapril and hydrochlorothiazide in pharmaceutical dosage forms. Chromatographia 2013, 76, 1487–1494. [Google Scholar] [CrossRef]
- Wren, S.A.C.; Tchelitcheff, P. UPLC/MS for the identification of beta-blockers. J. Pharm. Biomed. Anal. 2006, 40, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Al-Tannak, N.F. UHPLC-UV method for simultaneous determination of perindopril arginine and indapamide hemihydrate in combined dosage form: A stability-indicating assay method. Sci. Pharm. 2018, 86, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Luo, S.-B.; Mei, Y.-B.; Guo, J.; Tong, L.-J.; Zhang, Q.; Ye, X.-Y. Simultaneous determination of rivaroxaban and enalapril in rat plasma by UPLC–MS/MS and its application to a pharmacokinetic interaction study. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 229–236. [Google Scholar] [CrossRef]
- Elkady, E.F.; Tammam, M.H.; Elmaaty, A.A. Stability indicating HPLC-UV vs. UPLC-DAD for estimation of atorvastatin simultaneously with aspirin, clopidogrel and their related impurities in bulk and capsules. Anal. Chem. Lett. 2017, 7, 596–610. [Google Scholar] [CrossRef]
- Mantena, B.P.V.; Rao, S.V.; Appa Rao, K.M.C.; Ramakrishna, K.; Reddy, R.S. Method development and validation for the determination of potential impurities present in azilsartan medoxomil tablets by reverse phase-ultra performance liquid chromatography. Anal. Chem. Lett. 2014, 4, 287–301. [Google Scholar] [CrossRef]
- Mantena, B.P.V.; Rao, S.V.; Suryakala, D.; Ramakrishna, K.; Reddy, R.S. Rapid analytical technique for the quantification of specified and unspecified impurities present in amlodipine besylate and olmesartan medoxomil fixed dose combination drug product using ethylene-bridged RP-UPLC column. Anal. Chem. Lett. 2016, 6, 795–819. [Google Scholar] [CrossRef]
- Mantena, B.P.V.; Rao, S.V.; Suryakala, D.; Ramakrishna, K.; Reddy, R.S. Development and validation of RP-UPLC method for the determination of process and degradant impurities present in dabigatran etexilate mesylate capsules using high strength silica-T3 sorbent column. Anal. Chem. Lett. 2016, 6, 595–611. [Google Scholar] [CrossRef]
- Mohan, T.S.S.J.; Jogia, H.A.; Mukkanti, K. Novel stability-indicating UHPLC method development and validation for the quantification of perindopril, amlodipine and their impurities in pharmaceutical formulations: Application of QbD approach. Chromatographia 2020, 83, 1197–1220. [Google Scholar] [CrossRef]
- Mohan, T.S.S.J.; Jogia, H.A.; Mukkanti, K. A stability indicating UHPLC method for the simultaneous estimation of perindopril, indapamide in presence of potential impurities: An application of QbD for robustness study. Anal. Chem. Lett. 2020, 10, 477–497. [Google Scholar] [CrossRef]
- Palaric, C.; Molinié, R.; Cailleu, D.; Fontaine, J.-X.; Mathiron, D.; Mesnard, F.; Gut, Y.; Renaud, T.; Petit, A.; Pilard, S. A deeper investigation of drug degradation mixtures using a combination of MS and NMR data: Application to indapamide. Molecules 2019, 24, 1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Li, Y.; Li, X.; Fan, L.; He, X.; Fu, Y.; Dong, Z. A simple UPLC/MS-MS method for simultaneous determination of lenvatinib and telmisartan in rat plasma, and its application to pharmacokinetic drug-drug interaction study. Molecules 2022, 27, 1291. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.A.; Mitra, B.; Cameron, P.A. A systematic review and meta-analysis comparing the efficacy of nonsteroidal anti-inflammatory drugs, opioids, and paracetamol in the treatment of acute renal colic. Eur. Urol. 2018, 73, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Brune, K.; Hinz, B. The discovery and development of antiinflammatory drugs. Arthritis Rheum. 2004, 50, 2391–2399. [Google Scholar] [CrossRef]
- Synoweć, J.; Pogorzelczyk, K.; Robakowska, M.; Ślęzak, D.; Żuratyński, P.; Nadolny, K.; Mędrzycka-Dąbrowska, W. The consequences of using widely available non-steroidal anti-inflammatory drugs (NSAIDs). Med. Rodz. 2018, 3, 281–291. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Nováková, L.; Solichová, D.; Solich, P. Advantages of ultra performance liquid chromatography over high-performance liquid chromatography: Comparison of different analytical approaches during analysis of diclofenac gel. J. Sep. Sci. 2006, 29, 2433–2443. [Google Scholar] [CrossRef]
- Rao, D.D.; Sait, S.S.; Mukkanti, K. Development and validation of an UPLC method for rapid determination of ibuprofen and diphenhydramine citrate in the presence of impurities in combined dosage form. J. Chromatogr. Sci. 2011, 49, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Sethi, N.; Anand, A.; Chandrul, K.K.; Jain, G.; Srinivas, K.S. Development and validation of a stability-indicating RP-UPLC method for the quantitative analysis of nabumetone in tablet dosage form. J. Chromatogr. Sci. 2012, 50, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Tettey-Amlalo, R.N.O.; Kanfer, I. Rapid UPLC-MS/MS method for the determination of ketoprofen in human dermal microdialysis samples. J. Pharm. Biomed. Anal. 2009, 50, 580–586. [Google Scholar] [CrossRef]
- Venkatarao, P.; Kumar, M.N.; Kumar, M.R. Novel validated stability-indicating UPLC method for the estimation of naproxen and its impurities in bulk drugs and pharmaceutical dosage form. Sci. Pharm. 2012, 80, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Dabhi, B.; Parmar, B.; Patel, N.; Jadeja, Y.; Patel, M.; Jebaliya, H.; Karia, D.; Shah, A.K. A stability indicating UPLC method for the determination of levofloxacin hemihydrate in pharmaceutical dosage form: Application to pharmaceutical analysis. Chromatogr. Res. Int. 2013, 2013, 432753. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Sharma, A.; Chander, P. Development and validation of a stability-indicating RP-UPLC method for the quantitative analysis of sparfloxacin. J. Chromatogr. Sci. 2010, 48, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.-T.; Guillarme, D.; Rudaz, S.; Veuthey, J.-L. Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets. J. Sep. Sci. 2008, 31, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.N.K.; Prasad, V.V.S.R.; Maiti, N.J.; Nayak, D.; Maharana, P.K. Development and validation of a stability indicating UPLC method for determination of moxifloxacin hydrochloride in pharmaceutical formulations. Pharm. Anal. Acta 2011, 2, 1000142. [Google Scholar]
- Zalewski, P.; Talaczyńska, A.; Korban, P.; Garbacki, P.; Mizera, M.; Cielecka-Piontek, J. An approach to transfer methods from HPLC to UHPLC techniques in some carbapenems. Chromatographia 2014, 77, 1483–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Tang, L.; He, B.; Liu, R.; Li, Q. Simultaneous determination of four main impurities in cefuroxime lysine by ultra fast liquid chromatography-tandem mass spectrometry: Application to the analysis of products in stability testing. Anal. Methods 2015, 7, 1958–1964. [Google Scholar] [CrossRef]
- Rigo-Bonnin, R.; Gomez-Junyent, J.; García-Tejada, L.; Benavent, E.; Soldevila, L.; Tubau, F.; Murillo, O. Measurement of ceftolozane and tazobactam concentrations in plasma by UHPLC-MS/MS. Clinical application in the management of difficult-to-treat osteoarticular infections. Clin. Chim. Acta 2019, 488, 50–60. [Google Scholar] [CrossRef]
- Dobrova, A.O.; Golovchenko, O.S.; Bezruk, I.V.; Ivanauskas, L.; Georgiyants, V. Simultaneous determination of amoxicillin and potassium clavulanate in combined medicinal forms: Procedure transfer from HPLC to UPLC. Ces. Slov. Farm. 2020, 69, 186–193. [Google Scholar]
- Krishna, M.V.V.N.M.; Rao, S.V.; Venugopal, N.V.S.; Mantena, B.P.V. Simultaneous determination of acetaminophen and tramadol impurities in combination product of acetaminophen and tramadol tablets by UPLC with trifunctional octadecyl column. Anal. Chem. Lett. 2015, 5, 306–318. [Google Scholar] [CrossRef]
- Makwana, S.; Patel, M.; Prajapati, D.; Shingala, C.; Upadhyay, J.; Shah, A. NSAID drugs and a new approach of method transfer from classical HPLC to a modern UPLC instrument. Chromatogr. Res. Int. 2016, 2016, 1596021. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.V.T.; Tran, T.N.T.; Nguyen, M.Q.; Nguyen, T.K. Rapid and simultaneous determination of paracetamol, ibuprofen and related impurity of ibuprofen by UPLC/DAD. Pharm. Sci. Asia 2018, 45, 213–220. [Google Scholar] [CrossRef]
- Reddy, R.S.; Krishna, R.M.; Vekaria, N.A.; Sumathi, R.V.; Mantena, B.P.V. Determination of potential impurities of naproxen sodium in soft gelatin capsules dosage by using ultra performance liquid chromatography. Anal. Chem. Lett. 2016, 6, 55–69. [Google Scholar] [CrossRef]
- Szeitz, A.; Edginton, A.N.; Peng, H.T.; Cheung, B.; Riggs, K.W. A validated enantioselective assay for the determination of ibuprofen in human plasma using ultra performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Am. J. Anal. Chem. 2010, 1, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.; Diehl, D.; Mazzeo, J. A Rapid and Sensitive SPE-UPLC/MS/MS Method for Determination of Ropinirole in Human Plasma. WATERS The Application Notebook. 2005, pp. 31–34. Available online: https://www.waters.com/content/dam/waters/en/app-notes/2009/720002162/720002162-de.pdf (accessed on 16 October 2022).
