
Citation: Saikat, A.S.M.; Al-Khafaji,

K.; Akter, H.; Choi, J.-G.; Hasan, M.;

Lee, S.-S. Nature-Derived

Compounds as Potential Bioactive

Leads against CDK9-Induced Cancer:

Computational and Network

Pharmacology Approaches. Processes

2022, 10, 2512. https://doi.org/

10.3390/pr10122512

Academic Editors: Alina Pyka-Pająk
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Abstract: Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell devel-
opment, gene transcription, and other essential biological operations, CDK blockers have been gener-
ated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a
crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell per-
sistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for can-
cer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin,
geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A
molecular docking study was performed after preparing the protein and the ligands. The selected
blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol)
against the selected protein, resulting in promising candidates compared to the co-crystallized ligand
(LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin
(−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C
(−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic
acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the
structure–function relationships and protein–ligand interactions. The network pharmacology study
for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways
vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression.
Moreover, this study concluded by analyzing the computational approaches the natural-derived
compounds that have potential interacting activities against CDK9 and, therefore, can be consid-
ered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo
research is recommended.

Keywords: CDK9; molecular docking; molecular dynamics; network pharmacology; PPI network;
free energy landscape; CDK9-induced cancer

1. Introduction

The division of cells is one of the essential biological operations, engaging in many
physiological mechanisms, including individual development, tissue regeneration, organ
homeostasis, and the malignant action of cancer. The series of steps in cell division is
called the cell cycle, and it consists of a synthesis phase, a mitotic segregation process,
and two intervening phases, G1 and G2 [1–3]. Mammalian cells expand during the G1
phase in preparation for DNA synthesis, governed by a “restriction point”. Intrinsic
variables (such as protein production) and extracellular factors (such as environmental
conditions) affect whether a cell can begin the cell cycle (such as growth factors (GFs)). In
the lack of these crucial components, the cell ceases its cell cycle and enters the G0 phase
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of dormancy. Three “checkpoints” are involved in regulating the cell cycle: the G1/S,
G2/M, and mitotic spindle checkpoints [4–7]. The eukaryotic cell cycle is governed by
a standard core process, incorporating cyclin-dependent kinases (CDKs), which increase
DNA synthesis and chromosome segregation by phosphorylating their substrate [8–10].

In addition to directing the cell cycle, several CDKs, including CDK9, have contributed
to transcriptional regulation. CDK9 can phosphorylate RNA polymerase II to enhance
transcription extension [11,12]. CDK9 controls the transcription of multiple genes, notably
Myc, a proto-oncogene that governs mechanisms essential for cell cycle progression and cell
development, and Mcl-1, an anti-apoptotic representative of the Bcl-2 family that promotes
cell survival. Consequently, CDK9 suppression lowers messenger RNA (mRNA) transcrip-
tion and impedes the expression of target genes (such as Mcl-1 and Myc), which collectively
govern cancer cell multiplication and lifespan [13–15]. Conversely, recent influential inves-
tigations have demonstrated that CDK9 is involved in gene suppression [16,17]. CDK9 is
a legitimate therapeutic target candidate in cancer because it promotes cell proliferation
and regulates anti-apoptotic proteins, including Mcl-1 and Myc, that trigger cancer cell
longevity. A dysfunctional CDK9-related process has been identified as a critical factor
in the development and advancement of lymphomas, breast cancer, prostate cancer, and
other malignancies [18–24]. Multiple investigations have demonstrated that aberrant CDK9
signaling is linked to the etiology of many hematological cancers [20,24,25]. Human cells
with enhanced Mcl-1 expression have been connected to the progression of acute myeloid
leukemia. Several pathological disorders, including lymphomas and Hodgkin’s disease,
have exhibited elevated p-TEFb activity [26,27]. CDK9 is essential to prostate cancer [19].
Primarily, androgens promote the development and lifespan of prostate cells, and most
castration-sensitive prostate cancer is responsive to androgen deprivation.

Nevertheless, 20% of prostate cancer patients acquire castrate-resistant prostate cancer
(CRPC), which is refractory to standard treatment and is linked with a poor prognosis. By
influencing the androgen receptor’s function, CDK9 has subsequently been discovered as
a crucial component in CRPC [19,20,28]. Through its involvement with proto-oncogenes,
aberrant CDK9 expression is one molecular mechanism in the formation of breast cancer,
despite the disease’s heterogeneous genetic background [29]. MiR-874 inhibits proliferation
and induces apoptosis and cell cycle arrest, hence playing a crucial role in breast cancer,
according to a study. This work identified CDK9 as a specific candidate of miR-874, which
affects its protein levels adversely [30]. Furthermore, according to a study, CDK9 inhibits
the expression of the proto-oncogene Myb in estrogen receptor-positive breast cancer. Using
CDK9 blockers such as SNS-032, CDKi, and CAN-508, the role of CDK9 was underlined in
this work. These findings revealed an enhancement in tumor cell apoptosis and inhibition
of cell proliferation [31].