- Eid, M.A.; Yusof, N.A.; Faruq, M.; Abdullah, J.; Sulaiman, Y. Quantitative measurement of amoxicillin in ibuprofen tablets using UPLC. Measurement 2016, 93, 465–472. [Google Scholar] [CrossRef]
- Kirkham, K.; Meadows, K. Rapid Separation of Ibuprofen, Ibuprofen-Related Compound C, and Valerophenone Using Advanced UHPLC and Sub-2 µm Solid Core Column Technologies. Thermo Fisher Scientific Application Note. 2022, p. 21183. Available online: https://appslab.thermofisher.com/App/1925/rapid-separation-ibuprofen-ibuprofenrelated-compound-c-valerophenone-using-advanced-uhplc-sub2-%C2%B5m-solid-core-column-technologies (accessed on 16 October 2022).
- Feliu, C.; Konecki, C.; Candau, T.; Vautier, D.; Haudecoeur, C.; Gozalo, C.; Cazaubon, Y.; Djerada, Z. Quantification of 15 antibiotics widely used in the critical care unit with a LC-MS/MS system: An easy method to perform a daily therapeutic drug monitoring. Pharmaceuticals 2021, 14, 1214. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.; Kumar, K.; Reddy, M.; Mukkanti, K. RP-UPLC method development and validation for the simultaneous estimation of ibuprofen and famotidine in pharmaceutical dosage form. Pharm. Methods 2012, 3, 57–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Choidhary, N.; Rai, J.; Siddiqui, I.; Sharm, S. A validated RP-UPLC method development for simultaneous estimation of lansoprazole and naproxen in bulk and tablet dosage form. Asian J. Pharm. Clin. Res. 2013, 6, 150–152. [Google Scholar]
- Yan, H.; Liu, W.; Xia, Q.; Pan, Y. Simultaneous determination of 12 nonsteroidal anti-inflammatory drugs illegally added into antirheumatic TCM preparations by UPLC-MS/MS. Chin. Pharm. 2017, 12, 3871–3875. [Google Scholar]
- Elzayat, E.M.; Ibrahim, M.F.; Abdel-Rahman, A.A.; Ahmed, S.M.; Alanazi, F.K.; Habib, W.A. A validated stability-indicating UPLC method for determination of diclofenac sodium in its pure form and matrix formulations. Arab J. Chem. 2017, 10, S3245–S3254. [Google Scholar] [CrossRef]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.S.; Kissler, S.M.; Kanjilal, S.; Olesen, S.W.; Lipsitch, M.; Grad, Y.H. Analysis of multiple bacterial species and antibiotic classes reveals large variation in the association between seasonal antibiotic use and resistance. PLoS Biol. 2022, 20, e3001579. [Google Scholar] [CrossRef] [PubMed]
- Pauter, K.; Szultka-Młyńska, M.; Buszewski, B. Determination and identification of antibiotic drugs and bacterial strains in biological samples. Molecules 2020, 25, 2556. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic residues in food: Extraction, analysis, and human health concerns. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Chen, S.C.A.; Sorrell, T.C. Antifungal agents. Med. J. Aust. 2017, 187, 404–409. [Google Scholar] [CrossRef]
- Owens, J.N.; Skelley, J.W.; Kyle, J.A. The fungus among us: An antifungal review. US Pharm. 2010, 35, 44–56. [Google Scholar]
- Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, N.; Geary, M.; Wharton, M.; Sweetman, P. The determination of miconazole and its related production impurities together with basic solution stability studies using a sub 2 μm chromatographic column. J. Chromatogr. Sci. 2012, 50, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Dongre, V.G.; Karmuse, P.P.; Rao, P.P.; Kumar, A. Development and validation of UPLC method for determination of primaquine phosphate and its impurities. J. Pharm. Biomed. Anal. 2008, 46, 236–242. [Google Scholar] [CrossRef]
- Van De Steene, J.C.; Lambert, W.E. Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. J. Am. Soc. Mass Spectrom. 2008, 19, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Yanamandra, R.; Chaudhary, A.; Bandaru, S.R.; Patro, B.; Murthy, Y.L.N.; Ramaiah, P.A.; Sastry, C.S.P. UPLC method for simultaneous separation and estimation of secnidazole, fluconazole and azithromycin in pharmaceutical dosage forms. E J. Chem. 2010, 7, S363–S371. [Google Scholar] [CrossRef]
- Elkady, E.F.; Tammam, M.H.; Elmaaty, A.A. HPLC-UV vs. UPLC-DAD for estimation of tinidazole, benzyl alcohol and hydrocortisone acetate simultaneously with tioconazole and its related impurities in bulk and pharmaceutical formulations. Anal. Chem. Lett. 2017, 7, 153–169. [Google Scholar] [CrossRef]
- Lisi, L.; Ciotti, G.M.P.; Navarra, P. Development of an UPLC-MS/MS method for quantitative analysis of clotrimazole in human plasma samples. Separations 2020, 7, 62. [Google Scholar] [CrossRef]
- Gardner, D.M.; Baldessarini, R.J.; Waraich, P. Modern antipsychotic drugs: A critical overview. Can. Med. Assoc. J. 2005, 172, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.P.; Law, H.; Carter, L.; Sellers, R.; Emsley, R.; Pyle, M.; French, P.; Shiers, D.; Yung, A.R.; Murphy, E.K.; et al. Antipsychotic drugs versus cognitive behavioural therapy versus a combination of both in people with psychosis: A randomised controlled pilot and feasibility study. Lancet Psychiat. 2018, 5, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Hou, W.; Xu, Y.; Ji, F.; Wang, G.; Chen, C.; Lin, C.; Lin, X.; Li, J.; Zhuo, C.; et al. Antipsychotic drugs and sudden cardiac death: A literature review of the challenges in the prediction, management, and future steps. Psychiatry Res. 2019, 281, 112598. [Google Scholar] [CrossRef] [PubMed]
- Maguire, M.; Singh, J.; Marson, A. Epilepsy and psychosis: A practical approach. Pract. Neurol. 2018, 18, 106–114. [Google Scholar] [CrossRef]
- Sharma, K.B. Antidepressants: Mechanism of action, toxicity and possible amelioration. J. Appl. Biotechnol. Bioeng. 2017, 3, 437–448. [Google Scholar]
- Artigas, F.; Nutt, D.J.; Shelton, R. Mechanism of action of antidepressants. Psychopharmacol. Bull. 2002, 36, 123–132. [Google Scholar]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Morofuji, Y.; Nakagawa, S. Drug development for central nervous system diseases using in vitro blood-brain barrier models and drug repositioning. Curr. Pharm. Des. 2020, 26, 1466–1485. [Google Scholar] [CrossRef]
- Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017, 1, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem. 2021, 158, 1425–1438. [Google Scholar] [CrossRef]
- Bindu, K.H.; Reddy, I.U.; Anjaneyulu, Y.; Suryanarayana, M.V. A stability-indicating ultra-performance liquid chromatographic method for estimation of related substances and degradants in paliperidone active pharmaceutical ingredient and its pharmaceutical dosage forms. J. Chromatogr. Sci. 2012, 50, 368–372. [Google Scholar] [CrossRef]
- Chhalotiya, U.K.; Patel, H.B.; Bhatt, K.K. Development and validation of an ultra performance liquid chromatography method for venlafaxine hydrochloride in bulk and capsule dosage form. Indian J. Pharm. Sci. 2010, 72, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, C.; Murthy, M.V.; Kumar, R.; Mukkanti, K. Development of a stability-indicating UPLC method for determining olanzapine and its associated degradation products present in active pharmaceutical ingredients and pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2011, 54, 667–673. [Google Scholar] [CrossRef]
- Li, K.Y.; Zhou, Y.G.; Ren, H.Y.; Wang, F.; Zhang, B.K.; Li, H.D. Ultra-performance liquid chromatography-tandem mass spectrometry for the determination of atypical antipsychotics and some metabolites in in vitro samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 581–585. [Google Scholar] [CrossRef]
- Rao, D.D.; Sait, S.S.; Reddy, A.M.; Chakole, D.; Reddy, Y.R.; Mukkanti, K. Analysis of duloxetine hydrochloride and its related compounds in pharmaceutical dosage forms and in vitro dissolution studies by stability indicating UPLC. J. Chromatogr. Sci. 2010, 48, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, R.K.; Patel, M.C. Development and validation of a stability indicating RP-UPLC method for determination of quetiapine in pharmaceutical dosage form. Sci. Pharm. 2011, 79, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, R.S.; Saravaia, H.T.; Ambasana, M.A.; Kaila, H.O.; Shah, A.K. A chromatographic determination of aripiprazole using HPLC and UPLC: A comparative validation study. Indian J. Pharm. Sci. 2011, 73, 439–443. [Google Scholar]
- Huang, X.; Zhang, S.; Ma, Y.; Yang, H.; He, C.; Tian, R.; Mei, H.; Liu, L.; Zhang, B. Bioequivalence of two quetiapine extended release tablets in Chinese healthy volunteers under fasting and fed conditions and effects of food on pharmacokinetic profiles. Drug Des. Dev. Ther. 2019, 13, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaiah, C.H.; Murthy, M.V.; Reddy, A.R.; Kumar, R.; Mukkanti, K. Development and validation of ropinirole hydrochloride and its related compounds by UPLC in API and pharmaceutical dosage forms. J. Chinese Chem. Soc. 2010, 57, 348–355. [Google Scholar] [CrossRef]
- Oláh, E.; Bacsói, G.; Fekete, J.; Sharma, V.K. Determination of ng/mL levetiracetam using ultra-high-performance liquid chromatography-photodiode absorbance. J. Chromatogr. Sci. 2012, 50, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, K.; Shaharyar, M.; Siddiqui, A.A.; Sahu, S. Establishment of inherent stability on piracetam by UPLC/HPLC and development of a validated stability-indicating method. Arab. J. Chem. 2017, 10, S576–S582. [Google Scholar] [CrossRef]
- Gumustas, M.; Uslu, B.; Ozkan, S.A.; Aboul-Enein, H.Y. Validated stability-indicating HPLC and UPLC assay methods for the determination of entacapone in pharmaceutical dosage forms. Chromatographia 2014, 77, 1721–1726. [Google Scholar] [CrossRef]
- Thakkar, R.; Saravaia, H.; Shah, A. Determination of antipsychotic drugs known for narcotic action by ultra performance liquid chromatography. Anal. Chem. Lett. 2015, 5, 1–11. [Google Scholar] [CrossRef]
- Nadella, P.N.; Ratnakaram, V.N.; Navuluri, S. QbD-based uplc method for quantification of brexpiprazole in presence of impurities and application to in vitro dissolution. J. Chromatogr. Sci. 2021, 59, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Pawar, A.; Pandita, N. Statistically designed, targeted profile UPLC method development for assay and purity of haloperidol in haloperidol drug substance and haloperidol 1 mg tablets. Chromatographia 2020, 83, 725–737. [Google Scholar] [CrossRef]
- Bryan-Marrugo, O.L.; Ramos-Jiménez, J.; Barrera-Saldaña, H.; Rojas-Martínez, A.; Vidaltamayo, R.; Rivas-Estilla, A.M. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Med. Univ. 2015, 17, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Lartey, M.; Torpey, K.; Barker, C.I.S. Antiviral drugs. In Side Effects of Drugs Annual; Aronson, J.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 34, pp. 447–477. [Google Scholar]
- De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarova, P.; Kastner, P.; Nejedly, T.; Klimes, J. Development and validation of rapid UHPLC method for determination of aciclovir, its impurities and preservatives in topical cream. Anal. Methods 2013, 5, 2610–2614. [Google Scholar]
- Vukkum, P.; Deshpande, G.R.; Babu, J.M.; Muralikrishna, R.; Jagu, P. Stress degradation behavior of abacavir sulfate and development of a suitable stability-indicating uhplc method for the determination of abacavir, its related substances, and degradation products. Sci. Pharm. 2012, 80, 903–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollen, P.D.J.; de Graaff-Teulen, M.J.A.; Schalkwijk, S.; van Erp, N.P.; Burger, D.M. Development and validation of an UPLC-MS/MS bioanalytical method for simultaneous quantification of the antiretroviral drugs dolutegravir, elvitegravir, raltegravir, nevirapine and etravirine in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1105, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.H.; Mabrouk, M.M.; Bebawy, L.I.; Mekky, M.A. Spectrophotometric and robust UPLC methods for simultaneous determination of velpatasvir and sofosbuvir in their tablet. Microchem. J. 2019, 149, 103996. [Google Scholar] [CrossRef]
- Mondal, P.; Mahender, K.; Padmaja, B. A novel UPLC-PDA method for the simultaneous determination of lamivudine, zidovudine and nevirapine in bulk and tablet dosage form. Anal. Chem. Lett. 2018, 8, 131–138. [Google Scholar] [CrossRef]
- Simons, F.E.R.; Simons, K. H1 Antihistamines: Current status and future directions. World Allergy Organ. J. 2008, 1, 145–155. [Google Scholar] [CrossRef]
- Keller, G.A.; Di Girolamo, G. Antihistamines: Past answers and present questions. Curr Drug Saf. 2010, 5, 58–64. [Google Scholar] [CrossRef]
- Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.S.; Stark, H.; Thurmond, R.L.; Haas, H.L. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine receptors. Pharmacol. Rev. 2015, 67, 601–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Sangeetha, D.; Reddy, P.S.; Prakash, L. A validated stability-indicating RP-UPLC method for simultaneous determination of desloratadine and sodium benzoate in oral liquid pharmaceutical formulations. Sci. Pharm. 2012, 80, 153–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, D.D.; Satyanarayana, N.V.; Reddy, A.M.; Sait, S.S.; Chakole, D.; Mukkanti, K. A validated stability-indicating UPLC method for desloratadine and its impurities in pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2010, 51, 736–742. [Google Scholar] [CrossRef]
- Havlíková, L.; Pannyová, A.; Matysová, L.; Solich, P. Development of novel stability-indicating method for the determination of dimethindene maleate and its impurities. Chromatographia 2013, 76, 1545–1551. [Google Scholar] [CrossRef]
- Schmidt, A.H.; Molnár, I. Using an innovative Quality-by-Design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2013, 78–79, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.K.; Patel, M.C.; Jadhav, S.B. A rapid, stability indicating RP-UPLC method for simultaneous determination of ambroxol hydrochloride, cetirizine hydrochloride and antimicrobial preservatives in liquid pharmaceutical formulation. Sci. Pharm. 2011, 79, 525–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnor, A.K.; Mukkanti, K.; Suryanarayana, M.V.; Roy, S.B. Stability-indicating UPLC method for tramadol HCl impurities in the tramadol injection after dilution by infusion fluids (5% dextrose and 0.9% sodium chloride). Sci. Pharm. 2013, 81, 1003–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.D.; Connor, J.D.; Smallwood, N.C.; Lugo, R.A. Quantification of lansoprazole in oral suspension by ultra-high-performance liquid chromatography hybrid ion-trap time-of-flight mass spectrometry. Int. J. Anal. Chem. 2011, 2011, 832414. [Google Scholar] [CrossRef] [PubMed]
- Arellano, C.; Gandia, P.; Lafont, T.; Jongejan, R.; Chatelut, E. Determination of unbound fraction of imatinib and N-desmethyl imatinib, validation of an UPLC-MS/MS assay and ultrafiltration method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 907, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Churchwell, M.I.; Twaddle, N.C.; Meeker, L.R.; Doerge, D.R. Improving LC-MS sensitivity through increases in chromatographic performance: Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 825, 134–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, T.; Strand, D.H. 13C labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A 2011, 1218, 9366–9374. [Google Scholar] [CrossRef] [PubMed]