Several chemical motifs have been designed since CDK9 suppression was recognized
as a viable therapeutic option in cancer. As a result, this has been a forthright approach
for substantial pharmaceutical firms. These blockers are often ATP-competitive inhibitors
with a reduced molecular weight with drug-like characteristics. These compounds are now
being tested in clinical studies as anti-proliferative medicines to manage various forms
of cancer [25,32–40]. Computer-aided drug discovery is in silico pharmacology [41,42].
Modeling and simulation are included in this approach in the broadest sense to learn about
the mechanism of action of medications and their toxicity, side effects, and the related
pharmacokinetic activities when they engage with a biological process [43–45]. More
recently, the biological components of in silico screening have been expanded. Therefore,
novel integrative approaches can assess the pharmacological profile of compounds on
numerous targets [46,47].

Direct cytotoxicity tests on cancer cells of geniposidic acid and geniposide and genipin
are frequently used in conjunction with apoptosis assays to demonstrate the promising
anti-cancer properties of natural compounds in vitro [48–50]. It is effective against a wide
range of cancer cells, such as pancreatic adenocarcinoma cells, colorectal cancer, human
gastric carcinoma cells, prostate cancer cells, non-small-cell lung cancer cells, breast cancer
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cells, hepatocarcinoma cells, human leukemia cells, and tongue squamous carcinoma
cells [48,51–58]. Quercetin, a bioactive flavonoid, has drawn the interest of nutritionists
and medicinal chemists because of its many health-enhancing properties. It is an excellent
antioxidant that has been shown to significantly impact the prevention and treatment of
various human malignancies [59–62]. Quercetin’s proapoptotic properties can be directly
applied to tumor cells, slowing or stopping the progression of a wide range of human
malignancies. Multiple in vitro and in vivo investigations using a variety of cell lines and
animal models have shown Quercetin’s anti-cancer properties [63–67].

On the other hand, Quercetin has a powerful toxic impact on cancer cells while
causing minimal or no damage to normal cells [63,68–71]. As an antioxidant, anti-cancer
drug, and anti-inflammatory, curcumin has garnered considerable attention during the
past couple of decades [72–74]. The synopsis of curcumin’s medicinal chemistry and
pharmacological investigations regarding anti-cancer efficacy, their principal modes of
action, and cellular targets are based on curcumin’s experimental and clinical assessment
in animal models, cancer cell lines, and humans [75–79]. In addition, the most recent
developments in drug delivery methods for curcumin administration to cancer cells have
been emphasized [80–84]. Some withanolides, notably the family of steroidal lactones, have
anti-cancer properties. However, this is seldom documented for withanolide C, precisely its
breast-cancer-fighting properties [85–87]. The investigations intend to assess the capacity of
withanolide C to inhibit the growth of breast cancer cells, taking into account the duration
and concentration of WHC administration. Withanolide C generated more antiproliferation
in malignant breast cancer cell lines than in regular breast cell lines, as measured by
ATP depletion [85,88–91]. This investigation aspires to dissect the effectiveness of nature-
derived compounds against CDK9 through computational strategies such as geniposidic
acid, quercetin, geniposide, curcumin, and withanolide C.

2. Materials and Methods
2.1. Protein Preparation

The crystal architecture of the target protein CDK9/cyclinT1 (PDB id: 6GZH) with
the inhibitor-confined complex was received from the protein data bank [92]. The Protein
Preparation Wizard (PPW) program of the Maestro v.11.2 (Maestro, Schrödinger, Inc., New
York, NY, USA) was executed for protein preparation. The obtained protein was prepared
using the Maestro (v.11.2) program’s Protein Preparation Wizard (PPW) tool [93]. The
PPW program consists of three-step stratagems, including ‘Import and Refine’, ‘Review
and Modify’, and ‘Optimized and Minimize’. In the initial precedent, the protein (PDB
id: 6GZH) was pre-processed by adjoining hydrogen atoms, eradicating displeased water
molecules outlying 5 A◦ from the hetero-group and creating het-states performing Epik
at pH 7.0 (± 2.0). The PPW followed three basic steps: ‘Import and Refine’, ‘Review
and Modify’, and ‘Optimized and Minimize’ to prepare the selected protein. First, the
PPW organized the protein by connecting hydrogen atoms, obliterating disgruntled water
molecules outlying 5 A◦ from the hetero-group, and assembling het states accomplishing
the Epik program at pH 7.0 (±2.0) [94]. Next, the protein was minimized following the
RMSD of 0.30 A◦ applying the OPLS3e force fields [95].