- Davadra, P.M.; Mepal, V.V.; Jain, M.R.; Joshi, C.G.; Bapodra, A.H. A validated UPLC method for the determination of process-related impurities in azathioprine bulk drug. Anal. Methods 2011, 3, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.D.; Plumb, R.S. The application of sub-2-μm particle liquid chromatography-operated high mobile linear velocities coupled to orthogonal accelerated time-of-flight mass spectrometry for the analysis of ranitidine and its impurities. J. Sep. Sci. 2006, 29, 2409–2420. [Google Scholar] [CrossRef]
- Noori, R.E.; Abdoli, M.A.; Farrokhnia, A.; Ghaemi, A. Solid waste generation predicting by hybrid of artificial neural network and wavelet transform. J. Environ. Stud. 2009, 35, 25–30. [Google Scholar]
- Hasegawa, T.; Takahashi, K.; Saijo, M.; Ishii, T.; Nagata, T. Rapid determination of theophylline, theobromine and caffeine in dietary supplements containing guarana by ultra-performance liquid chromatography. Shokuhin Eiseigaku Zasshi J. Food Hyg. Soc. Jpn. 2009, 50, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.R.; Tawakkul, M.; Sayeed, V.A.; Faustino, P.; Khan, M.A. Stability characterization, kinetics and mechanism of degradation of dantrolene in aqueous solution: Effect of pH and temperature. Pharmacol. Pharm. 2012, 3, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, R.K.; Patel Mukesh, C.; Kharkar Amit, R. Determination of mesalamine related impurities from drug product by reversed phase validated UPLC method. E J. Chem. 2011, 8, 131–148. [Google Scholar]
- Malleswararao, C.S.N.; Suryanarayana, M.V.; Mukkanti, K. Simultaneous determination of sitagliptin phosphate monohydrate and metformin hydrochloride in tablets by a validated UPLC method. Sci. Pharm. 2012, 80, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Malati, V.; Reddy, A.R.; Mukkanti, K.; Suryanarayana, M.V. A novel reverse phase stability indicating RP-UPLC method for the quantitative determination of fifteen related substances in ranolazine drug substance and drug product. Talanta 2012, 97, 563–573. [Google Scholar] [CrossRef]
- Murthy, M.V.; Krishnaiah, C.; Srinivas, K.; Rao, K.S.; Kumar, N.R.; Mukkanti, K. Development and validation of RP-UPLC method for the determination of darifenacin hydrobromide, its related compounds and its degradation products using design of experiments. J. Pharm. Biomed. Anal. 2013, 72, 40–50. [Google Scholar] [CrossRef]
- Owen, S.C.; Lee, M.; Grissom, C.B. Ultra-performance liquid chromatographic separation and mass spectrometric quantitation of physiologic cobalamins. J. Chromatogr. Sci. 2011, 49, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Nanduri, V.V.S.S.R.; Adapa, V.S.S.P.; Kura, R.R. Development and validation of stability-indicating HPLC and UPLC methods for the determination of bicalutamide. J. Chromatogr. Sci. 2012, 50, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Nageswari, A.; Reddy, K.V.S.R.K.; Mukkanti, K. Stability-indicating UPLC method for determination of imatinib mesylate and their degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2012, 66, 109–115. [Google Scholar] [CrossRef]
- Nováková, L.; Matysová, L.; Solich, P. Advantages of application of UPLC in pharmaceutical analysis. Talanta 2006, 68, 908–918. [Google Scholar] [CrossRef]
- Rao, P.V.; Kumar, M.N.; Kumar, M.R. A novel, validated stability-indicating UPLC method for the estimation of lansoprazole and its impurities in bulk drug and pharmaceutical dosage forms. Sci. Pharm. 2013, 81, 183–193. [Google Scholar] [PubMed] [Green Version]
- Rane, S.S.; Ajameri, A.; Mody, R.; Padmaja, P. Development and validation of RP-HPLC and RP-UPLC methods for quantification of erythropoietin formulated with human serum albumin. J. Pharm. Anal. 2012, 2, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, P.K.; Jain, C.L.; Singh, R.M.; Mathur, S.C.; Singh, G.N. Development and validation of a RP-ultra performance liquid chromatographic method for quantification of topotecan hydrochloride in bulk and injection dosage form. Indian J. Pharm. Sci. 2010, 72, 494–497. [Google Scholar] [PubMed] [Green Version]
- Srinivasu, P.; SubbaRao, D.V.; Vegesna, R.V.K.; Babu, K.S. A validated stability-indicating LC method for fluocinonide in the presence of degradation products, its process-related impurities and identification of degradation products. Am. J. Anal. Chem. 2010, 1, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Vinay, K.B.; Revanasiddappa, H.D.; Xavier, C.M.; Ramesh, P.J.; Raghu, M.S. A stability indicating UPLC method for the determination of tramadol hydrochloride: Application to pharmaceutical analysis. Chromatogr. Res. Int. 2012, 2012, 870951. [Google Scholar] [CrossRef] [Green Version]
- Yanamandra, R.; Vadla, C.S.; Puppala, U.; Patro, B.; Murthy, Y.L.N.; Ramaiah, P.A. A new rapid and sensitive stability-indicating UPLC assay method for tolterodine tartrate: Application in pharmaceuticals, human plasma and urine samples. Sci. Pharm. 2012, 80, 101–114. [Google Scholar] [CrossRef]
- Yanamandra, R.; Vadla, C.S.; Puppala, U.M.; Patro, B.; Murthy, Y.L.N.; Parimi, A.R. Development and validation of a rapid RP-UPLC method for the simultaneous estimation of bambuterol hydrochloride and montelukast sodium from tablets. Indian J. Pharm. Sci. 2012, 74, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Dohta, Y.; Nakamura, T.; Fukami, T. High-speed solubility screening assay using ultra-performance liquid chromatography/mass spectrometry in drug discovery. J. Chromatogr. A 2008, 1182, 72–76. [Google Scholar] [CrossRef]
- Zhou, N.; Qian, Q.; Qi, P.; Zhao, J.; Wang, C.; Wang, Q. Identification of degradation products and process impurities from terbutaline sulfate by UHPLC-Q-TOF-MS/MS and in silico toxicity prediction. Chromatographia 2017, 80, 793–804. [Google Scholar] [CrossRef]
- Tian, H.; Xu, Y.; Wang, J.; Tian, W.; Sun, J.; Zhang, T.; Zhou, Q.; Shao, C. Effects of plasma albumin on the pharmacokinetics of esomeprazole in ICU patients. Biomed. Res. Int. 2018, 2018, 6374374. [Google Scholar] [CrossRef] [PubMed]
- Van Nuland, M.; Venekamp, N.; de Vries, N.; de Jong, K.A.M.; Rosing, H.; Beijnen, J.H. Development and validation of an UPLC-MS/MS method for the therapeutic drug monitoring of oral anti-hormonal drugs in oncology. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1106–1107, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Mei, C.; He, X.; He, L.; Lu, X.; Tong, H.; Lou, Y. Quantification of venetoclax for therapeutic drug monitoring in chinese acute myeloid leukemia patients by a validated UPLC-MS/MS method. Molecules 2022, 27, 1607. [Google Scholar] [CrossRef] [PubMed]
- Benzel, J.; Bajraktari-Sylejmani, G.; Uhl, P.; Davis, A.; Nair, S.; Pfister, S.M.; Haefeli, W.E.; Weiss, J.; Burhenne, J.; Pajtler, K.W.; et al. Investigating the central nervous system disposition of actinomycin D: Implementation and evaluation of cerebral microdialysis and brain tissue measurements suqpported by UPLC-MS/MS quantification. Pharmaceutics 2021, 13, 1498. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Cheng, Y.-C.; Luo, M.Z.; Zhang, J.Y. Comparison of the purity and impurity of glucagon-for-injection products under various stability conditions. Sci. Pharm. 2022, 90, 32. [Google Scholar] [CrossRef]
- Xue, Y.; Sheng, Y.; Wang, J.; Huang, Q.; Zhang, F.; Wen, Y.; Liu, S.; Jiang, Y. Fast screening and identification of illegal adulterated glucocorticoids in dietary supplements and herbal products using UHPLC-QTOF-MS with all-ion fragmentation acquisition combined with characteristic fragment ion list classification. Front. Chem. 2021, 9, 785475. [Google Scholar] [CrossRef]
- Ares, A.M.; Fernández, P.; Regenjo, M.; Fernández, A.M.; Carro, A.M.; Lorenzo, R.A. A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 2017, 174, 454–461. [Google Scholar] [CrossRef]
- Szkudzińska, K.; Smutniak, I.; Rubaj, J.; Korol, W.; Bielecka, G. Method validation for determination of amino acids in feed by UPLC. Accred. Qual. Assur. 2017, 22, 247–252. [Google Scholar] [CrossRef]
- Hemida, M.; Haddad, P.R.; Lam, S.C.; Coates, L.J.; Riley, F.; Diaz, A.; Gooley, A.A.; Wirth, H.-J.; Guinness, S.; Sekulic, S.; et al. Small footprint liquid chromatography-mass spectrometry for pharmaceutical reaction monitoring and automated process analysis. J. Chromatogr. A 2021, 1656, 462545. [Google Scholar] [CrossRef]
- Henchoz, Y.; Guillarme, D.; Martel, S.; Rudaz, S.; Veuthey, J.-L.; Carrupt, P.-A. Fast log P determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detections. Anal. Bioanal. Chem. 2009, 394, 1919–1930. [Google Scholar] [CrossRef] [Green Version]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M.J. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2014, 1520, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Reyes, M.L.; Roa-Morales, G.; Melgar-Fernández, R.; Reyes-Pérez, H.; Gómez-Oliván, L.M.; Gonzalez-Rivas, N.; Bautista-Renedo, J.; Balderas-Hernández, P. Chiral recognition of abacavir enantiomers by (2-hydroxy) propyl-β-cyclodextrin: UHPLC, NMR and DFT studies. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 373–382. [Google Scholar] [CrossRef]
- Andreassen, T.N.; Falch, B.M.H.; Spigset, O. A UPLC–MSMS method for the analysis of olanzapine in serum—With particular emphasis on drug stability testing. J. Chromatogr. B 2015, 1006, 112–120. [Google Scholar] [CrossRef] [PubMed]
Active Substance | Sample | Column | Mobile Phase (Gradient: Time [min]/%B) | Flow Rate | Detection | Comments | Ref |
---|---|---|---|---|---|---|---|
Valsartan Hydrochlorothiazyd | combined tablets | Kromasil Eternity C-18 (50 × 2.1 mm, 3.5 μm) | A-methanol; B-0.1% triethylamine pH3; A:B (75:25, v/v) | 0.6 mL/min | UV 225 nm | assay | [29] |
Lodenafil | tablets | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-methanol; B-0.1% formic acid pH4; A:B (55:45, v/v) | 0.4 mL/min | MS | photodegradtion; cytotoxicity; determination of degradation products | [30] |
Ezetynibe Simvastatin | tablets | Kromasil Eternity TM C18 (50 × 2.1 mm, 2.5 μm) | A-acetonitrile; B-0.01 M ammonium acetate buffer pH6.7; Gradient elution | 0.35 mL/min | UV 235 nm | degradation study | [31] |
Trandolapril | substance | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-ammonium bicarbonate in water B-acetonitrile; A:B (68:32, v/v) | 0.4 mL/min | UV 211 nm; QTOF-MS | degradation study | [32] |
Pitawastatin | substance | BEH C18 (100×2.1 mm, 1.7 μm) | A-phosphate buffer; B-acetonitrile; Gradient: 0/45, 2/45, 2.5/100, 4/100, 4.5/45, 5/45 | 0.3 mL/min | UV 245 nm | degradation study | [33] |
Valsartan | tablets, substance | BEH C18 (100×2.1 mm, 1.7 μm) | A-1% acetic acid buffer, acetonitrile (90:10, v/v) B-acetic acid buffer, acetonitrile (10:90, v/v) Gradient: 0.01/20, 1/40, 3.5/55, 6.5/80, 8.5/80, 8.9/20, 9.5/20 | 0.3 mL/min | UV 225 nm | degradation study | [34] |
Amlodipine Benazepril | combined tablets | BEH C8 (100 × 2.1 mm, 1.7 μm) | A-phosphate buffer pH3 B-acetonitrile, methanol (1:1, v/v); A:B (45:55, v/v) | 0.3 mL/min | UV 237 nm | different columns tests | [35] |
Atorvastatin | tablets, substance | Zorbax Extended C18 (50 × 3.0 mm, 1.8 µm) | A-acetonitrile; B-phosphoric acid Gradient: 0.01/50, 8/90, 10.1/10 | 0.5 mL/min | UV | assay | [36] |
Fosinopril | substance | HSS C18 (100 × 2.1 mm, 1.8 µm) | A-phosphate buffer; B-acetonitrile; Gradient: 0.01/20, 12/80, 20/80, 20.2/20, 25/20 | 0.1 mL/min | UV 205 nm | monitoring during production; degradation study; detection of impurities | [37] |
Olmesartan Amlodypine Hydrochlortiazide | tablets | Zorbax SB Phenyl (50 × 2.1 mm, 1.8 μm) | A-0.053 M sodium perchlorate, acetonitrile (90:10, v/v) B-0.053 M sodium perchlorate acetonitrile (10:90, v/v) Gradient: 0/10, 2/50, 4/80, 6/10 | 0.7 mL/min | UV 271, 215, 237 nm | combined tablet; degradation study | [38] |
Atorvastatin Fenofibrate | combined tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-acetate buffer; B-acetonitrile; Gradient: 0/50, 1/70, 1.4/85, 2.2/50 | 0.5 mL/min | UV 247 nm | detection of impurities | [39] |
Bisoprolol Hydrochlortiazide | combined tablets, urine | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-phosphoric buffer Gradient: 0/85, 0.6/80, 1.4/40 | 0.7 or 0.9 mL/min | UV 225 nm | assay | [40] |
Amlodipine Atorvastatin | tablets | Kromasil C18, (50 × 2.1 mm, 3.5 μm) | A-acetonitrile; B-triethylamine Gradient: 0/30, 0.5/36, 1.3/60, 2.05/30 | 0.8 mL/min | UV 240 nm | degradation study | [41] |
Telmisartan Amlodipine Hydrochlorotiazide | tablets | BEH C18 (100 × 2.1 mm, 1.7 µm) | A-0.053 M sodium perchlorate, acetonitrile (90:10, v/v) B-0.053 M sodium perchlorate, acetonitrile (20:80, v/v) Gradient: 0/5, 1.2/5, 1.6/40, 4/40, 4.1/5, 4.5/5 | 0.6 mL/min | UV 237, 271 nm | assay | [42] |
Moxonidine | tablets | C18 Hypersil Gold (100 × 2.1 mm, 1.9 µm) | A-methanol; B-ammonium acetate buffer (10 mM, pH3.43); A:B (0.9:99.1, v/v) or (6:94, v/v) | 0.87 mL/min | UV 255 nm; MS | degradation study | [43] |
Simvastatin | tablets | BEH C18 (100 × 2.1 mm, 1.7 µm) | A-acetonitrile; B-ammonium acetate Gradient: 0–5/50–0, 5.5/0, 5.6/50 | 0.8 mL/min | MS | assay; differences in product series | [44] |
Ticlopidine | tablets | Zorbax SB-C18 (50 × 4.6 mm, 1.8 µm) | A-methanol; B-0.01 M ammonium acetate buffer pH5; A:B (80:20, v/v) | 0.8 mL/min | UV 235 nm | degradation study | [45] |
Telmisartan | substance | BEH C18 (150 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-water; A:B (70:30, v/v) | 0.2 mL/min | UV 230 nm | degradation study | [46] |
Metoprolol Atorvastatin Ramipril | combined tablets | Zorbax XDB-C18 (50 × 4.6 mm, 1.8 μm) | A-0.0045 M sodium lauryl sulfate; B-acetonitrile A:B (50:50 v/v) | 1.0 mL/min | UV 210 nm | assay | [47] |
Rosuvastatin | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.1% trifluoroacetic acid; B-acetonitrile Gradient: 0/55, 3.5/60, 6.5/85, 7.5/85, 7.6/55, 10/55 | 0.3 mL/min | UV 240 nm | degradation study; identification of degradation products | [48] |
Bisoprolol Amlodypine | substance | B CSH C18 (50 × 2.1 mm, 1.7 μm) | A-phosphate buffer; B-acetonitrile Gradient: 0–10/10–90 | 0.5 mL/min | UV | computer simulation | [49] |
Rivaroxaban | tablets | Eclipse Plus C18 (2.1 × 50 mm, 1.8 μm) | A-water adjusted to pH4 with ammonium hydroxide B-acetonitryl; A:B (63:37 v/v) | 0.2 mL/min | QTOF-MS | degradation study; identification of degradation products | [50] |
Telmisartan | substance | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-potassium phosphate B-acetonitrile, methanol, water (7.5:1.5:1.0) v/v/v) Gradient: 0/55, 4/55, 5/70, 7.5/70, 7.7/55, 8/55 | 0.33 mL/min | UV 235 nm | degradation study; analysis of impurities | [51] |
Perindoprill | tablets | Poroshell 120 Hilic (4 × 150 mm, 2.7 μm) | A-acetonitrile; B-0.1% formic acid; A:B (20:80 v/v) | 1.0 mL/min | UV 230 nm | Separation of cis and trans isomers; degradation study | [52] |
Enalapril Hydrochlorotiazide | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-phosphoric acid; B-acetonitrile Gradient: 0/5, 2/20, 4/60, 5/60, 6/5 | 0.5 mL/min | UV 210 nm | degradation study | [53] |
Oxprenolol Metoprolol Acebutolol Atenolol Propranolol Pindolol Alprenolol | substance | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.1% trifluoroacetic acid in water B-0.1% trifluoroacetic acid in acetonitryl Gradient: 0–10/20–50 | 0.5 mL/min | UV 270 nm; MS; NMR | comparison of various detectors | [54] |