2.2. Ligand Preparation

The ligands, LCI, geniposidic acid, quercetin, geniposide, curcumin, and withanolide
C (PubChem CID: 134812748, 443354, 969516, 5280343, 107848, and 101559583, respectively)
were collected from the PubChem database [96]. The LigPrep tool (LigPrep, Schrödinger
Inc., New York, NY, USA) was employed to transform the ligand structures into three-
dimensional arrangements and deliver reliable conformers and tautomers. The LigPrep
implement was conducted at unbiased ionization and the OPLS3e force field for underesti-
mating the ligands [95].
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2.3. Molecular Docking

The Maestro (v.11.2) GLIDE program was used for all docking studies, resulting in the
observation of constructive associations between the ligand and protein [97]. The program
Receptor Grid Generation (RGG) was utilized to construct a grid at the position of a co-
crystallized ligand. This grid provides the features of the aim protein and the implemented
curvature for a more comprehensive ligand posture assessment. The Extra Precision (XP)
docking technique was applied during the protein–ligand docking approach [97].

2.4. Analyzing the ADMET Properties of the Selected Ligands

Advancement for the integrity assurance of pharmaceuticals, investigators use in silico
algorithms to anticipate the absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties of ligands and their defects [98,99]. The SwissADME [100] and the
pkCSM [101] programs were used for anticipating the ADMET properties.

2.5. Molecular Dynamics

Implementing the molecular dynamics simulations using Gromacs 2018-3 with GPU
acceleration on Ubuntu 18.04 windows subsystem Linux 2 (WSL2) has been carried out
regarding the top five docking score compounds and apo form [102]. We selected Charm
27 for all atoms as a forcefield on the determination of ligands’ stabilities inside the binding
site. The protein–ligand systems were immersed in a TIP3P water box [103]. To maintain
the physiological conditions of protein–ligand systems, we added 0.1 M of NaCl. The
minimum distance between the box boundary and the protein–ligand complex atoms was
1 (one) nm. SwissParam was utilized to optimize the charge of ligands and generate the
files needed for the parameterization of molecular dynamics. The energy of solute–solvent
boxes was minimized through the steepest descent algorithm with a maximum force
(Fmax) of 1000 kJ/mol.nm. The two sequential canonical NVT ensembles and isobaric NPT
ensembles were adopted to equilibrate the main protease’s apo and holo forms for 100 ps.
During equilibrations, systems were coupled with the Parrinello–Rahman pressure and the
Berendsen temperature controllers [104] to conserve the pressure 1 bar and the temperature
300 K, respectively. The Particle Mesh Ewald (PME) [105] was appointed to deal with the
long range of Coulomb interactions through a Fourier grid spacing of 0.12 nm. In contrast,
the short-range van der Waals interactions were calibrated through the Lennard-Jones
potential with a cut-off distance of 1 nm. Moreover, the linear constraint solver (LINCS)
method [106] was adopted to compel all bond lengths. Finally, they submitted 100 ns of
MD simulations. GROMACS tools were used to analyze RMSD, RMSF, RG, SASA, PCA,
G_sham, and hydrogen bonding of the obtained trajectories.

2.6. Network-Pharmacology-Based Mechanism Analyses

The predicted targets of LCI, geniposidic acid, quercetin, geniposide, curcumin, and
withanolide C were obtained from a Swiss Target Prediction [107] and DIGEP-Pred [108].
The SMILE format of mentioned compounds was uploaded into Swiss Target Prediction
and DIGEP-Pred, and the obtained data were downloaded. The protein–protein interaction
network database (STRING v.11.0) [109] was used to establish the protein–protein interac-
tion network. The maximal clique centrality (MMC) algorithm in the CytoHubba plug-in
for Cytoscape (v.3.8.3) [110] was used for a comprehensive analysis of network topology
to obtain the top 41 hub genes. Additionally, the network was analyzed by MCODE, a
cluster analysis plug-in for Cytoscape (v.3.8.3) [110], which was utilized to analyze the PPI
network [110,111]. Furthermore, the hub genes were subjected to the DAVID database to
analyze KEGG pathways. It has been determined that the KEGG pathway has statistically
significant and necessary functional mechanisms such as p-value ≤ 0.05. The ggplot2 was
used to visualize the bubble plot, a package provided in the R programming language.
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2.7. Construction of the Compound–Target–Pathway Network

In this network, the nodes contain paths, associated core destinations, and prominent
links with different shapes and colors. The topological parameters of the node degree in
the network were also analyzed using a network analyzer. Then, core connections and
corresponding common goals were obtained through the network.