Perindopril Indapamide | tablets | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0.01% formic acid in water pH4 B-acetic acid, acetonitrile (40:60 v/v); Gradient: 0.01/15, 2.5/30, 7/30, 9/70, 10/70, 11/15, 13/15 | 0.3 mL/min | UV 227 nm | degradation study | [55] |
Rivaroxaban Enalapril | plasma | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-0.1% formic acid Gradient: 0–0.5/80–5, 0.5–2.9/5 2.9–3/5–80, 3–4/80 | 0.3 mL/min | MS | pharmacokinetics study; interactions | [56] |
Atorvastatin Acetylosalicylic acid Clopidogrel | combined capsules | Eclipse plus C18 (100 × 2.1 mm, 1.7 μm) | A-20 mM anhydrous KH2PO4 buffer containing 0.2% triethylamine pH2.7 with o-phosphoric acid B-acetonitrile; A:B (55:45, v/v) | 0.3 mL/min | DAD 240, 220 nm | Comparison with HPLC; analysis of impurities | [57] |
Azilsartan | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.1% o-phosphoric acid in water pH3B-acetonitrile; Gradient: 0/35, 5/60, 7/60, 7.1/35, 10/35 | 0.5 mL/min | UV 215 nm | assay | [58] |
Amlodipine Olmesartan | combined tablets | BEH C8 (100 × 2.1 mm, 1.7 μm) | A-0.1% orthophosphoric acid in water; B-acetonitrile Gradient: 0/22, 6/35, 10/60, 11.5/70, 12/70, 12.5/22, 15/22 | 0.5–0.7 mL/min | UV 237 nm | degradation study; analysis of impurities | [59] |
Dabigatran | capsules | HSS-T3 (100 × 2.1 mm, 1.8 μm) | A-0.1% orthophosphoric acid in water pH3.5 with triethyl amine; B-acetonitril Gradient: 0/20, 12/60, 12.1/60, 15/60, 15.1/20, 18/20 | 0.18 mL/min | UV 290 nm | degradation study; analysis of impurities | [60] |
Perindopril Amlodipine | combined tablets | Agilent SD C18 (50 × 3.0 mm, 1.8 μm) | A-0.1% perchloric acid; B-acetonitrile Gradient: 0.01/15, 2.5/30, 6/34, 8.5/60, 12/90, 12.5/90, 13/15, 15/15 | 0.8 mL/min | UV 215 nm | degradation study; analysis of impurities | [61] |
Perindopril Indapamide | tablets | Agilent SB 18 (50 × 3.0 mm, 1.5 μm) | A-0.1% perchloric acid; B-acetonitrile Gradient: 0.01/15, 2.5/30, 7/30, 9/70, 10/70, 11/15, 13/15 | 0.8 mL/min | UV 215 nm | degradation study; analysis of impurities | [62] |
Indapamide | substance | Acquity HSS T3 (100 × 2.1 mm, 1.8 μm) | A-water with 0.1% formic acid B-acetonitrile with 0.1% formic acid Gradient: 0/10, 2/10, 8/50, 9/50, 10/80, 11/80, 12/10, 15/10 | 0.5 mL/min | UV 274 nm; MS | degradation study | [63] |
Lenvatinib Telmisartan | substance, plasma | X Select HSS T3 (100 × 2.1 mm, 2.5 μm) | A-water with 0.1% formic acid and 5 mM ammonium acetate; B-acetonitrile with 0.1% formic acid Gradient: 2/60, 2–3/60–90, 3–4/90, 4–4.1/910–60, 4.1–5.1/60 | 0.25 mL/min | MS-MS | assay | [64] |
Active Substance | Sample | Column | Mobile Phase (Gradient: Time [min]/%B) | Flow Rate | Detection | Comments | Ref |
---|---|---|---|---|---|---|---|
Diclofenac | gel, substance | BEH C18 (50 × 2.1 mm, 1.7 μm) BEH C18 (100 × 2.1 mm, 1.7 μm) | A-methanol; B-phosphoric acid pH2.5 A:B (65:35, v/v) | 0.4 or 0.45 mL/min | UV 254 nm | pollutants study; comparison of various columns | [69] |
Ibuprofen Diphenhydramine | combined tablets | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0.1% triethylamine buffer pH3.2 with phosphoric acid, acetonitrile (80:20, v/v) B-0.1% triethylamine buffer pH3.2 with phosphoric acid, acetonitrile (50:50 v/v) Gradient: 0/0, 7.5/50, 17/50, 17.5/0, 20/0 | 0.4 mL/min | UV 220 nm | degradation study | [70] |
Nabumeton | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-5 mM ammonium acetate B-acetonitrile; A:B (25:75, v/v) | 0.3 mL/min | UV 230 nm | assay | [71] |
Ketoprofen | microdialyzate, human skin | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-methanol; C-water A:B:C (60:20:20, v/v/v) | 0.3 mL/min | UV 255 nm; MS | assay (very high sensitivity) | [72] |
Naproxen | tablets | BEH C18 (50 × 4.6 mm, 1.7 μm) | A-dihydrophosphate buffer, methanol (90:10, v/v); B-methanol, acetonitryl (50:50, v/v) Gradient: 0.01/20, 2/30, 5/50, 6/70, 8.5/70, 9.5/20, 11/20 | 0.3 mL/min | UV 260 nm | degradation study | [73] |
Levofloxacin | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-buffer (20 mM KH2PO4 + 1 mL triethylamine in 1 L of water pH2.5 with orthophosphoric acid B-acetonitrile; A:B (77:23 v/v) | 0.4 mL/min | UV 294 nm | degradation study | [74] |
Sparfloxacin | substance, tablets, eye drops | HSS T-3 (100 × 2.1 mm, 1.8 μm) | A-orthophosphoric acid; B-water Gradient: 1/10, 2/10, 3/25, 4/10, 5/10 | 0.5 mL/min | UV 290 nm | assay | [75] |
Isoniazid Pirazynamide Rifampicin | combined tablets | Shield RP18 (50 × 2.1 mm, 1.7 μm) | A-50 mM phosphate buffer; B-acetonitrile Gradient: 0–0.3/2, 0.3–1/2–40, 1–1.2/40, 1.2–1.7/40–2 | 1.0 or 1.5 mL/min | UV 254 nm | assay; column testing at different temperatures | [76] |
Moxifloxacine | tablets | HSS C-18 (100 × 2.1 mm, 1.8 μm) | A-phosphate buffer; B-methanol; C-acetonitrile A:B:C (60:20:20, v/v/v) | 0.3 mL/min | UV 296 nm | degradation study | [77] |
Doripenem Meropenem Tebipenem | substance | Kinetex C18 (100 × 2.1 mm, 1.7, 2.6, 5 µm) | A-acetonitrile; B-ammonium acetate A:B (4:96 or 10:90 or 7:93, v/v) | 0.5 or 1.0 mL/min | UV 298 nm | degradation study | [78] |
Cefuroxim | tablets | Kinetex C-18 (100 × 2.1 mm, 1.7 µm) | A-0.1% formic acid; B-methanol A:B (88:12, v/v) | 0.7 mL/min | UV 278 nm; MS | determination of diastereomers in crystalline, amorphous and tablet form; degradation study | [79] |
Ceftalozone Tazobactam | plasma | BEH-Shield RP18 (100 × 2.1 mm, 1.7 μm) | A-0.1% formic acid in water B-0.1% formic acid in acetonitrile Gradient: 0–0.5/2, 0.5–2/2–50, 2–2.5/50–98 | 0.4 mL/min | MS TQD | assay | [80] |
Amoxicillin Clavulanate | tablets | ACQUITY BEH C18 (50 × 2.1 mm, 1.7 μm) | A-buffer solution pH4.4; B-methanol A:B (98:2, v/v) | 0.1 mL/min | UV 220 nm | comparison with HPLC | [81] |
Acetaminophen Tramadol | tablets | HSS T3 (100 × 2.1 mm, 1.8 μm) | A-0.1% perchloric acid in water; B-acetonitrile Gradient: 0/10, 4/10, 8/15, 15/25, 25/35, 25.1/10 | 0.5 mL/min | UV 215 nm | degradation study, analysis of impurities | [82] |
Diclofenac Paracetamol Camylofin | combined tablets | HSS C18 (50 × 2.1 mm, 1.8 μm) | A-20 mM ammonium acetate buffer pH3 B-methanol; A:B (33:67, v/v) | 0.25 mL/min | UV 220 nm | degradation study; transferred from HPLC | [83] |
Paracetamol Ibuprofen | combined tablets | BEH C18 (100 × 2.1 mm, 1.7 µm) | A-0.01% aqueous triethylamine pH7 B-methanol Gradient: 0–2.5/2, 2.5–4.5/2–50, 4.5–7/50–98 | 0.2 mL/min | UV DAD230 nm | comparison with HPLC; analysis of impurities | [84] |
Naproxen | gelatin capsules | BEH C18 (100 × 2.1 mm, 1.7μm) | A-0.1% orthophosphoric acid in water pH3 B-acetonitrile Gradient: 0/35, 3/35, 10/70, 10.5/35, 13/35 | 0.5 mL/min | UV 230 nm | degradation study; analysis of impurities | [85] |
Ibuprofen | human plasma | BEH Phenyl (150 × 2.1 mm, 1.7 µm) | A-10 mM ammonium acetate with 0.1% formic acid in water B-10 mM ammonium acetate with 0.1% formic acid in acetonitrile, methanol (64:36, v/v) Gradient: 0–12/65, 12.1–14/65–100 | 0.2–0.5 mL/min | MS/MS | degradation study; transferred from HPLC | [86] |
Cefuroxim | injections | Shim-pack XR-ODS (75 × 3 mm, 2.2 μm) | A-acetonitrile; B-formic acid A:B (70:30, v/v) | 0.3 mL/min | MS/MS | analysis of impurities | [79] |
Ibuprofen Pseudoephedrine Chlorpheniramine | tablet | Acquity BEH (50 × 2.1 mm, 1.7 μm) | A-0.1% formic acid in water B-0.1% formic acid in methanol Gradient: 1/5, 2/5–80, 1/80 | 0.3 mL/min | MS | assay | [87] |
Amoxicillin | tablet | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-phosphate buffer pH5; B-methanol A:B (95:5, v/v) | 0.3 mL/min | UV 230 nm | assay | [88] |
Ibuprofen | substance | Accucore XL C18 (150 × 4.6 mm, 4 μm) | A-water with 1% chloroacetic acid pH3 B-acetonitrile; A:B (40:60, v/v) | 2.0 mL/min | UV 254 nm | determination of impurities | [89] |
Antibiotics 1 | substance, plasma | Acquity HSS T3 (50 × 2.1 mm, 1.8 μm) | A-water with 0.1% formic acid B-acetonitrile with 0.1% formic acid Gradient: 0/0, 3.6/85.5, 3.601/95, 4.1/95, 4.11–5.5/0 | 0.3 mL/min | MS-MS | assay | [90] |
Ibuprofen Famotidine | tablet | Acquity BEH C-18 (50 × 2.1 mm, 1.7 μm) | A-50 mM sodium acetate buffer pH5.5 B-methanol; A:B (25:75, v/v) | 0.3 mL/min | UV 260 nm | assay | [91] |
Lansoprazole Naproxen | substance, tablet | Phenomenex Luna C18 (250 × 4.6 mm, 5 μm) | A-methanol; B-water; A:B (8:2, v/v) | 1.0 mL/min | PDA | assay | [92] |
NSAIDs 2 | preparations | Hypersil Golden C18 | A-5 mM ammonium formate B-methanol; Gradient | 0.2 mL/min | MS-MS | assay | [93] |
Diclofenac | substance, tablet | Acquity BEH C18 (50 × 2.5 mm, 1.7 μm) | A-0.05 M acetate buffer pH2.5 B-acetonitrile; A:B (50:50, v/v) | 0.5 mL/min | PDA 254 nm | degradation study | [94] |
Active Substance | Sample | Column | Mobile Phase (Gradient: Time [min]/%B) | Flow Rate | Detection | Comments | Ref |
---|---|---|---|---|---|---|---|
Paliperidon | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-phosphate buffer; B-acetonitrile, water (9:1, v/v) Gradient: 0.01/16, 6/16 | 0.45 mL/min | UV 238 nm | degradation study | [118] |
Venlafaxine | capsules | BEH C18 (100 × 2.1 mm, 2.0 μm) | A-dipotassium hydrogen phosphate B-acetonitrile; A:B (30:70, v/v) | 0.75 mL/min | UV 227 nm | assay | [119] |
Olanzapine | tablets, substance | BEH C18 (100 × 2.1 mm, 1.7 µm) | A-triethylamine buffer pH6.8, acetonitrile, methanol (50:20:30, v/v/v); B-water, acetonitrile (10:90, v/v) Gradient: 0.01/0, 5/20, 6.5/90, 8/100, 9/0, 10/0 | 0.3 mL/min | UV 250 nm | degradation study; analysis of impurities; comparison with HPLC | [120] |
Quetiapine Aripiprazole Perospirone | substance | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-ammonium acetate A:B (62:38, v/v) | 0.3 mL/min | MS | assay | [121] |
Duloxetin | tablets | Zorbax XDB C-18 (50 × 4.6 mm, 1.8 μm) | A-0.01 M KH2PO4 buffer pH4, tetrahydrofuran, methanol (67:23:10, v/v/v) B-0.01 M KH2PO4 buffer pH4, acetonitrile (60:40 v/v) Gradient: 0/0, 6/0, 8/100, 13/100, 14/0, 16/0 | 0.6 mL/min | UV 236 nm | degradation study | [122] |
Quetiapine | tablets | Agilent Eclipse Plus C18 (50 × 2.1 mm, 1.8 μm) | A-triethylamine in water pH7.2 B-acetonitrile, methanol (80:20, v/v) Gradient: 0/30, 0.5/30, 3/95, 4/95, 4.1/30, 5/30 | 0.5 mL/min | UV 252 nm | determination of impurities | [123] |
Aripiprazole | tablets | BEH C8 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-20 mM ammonium acetate A:B (90:10, v/v) | 0.25 mL/min | UV 240 nm | comparison with HPLC | [124] |
Quetiapine | plasma | BEH Phenyl (50 × 2.1mm, 1.7 µm) | A-10 mM ammonium acetate with 0.3% formic acid in water; B-acetonitrile; A:B (70:30, v/v) | 0.5 mL/min | MS | bioequivalence study | [125] |
Ropinirol | tablets | BEH C8 (100 × 2.1 mm, 1.7 μm) | A-phosphate buffer, acetonitrile (90:10, v/v) B-phosphate buffer, acetonitrile (50:50, v/v) Gradient: 0.01/55, 1.7/55, 2.9/98, 3.5/98, 3.6/55, 4.5/55 | 0.27 mL/min | UV 250 nm | degradation study; analysis of impurities; comparison with HPLC | [126] |
Levetiracetam | blood | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-0.01 M phosphate buffer A:B (10:90, v/v) | 0.2 mL/min | UV 215 nm | different ways of the extraction | [127] |
Piracetam | substance | BEH C18 (150 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-water A:B (25:75 v/v) | 0.15 mL/min | UV 210 nm | degradation study; comparison with HPLC | [128] |
Entacapone | tablets | HSS C18 (50 × 2.1 mm, 1.8 μm) | A-acetonitrile; B-water A:B (43:57, v/v) | 0.5 mL/min | UV 225 nm | degradation study; comparison with HPLC | [129] |
Antidepressants 1 | dosage form | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-10 mM ammonium acetate Gradient: 0/45, 1.75/70, 2.5/80, 3.8/80, 3.9/45, 5/45 | 0.3 mL/min | UV 215 nm | assay | [130] |
Brexpiprazole | tablets | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-buffer (10 mM KH2PO4 pH2); B-acetonitile A:B (67:33, v/v) | 0.5 mL/min | UV 215 nm | degradation study | [131] |
Haloperidol | substance, tablet | CSH fluorophenyl (150 × 2.1 mm, 1.7 μm) | A-0.1% fluoroacetic acid with 10 mM ammonium acetatein water; B-acetonitrile, methanol (80:20, v/v) Gradient: 0/20, 15/40, 19.5/20, 23/20 | 0.3 mL/min | UV 246, 220 nm | stability tests; photodegradation study | [132] |
Active Substance | Sample | Column | Mobile Phase (Gradient: Time [min]/%B) | Flow Rate | Detection | Comments | Ref |
---|---|---|---|---|---|---|---|
Tramadol | solution for injections | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.2% trifluoroacetic acid buffer B-methanol, acetonitrile (75:25, v/v) Gradient: 0/20, 15/60, 16/20, 20/20 | 0.2 mL/min | UV 275 nm | stability test after reconstitution in saline and glucose | [149] |
Lansoprazole | capsules, suspensions | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-water; B-acetonitrile with 0.1% formic acid A:B (60:40 v/v) | 0.2 mL/min | MS, TOF-MS | stability testing | [150] |
Imatynib | plasma | BEH Shield RP18 (50 × 2.1 mm, 1.7 μm) | A-ammonium formate in waterB-acetonitrile, 0.1% formic acid Gradient: 0/2, 0.5/2, 0.5–2.5/2–50, 2.5–3/50–90,3–4.5/90 | 0.4 mL/min | MS/MS | assay | [151] |
Clenbuterol Terbutalin Salbutamol Fenoterol Genistein Daidzein Tamoxifen Ephedrine Pseudoephedrine | substance | Acquity RP (50 × 1.0 mm, 1.7 μm) | A-acetonitrile; B-0.1% formic acid A:B (40:60, v/v) | 0.2 mL/min | MS | comparison with HPLC | [152] |
Amphetamine Methamphetamine | urine | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-ammonium formate; B-methanol Gradient: 0–0.15/5, 0.15–0.3/5–30, 0.3–2/30–40, 2–3/40–50, 3–4.2/50–98, 4.2–5.2/98, 5.2–5.4/98–5, 5.4–5.8/5 | 0.4 mL/min | MS/MS | assay | [153] |
Azathioprine | substance | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.05% trifluoroacetic acid in water; B-acetonitrile Gradient: 0/3, 1/3, 3.5/60, 4/60, 4.1/3, 5/3 | 0.35 mL/min | UV 220 nm | assay | [154] |
Ranitidine | substance | BEH C18, C8, phenyl, C18 Shield(100 × 2.1 mm, 1.7 μm) | A-ammonium bicarbonate; B-methanolGradient: 0/4, 1/16, 4/36, 7/90 | 0.45 mL/min | UV 230 nm; MS | degradation study; comparison of different columns and eluents; comparison with HPLC | [155] |
Dienogest Finasterid Gestodene Levonorgestrel Estradiol Ethinylestradiol | substance | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile; B-water; A:B (48:52, v/v) | 0.55 mL/min | UV 210 nm | purity testing | [156] |
Caffeine Theobromine Theophilline | tablets | BEH C18 (2.1 × 50 mm, 1.7 μm) | A-ammonium acetate; B-acetonitrile Gradient: 0–1/5, 2–2.5/20, 3–3.5/80 | 0.6 mL/min | UV 275 nm | assay in dietary supplements | [157] |
Dantrolen | substance | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-2.5 mM sodium acetate buffer pH4.5 B-acetonitrile; A:B (75:25, v/v) | 0.5 mL/min | UV 375 nm; MS; NMR | degradation study | [158] |
Mesalazine | tablets | BEH C18 (50 × 2.1 mm, 1.7 µm) | A-buffer pH2.2; B-buffer pH6, methanol, acetonitrile (890:80:30, v/v/v) Gradient: 0/10, 3/10, 13/90, 13.1/10, 15/10 | 0.7 mL/min | UV 220 nm | assay | [159] |
Sitagliptine Metformin | combined tablets | BEH C8 (100 × 2.1 mm, 1.7 µm) | A-phosphoric acid; B-acetonitrile Gradient: 0/8.0, 2/8.0, 4/45, 6/45, 8/8, 10/8 | 0.2 mL/min | UV 210 nm | assay | [160] |