3. Results
3.1. Protein Preparation

The PPW program was used to prepare the protein for the molecular docking investi-
gation. The Ramachandran plot calculation wizard of the PPW program was performed
to analyze the Ramachandran plot of the minimized protein. The Ramachandran plot
depicts the statistical prevalence of the backbone dihedral angle (φ and ψ angles) com-
binations [112]. Theoretically, the Ramachandran plot has permitted areas to indicate an
amino acid’s range of potential Phi/Psi angles. In practice, the pattern of observed Phi/Psi
frequencies in a protein structure can be used to validate the structure. The Ramachandran
plot demonstrated that most proteins were in the favored region (red-colored) and ac-
ceptable (yellow-colored) regions. A few amino acid residues, including VAL190, GLY218,
GLY161, and GLY28, were found in the unfavored area in the Ramachandran plot (Figure 1).
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Figure 1. Ramachandran plot of the minimized protein. The ‘red color’, ‘yellow color’, and ‘white
color’ regions represent the favored, acceptable, and unfavored regions, respectively. A few amino
acids, including VAL190, GLY218, GLY161, and GLY28, are present in the unfavored region.

3.2. Ligand Preparation

The chemical structures of geniposidic acid, quercetin, geniposide, curcumin, with-
anolide C, and LCI were obtained from the PubChem database in .sdf formats. Moreover,
the canonical SMILES and the isomeric SMILES were stored for drawing the chemical
structures. Five promising ligands (geniposidic acid, quercetin, geniposide, curcumin, and
withanolide C), along with the co-crystallized ligand (LCI), were employed to transform
into three-dimensional configuration and generate possible conformers and tautomers
(Figure 2). The LigPrep tool was executed at neutral ionization and the OPLS3e force field
for minimizing the ligands. The LigPrep tool minimized the ligands for performing dock-
ing with the protein 6GZH. The prepared ligands were stored for performing molecular
docking simulation with the selected protein.
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Figure 2. The chemical structures of LCI (PubChem CID: 134812748), geniposidic acid (PubChem
CID: 443354), quercetin (PubChem CID: 5280343), geniposide (PubChem CID: 107848), curcumin
(PubChem CID: 969516), and withanolide C (PubChem CID: 101559583). The chemical structures
were drawn when considering the canonical SMILES and the isomeric SMILES obtained from the
PubChem database.
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3.3. Molecular Docking Results Analysis and Binding Interaction Determination

The integration of diverse molecular modeling approaches into numerous drug devel-
opment programs by pharmaceutical research has facilitated the exploration of complex
biological and chemical interactions. Combining computational and analytical method-
ologies has positively influenced identifying and developing unique and forthcoming
compounds [113–115]. Molecular docking approaches are widely applied in modern
drug design and study the configuration of ligands within macromolecular target at-
tachment regions. Moreover, the strategy determines the ligand–receptor relationship’s
free energy by analyzing the intermolecular interactions’ mechanism [116–119]. The XP
molecular docking (grid box size: 10 Å × 10 Å × 10 Å) was conducted using the GLIDE
program. The XP docked scores were measured as −11.425 kcal/mol, −13.908 kcal/mol,
−10.775 kcal/mol, −9.969 kcal/mol, −9.898 kcal/mol, and −8.114 kcal/mol for the 6GZH-
LCI complex (co-crystallized ligand), 6GZH-geniposidic acid complex, 6GZH-quercetin
complex, 6GZH-geniposide complex, 6GZH-curcumin complex, and 6GZH-withanolide
C complex, respectively (Table 1). The XP docked complexes interacted with different
binding interactions, including the H-bonds and non-bonding interactions. The H-bonds
interaction of 6GZH-LCI complex (CYS106, ASP109), 6GZH-geniposidic acid complex
(ILE25, ALA153, ASN154, ASP104, CYS106), 6GZH-quercetin complex (CYS106, GLU107),
6GZH-geniposide complex (ASN154, CYS106, ASP109), 6GZH-curcumin complex (LYS48,
CYS106, ASN154), and 6GZH-Withanolide C complex (ILE25, GLN27, ALA153, LYS48,
ASP109) were demonstrated by the XP docking (Figure 3). The Pi-Pi stacking interaction
was calculated (PHE103) in the 6GZH-LCI complex. Moreover, the non-bonding interaction,
including polar, hydrophobic, negative charged, and positively charged interactions in the
docked complexes, was demonstrated (Table 1, Figure 3).

Table 1. The XP docking scores with different binding interactions.

Protein–Ligand
Complex

Docking Score
(kcal/mol) H-Bonds Non-Bonding Interactions

6GZH-LCI complex
(Co-crystalized ligand) −11.425 CYS106, ASP109

Polar: GLN27, HIS108
Hydrophobic: ILE25, PHE30, ALA166, VAL79,
ALA46, PHE103, PHE105, CYS106, LEU156

Charged (Negative): ASP167, ASP104, GLU107,
ASP109

Charged (Positive): LYS48
Glycine: GLY26

6GZH-Geniposidic Acid complex −13.908 ILE25, ALA153, ASN154,
ASP104, CYS106

Hydrophobic: ALA153, LEU156, PHE30, VAL33,
PHE168, ALA166, ALA46, VAL79, PHE103,

PHE105
Charged (Negative): ASP167, ASP109

Charged (Positive): LYS151, LYS48
Glycine: GLY26

6GZH-Quercetin complex −10.775 CYS106, GLU107

Polar: HIS108
Hydrophobic: LEU156, PHE30, VAL33, VAL79,

ALA46, PHE103, PHE105, ILE25
Charged (Negative): ASP167, GLU107, ASP109

Charged (Positive): LYS48

6GZH-Geniposide complex −9.969 ASN154, CYS106, ASP109

Polar: HIS108
Hydrophobic: LEU156, ALA25, ALA166, PHE30,

VAL33, ALA46, VAL79, PHE103, PHE105
Charged (Negative): ASP167, ASP104, GLU107

Charged (Positive): LYS48

6GZH-Curcumin complex −9.898 LYS48, CYS106, ASN154

Hydrophobic: ALA166, PHE168, VAL33, PHE30,
ALA46, PHE103, PHE105, CYS106, LEU156,

ILE25, VAL79, LEU70
Charged (Negative): ASP109, ASP167, GLU66

Charged (Positive): LYS151
Glycine: GLY26

6GZH-Withanolide C complex −8.114 ILE25, GLN27, ALA153,
LYS48, ASP109

Polar: ASN154
Hydrophobic: PHE30, VAL33, LEU156, ALA46,

ALA166, PHE103, CYS106, VAL79
Charged (Negative): ASP167

Glycine: GLY26
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Geniposide, (E) 6GZH-Curcumin, and (F) 6GZH-Withanolide C Complex. Interaction through
H-bonds between the docked complexes was calculated, such as the 6GZH-LCI complex (CYS106,
ASP109), 6GZH-geniposidic acid complex (ILE25, ALA153, ASN154, ASP104, and CYS106), 6GZH-
quercetin complex (CYS106, GLU107), 6GZH-geniposide complex (ASN154, CYS106, and ASP109),
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GLN27, ALA153, LYS48, and ASP109). Moreover, the non-bonding interactions of the 6GZH-LCI
complex (polar: GLN27, HIS108; hydrophobic: ILE25, PHE30, ALA166, VAL79, ALA46, PHE103,
PHE105, CYS106, and LEU156; negative charged: ASP167, ASP104, GLU107, and ASP109; positive
charged: LYS48), 6GZH-geniposidic acid complex (hydrophobic: ALA153, LEU156, PHE30, VAL33,
PHE168, ALA166, ALA46, VAL79, PHE103, and PHE105; negative charged: ASP167, ASP109; positive
charged: LYS151, LYS48), 6GZH-quercetin complex (polar: HIS108; hydrophobic: LEU156, PHE30,
VAL33, VAL79, ALA46, PHE103, PHE105, and ILE25; negative charged: ASP167, GLU107, and
ASP109; positive charged: LYS48), 6GZH-geniposide complex (polar: HIS108; hydrophobic LEU156,
ALA25, ALA166, PHE30, VAL33, ALA46, VAL79, PHE103, and PHE105; negative charged: ASP167,
ASP104, and GLU107; positive charged: LYS48), 6GZH-curcumin complex (hydrophobic: ALA166,
PHE168, VAL33, PHE30, ALA46, PHE103, PHE105, CYS106, LEU156, ILE25, VAL79, and LEU70;
negative charged: ASP109, ASP167, and GLU66; positive charged: LYS151), and 6GZH-withanolide C
complex (polar: ASN154, hydrophobic: PHE30, VAL33, LEU156, ALA46, ALA166, PHE103, CYS106,
and VAL79; negative charged: ASP167) were demonstrated.
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3.4. ADMET Prediction and Anticipation of the Selected Ligands