Ranolazine | tablets | BEH RP18 (100 × 2.1 mm, 1.7 μm) | A-acetonitrile, phosphate buffer pH7.3, triethylamine (10:90:0.1, v/v/v) B-acetonitrile, phase A (55:45, v/v) Gradient: 0.01/17, 1.5/17, 3.5/45, 5.5/60, 8/65, 12/70, 13/95, 15/95, 15.5/17, 18/17 | 0.3 mL/min | UV 223 nm | degradation study | [161] |
Darifenacin | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-triethylamine + phosphate buffer (1:1000, v/v), acetonitrile (80:20, v/v) B-triethylamine + phosphate buffer (1:1000, v/v), acetonitrile (15:85, v/v) Gradient: 0/15, 2/15, 10/50, 14/74, 14.1/15, 15/15 | 0.3 mL/min | UV 210 nm | assay | [162] |
Cyanocobalamin (vitamin B12) | substance | BEH C18 (50 × 1.0 mm, 1.7 μm) | A-0.1% trifluoroacetic acid in water B-0.1% trifluoroacetic acid in acetonitrile Gradient: 0–0.25/5, 0.25–2.5/5–40, 2.5–3/40, 3–3.5/40–5 | 0.32 mL/min | UV 254 nm | assay | [163] |
Bicalutamide | tablets, substance | HSS T3 (100 × 2.1 mm, 1.8 μm) | A-0.001 M sodium dihydrogen orthophosphate pH6 with sodium hydroxide B-acetonitrile, phase A (90:10, v/v) Gradient: 0/28, 26/55, 29.3/55, 31.3/28, 34/28 | 0.5 mL/min | UV 220 nm | degradation study; analysis of impurities | [164] |
Imatinib | tablets | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0.05 M ammonium acetate pH9.5 B-acetonitrile, methanol (40:60, v/v) Gradient: 0.01/42, 5/42, 7/80, 8/42, 9/42 | 0.3 mL/min | UV 237 nm | degradation study | [165] |
Triamcinolone Hydrocortisone Indometacin Etradiol | creams, gels | BEH C18 (2.1 × 50 mm, 1.7 μm) | A-acetonitrile; B-water; A:B (40:60, v/v) | 0.6 mL/min | UV 240 nm | assay | [166] |
Lanzoprasole | tablets | BEH-C18 (50 × 2.1 mm, 1.7 μm) | A-8 mL triethylamine in 20 mM KH2PO4 buffer pH7 with orthophosphoric acid, methanol (90:10, v/v/v) B-methanol, acetonitrile (50:50, v/v) Gradient: 0.01/20, 2/30, 5/50, 6/70, 8.5/70, 9.5/20, 11/20 | 0.3 mL/min | UV 285 nm | degradation study | [167] |
Erythropoietin | substance | BEH C18 (50 × 2.1 mm; 1.7 μm) | A-0.1% trifluoroacetic acid in water B-0.1% trifluoroacetic acid in acetonitrile Gradient: 0/15, 0.12/15, 0.33/30, 0.62/36, 2.62/65, 3.19/100, 3.76/15, 4.05/15 | 0.35 mL/min | UV 210 nm | assay in human serum albumin; comparison with HPLC | [168] |
Topotecan | solution for injections, substance | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0.1% orthophosphoric acid in water B-acetonitrile Gradient: 0/10, 0.5/10, 1/20, 2/20, 3/10, 4/10 | 0.4 mL/min | UV 260 nm | assay | [169] |
Bortezomib | substance | ULTRAFAST Shimpack XR-ODS-II (100 × 3 mm, 2.2 μm) | A-potassium dihydrogen phosphate buffer B-acetonitrile Gradient: 0/20, 2/30, 5/50, 6/70, 8/20, 10/20 | 0.6 mL/min | UV 270 nm; MS | analysis of impurities | [170] |
Tramadol | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-potassium dihydrogen phosphate buffer B-acetonitrile; A:B (60:40 v/v) | 0.5 mL/min | UV 226 nm | degradation study | [171] |
Tolterodine | tablets, serum, urine | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.025% trifluoroacetic acid in waterB-0.025% trifluoroacetic acid in acetonitryl Gradient: 0/30, 4/80, 6/80, 6.1/30 | 0.3 mL/min | UV 220 nm | assay | [172] |
Bambuterol Montelukast | tablets | BEH C18 (100 × 2.1 mm, 1.7 μm) | A-0.025% trifluoroacetic acid in waterB-0.025% trifluoroacetic acid in acetonitrile Gradient: 0/30, 1.5/40, 3/90, 6/90, 6.1/30 | 0.3 mL/min | UV 210 nm | assay | [173] |
Uracil Chlorphromazine Imipramine Clozapin Diltiazem Bifonazole | substance | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0,1% formic acid in water; B-acetonitrile Gradient: 0/5, 1/90, 1.1/5, 2/5 | 0.3 mL/min | MS | solubility testing in various media; comparison with HPLC | [174] |
Terbutaline | substance | Phenomenex luna C18 (150 × 2.0 mm, 3 μm) | A-ammonium formate buffer; B-methanol Gradient: 0–6/5, 6–15/5–30, 15–20/30–80, 20–23/80–90, 23–23.1/90–5 | 0.3 mL/min | QTOF-MS | degradation study; in silico toxicity tests | [175] |
Esomeprazole | plasma | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-acetonitrile with 0,1% formic acid B-ammonium formate with water Gradient: 0–0.7/80, 0.8–1.7/80–20, 1.8–2.3/20, 2.4–3/20 | 0.4 mL/min | QTOF-MS | pharmacokinetics study | [176] |
Abiraterone Letrozole Anastrozole Bicalutamid | plasma | BEH C18 (50 × 2.1 mm, 1.7 μm) | A-0.1% formic acid in water B-acetonitrile, methanol (50:50, v/v) Gradient: 0–4/45, 4–5/100, 5–6/45 | 0.6 mL/min | MS | assay | [177] |
Pseudoephedrine Chlorpheniramine Ibuprofen | tablet | Acquity BEH (50 × 2.1 mm, 1.7 μm) | A-0.1% formic acid in water B-0.1% formic acid in methanol Gradient: 1/5, 2/5–80, 1/80 | 0.3 mL/min | MS | assay | [87] |
Hydrocortisone Tinidazole | substance, vaginal tablet, cream | Acquity Eclipse plus C18 (100 × 2.1 mm, 1.7 μm) | A-0.02 M anhydrous KH2PO4 (with 0.2% triethylamine) pH6 with orthophosphoric acid B-acetonitrile Gradient: 0/50, 2/70, 5.6/70, 5.7/50, 7/50 | 0.3 mL/min | UV 225, 295 nm | determination of impurities | [106] |
Lenvatinib Telmisartan | substance, plasma | X Select HSS T3 (100 × 2.1 mm, 2.5 μm) | A-water with 0.1% formic acid and 5 mM ammonium acetate B-acetonitrile with 0.1% formic acid Gradient: 2/60, 2–3/60–90, 3–4/90, 4–4.1/910–60, 4.1–5.1/60 | 0.25 mL/min | MS-MS | assay | [64] |
Venetoclax | human plasma | Acquity BEH (100 × 2.1 mm, 1.8 μm) | A-0.1% formic acid in water; B-acetonitrile Gradient: 0–0.3/5, 0.3–2/5–95, 2–2.5/95, 2.5–2.6/95–5, 2.6–4/5 | 0.4 mL/min | MS-MS | assay | [178] |
Actinomycin D | substance, brain tissue, plasma | Peptide C18 (50 × 2.1 mm, 1.7 μm) | A-5% acetonitrile in water with 0.1% formic acid B-acetonitrile with 0.1% formic acid Gradient: 0–0.5/40, 0.5–2/40–100 | 0.5 mL/min | MS-MS | microdialysis model | [179] |
Famotidine Ibuprofen | tablet | Acquity BEH C-18 (50 × 2.1 mm, 1.7 μm) | A-50 mM sodium acetate buffer pH5.5 B-methanol; A:B (25:75, v/v) | 0.3 mL/min | UV 260 nm | assay | [91] |
Glucagon | for injection | Acquity BEH 300 C-18 (100 × 2.1 mm, 1.7 μm) | A-phosphate buffer pH2.7 (with phosphoric acid) B-acetonitrile, water (4:6, v/v); A:B (65:35, v/v) | 0.4 mL/min | UV 214 nm | stability study | [180] |
Lansoprazole Naproxen | substance, tablet | Phenomenex Luna C18 (250 × 4.6 mm, 5 μm) | A-methanol; B-water; A:B (8:2, v/v) | 1.0 mL/min | PDA | assay | [92] |
Glucocorticoids 1 Clobetasol Beclomethasone Flucinonide Desonide | tablet | HSS T3 (100 × 2.1 mm, 1.8 μm) | A-0.1% formic acid with 5 mM ammonium formate in water; B-0.1% formic acid in acetonitrile Gradient: 0–10/30–95, 10–15/95 | 0.2 mL/min | QTOF-MS | determination in dietary supplements | [181] |
Cathinones 2 Opiates Cocaine/related compounds Scopolamine | oral fluid | Acquity BEH Shield RP18 (100 × 2.1 mm, 1.7 μm) | A-0.1% formic acid in water B-0.1% formic acid in acetonitrile Gradient: 0–0.2/10, 3.5/70, 4/10 | 0.4 mL/min | MS-MS | assay | [182] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumułka, P.; Żandarek, J.; Dąbrowska, M.; Starek, M. UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst. Processes 2022, 10, 2498. https://doi.org/10.3390/pr10122498
Gumułka P, Żandarek J, Dąbrowska M, Starek M. UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst. Processes. 2022; 10(12):2498. https://doi.org/10.3390/pr10122498
Chicago/Turabian StyleGumułka, Paweł, Joanna Żandarek, Monika Dąbrowska, and Małgorzata Starek. 2022. "UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst" Processes 10, no. 12: 2498. https://doi.org/10.3390/pr10122498
APA StyleGumułka, P., Żandarek, J., Dąbrowska, M., & Starek, M. (2022). UPLC Technique in Pharmacy—An Important Tool of the Modern Analyst. Processes, 10(12), 2498. https://doi.org/10.3390/pr10122498