In the discipline of effective therapy, a potent molecule needs to arrive at its destina-
tion in the body in a functioning state and reside there long enough for the anticipated
physiological actions to occur. ADMET analysis is gradually integrated into the drug
development process during the discovery phase when the number of potential substances
is high but physical samples are scarce. Computer models are feasible alternatives to
experimenting in this case. In this situation, computational models are valid substitutes
for experimentation [10,99,120]. The new SwissADME web application provides free
access to a pool of rapid yet reliable predictive model types. These include pharmacoki-
netics, physicochemical characteristics, drug-likeness, and medicinal chemistry affability,
including competent in-house strategies such as the iLOGP [121], BOILED-Egg [122], and
Bioavailability Radar [100]. In addition, the pkCSM utilizes graph-based recognition to
predict pharmacokinetic features. These represent the molecular structure and are used
to construct prediction systems [101,123]. LCI, geniposidic acid, quercetin, geniposide,
curcumin, and withanolide C have molecular weights of 344.43 g/mol, 374.34 g/mol,
302.24 g/mol, 388.37 g/mol, 368.38 g/mol, and 523.06 g/mol with the number of acceptor
H-bonds as of 5, 10, 7, 10, 6, and 7, respectively (Table 2). Comprehension results for
physicochemical properties were illustrated including the parameters POLAR (polarity),
LIPO (lipophilicity), INSOLU (insolubility), SIZE (molecular size), INSATU (unsaturation),
and FLEX (flexibility) (Figure 4).
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Figure 4. The physicochemical space for oral bioavailability. The bioavailability monitor supplies an
initial evaluation of a molecule’s drug-likeness. The colorful region represents the appropriate physic-
ochemical environment for oral bioavailability of LCI (A), geniposidic acid (B), quercetin (C), genipo-
side (D), curcumin (E), and withanolide C (F). Parameters: POLAR (polarity, 20 Å2 < TPSA < 130 Å2),
LIPO (lipophilicity, −0.7 < XLOGP3 < +5), INSOLU (insolubility, 0 < Log S (ESOL) < 6), SIZE (molec-
ular size, 150 g/mol < MW < 500 g/mol), INSATU (unsaturation, 0.25 < Fraction Csp3 < 1), and FLEX
(flexibility, 0 < Num. rotatable bonds < 9).



Processes 2022, 10, 2512 10 of 28

Table 2. ADMET properties (obtained from the SwissADME and the pkCSM databases) of LCI,
geniposidic acid, quercetin, geniposide, curcumin, and withanolide C.

LCI Geniposidic Acid Quercetin Geniposide Curcumin Withanolide C

Formula C18H25FN6 C16H22O10 C15H10O7 C17H24O10 C21H20O6 C28H39ClO7
Molecular weight (g/mol) 344.43 374.34 302.24 388.37 368.38 523.06

H-Bond acceptors 5 10 7 10 6 7
H-Bond donors 2 6 5 5 2 4

Num. rotatable bonds 5 5 1 6 8 2
TPSA (Å2) 81.65 166.14 131.36 155.14 93.06 124.29

Fraction Csp3 0.61 0.69 0.00 0.71 0.14 0.79
Molar refractivity 95.68 82.57 78.03 86.89 102.80 135.75

LogPo/w (XLOGP3) 2.40 −2.67 1.54 −2.34 3.20 2.03
LogS (ESOL) −3.48 −0.15 −3.16 −0.38 −3.94 −4.23

Max. tolerated dose (human)
(log mg/kg/day) −0.142 1.339 0.499 0.528 0.081 −0.694

Oral rat acute toxicity
(LD50 mol/kg) 2.37 2.085 2.471 2.188 1.833 2.417

Hepatotoxicity Yes No No No No No
Minnow toxicity (log mM) 1.21 6.62 3.721 6.612 −0.081 2.52

Blood–brain barrier (log BB) −0.162 −1.041 −1.098 −1.281 −0.562 −1.004
Caco-2 permeability 1.344 −0.505 −0.229 0.35 −0.093 0.682
Total clearance (log

ml/min/kg) 0.954 1.325 0.407 1.404 −0.002 0.023

The fraction Csp3 values of LCI, geniposidic acid, geniposide, curcumin, and with-
anolide C were measured as 0.61, 0.69, 0.71, 0.14, and 0.79, whereas quercetin remained nil.
LCI, geniposidic acid, quercetin, geniposide, curcumin, and withanolide C contained the
number of rotatable bonds as 5, 5, 1, 6, 8, and 2, respectively. Moreover, LCI, geniposidic
acid, geniposide, curcumin, and withanolide C contained the H-bond donors as 2, 6, 5, 5, 2,
and 4. It has long been accepted that lipophilicity is measured by the log Po/w partition
coefficient between n-octanol and water [124]. Several computer algorithms for determin-
ing log Po/w on diverse chemical mixtures have been developed with variable degrees of
efficacy. Typically, many indicators are employed to select the most reliable approaches
for a particular chemical conjunction or to provide a consensus estimate [125–127]. The
lipophilicity (XLOGP3) [128,129] of LCI, geniposidic acid, quercetin, geniposide, curcumin,
and withanolide C were measured as 2.40, −2.67, 1.54, −2.34, 3.20, and 2.03. A soluble
molecule streamlines several medication development steps, including processing and
manufacturing [130]. In addition, solubility is a crucial element influencing absorption for
oral-delivery-focused research endeavors. A drug designed for parenteral administration
must also be highly soluble in water to give an appropriate number of active ingredients
in a small volume of pharmacological dosage [131,132]. The ESOL (LogS) values [133] of
LCI, geniposidic acid, quercetin, geniposide, curcumin, and withanolide C were calcu-
lated as −3.48, −0.15, −3.16, −0.38, −3.94, and −4.23. Pharmacokinetics examines the
entry, circulation, and elimination of drugs from the body. How an individual responds
to a particular medication is governed by the substance’s underlying pharmacological
properties at the site of action [134–136]. The BOILED-Egg model’s conclusion allows for
estimations to be established regarding passive human gastrointestinal (GI) absorption
as well as blood–brain barrier (BBB) permeability [137]. A drug’s penetration and carrier
associations may be evaluated in vitro using human colon adenocarcinoma Caco-2 and
Madin–Darby canine kidney epithelial cell types [138–141]. Confluent monolayers of cells
over semi-porous filters mimic the intestinal epithelial border for penetration, carrier, and
drug tests. These tests can be used in pharmaceutical investigation to predict and evaluate
absorption, determine permeability mechanisms, and assess the impact of composition on
drug permeability [142–145]. Caco-2 permeability values of LCI, geniposidic acid, quercetin,
geniposide, curcumin, and withanolide C were estimated as 1.344, −0.505, −0.229, 0.35,
−0.093, and 0.682. Systemic clearance is governed by all the metabolizing/eliminating
functions of each organ, although liver and kidney clearances are the most important.
By scalarizing the drug excretion frequency (amount per period) by the plasma content,
plasma clearance indicates the overall capacity of the body to remove the drug [146–148].
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The blood–brain barrier values (logBB) for LCI, geniposidic acid, quercetin, geniposide,
curcumin, and withanolide C estimated as −0.162, −1.041, −1.098, −1.281, −0.562, and
−1.004. For inter-species comparisons, the total body extraction ratio (0 to 1) simplifies the
understanding of plasma clearance and provides a basis for comparisons across species. A
drug’s total clearance (for a given bioavailability) is governed solely by plasma elimination,
making it the most critical pharmacokinetics for calculating the dosage necessary to pre-
serve an equilibrium steady-state plasma level [146,149–151]. The total clearance of LCI,
geniposidic acid, quercetin, geniposide, curcumin, and withanolide C were estimated as
of 0.954, 1.325, 0.407, 1.404, −0.002, and 0.023. Additionally, all selected ligands have no
hepatotoxicity effects except the co-crystallized ligand, LCI.

The pharmaceutical therapy of illness has long been known to begin slowly and
gradually increase the dosage. Even when treating acute and more severe diseases, doctors
frequently exceed the maximum tolerated dosage (MTD) despite the lack of evidence that
doing so is more likely to enhance patient outcomes [152,153]. Cardiovascular guidelines
advise MTD even in prevention without clear evidence of improved outcomes for several
indications, such as hypercholesterolemia [153–155]. The MTD values for LCI, geniposidic
acid, quercetin, geniposide, curcumin, and withanolide C estimated as 0.142, 1.339, 0.499,
0.528, 0.081, and −0.694. To determine the acute toxicity of different substances, lethal
dosage estimates (LD50) are generally employed. The LD50 is the portion of a chemical that
eradicates 50% of a group of test animals if given at once [156]. The oral rat acute toxicity
(LD50) values for LCI, geniposidic acid, quercetin, geniposide, curcumin, and withanolide
C were estimated as 2.37, 2.085, 2.471, 2.188, 1.833, and 2.417.

3.5. Molecular Dynamics

Carrying out molecular dynamics simulations, we first implemented the steps by
running the scripts for evaluating the stabilities of backbone atoms of the targeted protein
as presented in Figure 5A. The apo and holo forms of the CDK9/cyclinT1 were introduced
to 100 ns MD simulations in an explicit solvated system. Figure 5A shows RMSD values
for the main protease backbone for the apo and holo status of the CDK9/cyclinT1. The
protein backbone residues showed low fluctuations before equilibration for all systems
(apo and holo). For the RMSD of the backbone atoms of apo, LCI-bound, geniposidic-acid-
bound, geniposide-bound and withanolide-bound CDK9/cyclinT1 were stable throughout
the MD simulation study. However, the RMSD of backbone atoms for the mentioned
systems showed minimal fluctuation between 0.2 and 0.44 nm during the MD simulation
(Figure 5A). In comparison, the quercetin-bound and curcumin-bound CDK9/cyclinT1′s
backbone atoms exhibited significant fluctuations after 53 ns in the MD simulation study
(Figure 5A). This could be because of how curcumin is positioned in the active site, which
has two rings connected by seven rotatable links, one deep inside the binding site and
the other near the active site’s gate. Even though quercetin’s stiffness led to considerable
oscillations, it does include one rotatable bond. As a result, quercetin may result in a more
relaxed deformation of the CDK9/cyclinT1 active site.

The RMSD of bound ligands was also analyzed to shed light on the actual mechanism
of action of studied ligands. The RMSD plot suggests that the binding of quercetin and
curcumin destabilized the CDK9/cyclinT1 and led to more structural deviations from its
native conformation (Figure 5A). RMSD of the curcumin revealed that curcumin has the
highest degree of fluctuation inside the binding site of CDK9/cyclinT1. This can be due to
the orientation of curcumin in the active site, which contains two rings linked with seven
rotatable bonds, one located deep inside the binding site and another located on the gate
of the active site. While the rigidity of quercetin caused significant fluctuations, quercetin
contains one rotatable bond. Thus, quercetin can cause deformation of the active site of
CDK9/cyclinT1 to be more relaxed. On the other hand, it is worth noting that withanolide
had very stable dynamic behavior inside the binding site of CDK9/cyclinT1 (Figure 5B).
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Figure 5. (A) RMSD of backbone atoms for apo and holo forms of protein, (B) RMSD of ligands
atoms, (C) RMSF of backbone atoms of apo and holo forms of protein, (D) Rg of the protein in apo
and holo forms. The CDK9/cyclinT1 apo and holo versions were added to 100 ns MD simulations
in an explicit solvated system. Before equilibration for all systems, the protein backbone residues
exhibited little variations (apo and holo). LCI-bound, geniposidic-acid-bound, geniposide-bound,
and withanolide-bound CDK9/cyclinT1 remained constant during the MD simulation research for
the RMSD of the backbone atoms of apo. Curcumin exhibits the most considerable level of variation
inside the CDK9/cyclinT1 binding site, according to RMSD measurements. However, it is essential
to remember that withanolide had remarkably steady dynamic behavior inside the binding site of
CDK9/cyclinT1. The Rg plot showed that the CDK9/cyclinT1 bound to withanolide, geniposidic
acid, and LCI attained tighter packing.

Vibrations and fluctuation are not random but depend mainly on the flexibility of
the local and global structure. Therefore, the root-mean-square fluctuation (RMSF) of the
CDK9/cyclinT1 in apo and holo forms was analyzed to ascertain the average fluctuation of
all residues during the simulation (Figure 5C). The RMSF plot showed that higher residual
fluctuations were present in most regions of CDK9/cyclinT1 due to binding to quercetin and
curcumin. In contrast, the residual fluctuations were minimized upon binding geniposidic
acid, geniposide, and withanolide in most regions (Figure 5C).

The radius of gyration (Rg) is the main parameter to analyze the volume of a pro-
tein’s tertiary structure. It has been utilized to shed light on the global stability of a
protein in a biological system. The higher value of the radius of gyration of studied
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proteins means less tight packing. The average Rg values for free quercetin, curcumin,
and geniposide were higher among the studied ligands. The Rg plot indicated that the
withanolide-bound, geniposidic-acid-bound, and LCI-bound CDK9/cyclinT1 reached more
tight packing (Figure 5D).

We can analyze the selectivity and potentiality by assessing hydrogen bonding be-
tween a protein and ligands as a critical aspect of molecular recognition. Additionally, it is
used to validate the stability of the docked ligands. It was found that LCI had the highest
average of hydrogen bonds (3.51). The second was for geniposide, with a 2.57 hydrogen
bond, while the lowest average was for curcumin, with a 1.5 hydrogen bond (Figure 6).
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Figure 6. Number of H-bonds during 100 ns MD simulations. LCI was shown to have the most
sumptuous moderate hydrogen bond count (3.51), followed by geniposide (2.57 hydrogen bonds)
and curcumin (1.5 hydrogen bonds).

3.6. PCA and FEL Analysis

Principal component analysis (PCA) was carried out to describe the predominant
movement of the protein structures for each of the seven simulations. The first two principal
components for each model structure explained more than 80% of the system’s motion. We
plotted the populated cluster motions for each system to visualize the 2D projection of the
first two principal components (Figure 7A,C,E,G,I,K,M). The apo, LCI-bound, geniposidic-
acid-bound, and withanolide-bound CDK9/cyclinT1 exhibited fewer collective movements
(Figure 7A,C,E,M). In contrast, quercetin-bound, geniposide-bound, and curcumin-bound
CDK9/cyclinT1 showed a disorganized collective movement (Figure 7G,I,K).

The free energy landscape or Gibbs free energy landscape shows the global energy
minima conformations defined as each system’s lowest stable energy state. The results
of the free energy landscape are shown in Figure 7B,D,F,H,J,L,N. The dark blue spots
indicate the energy minima and energetically favored protein conformations. The shallow
energy basin was also noticed during the simulation, indicating low stability of the protein–
ligand complex. Two distinct broad valleys were observed in the apo and LCI-bound
CDK9/cyclinT1. At the same time, withanolide-bound CDK9/cyclinT1 had a single and
broad valley of energy. Interestingly, geniposidic-acid-bound had a single and precise deep
spot of the blue region observed.
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Figure 7. PCA of (A) apo, (C) LCI-bound, (E) geniposidic-acid-bound, (G) quercetin-bound,
(I) geniposide-bound, (K) curcumin-bound and (M) withanolide-bound CDK9/cyclin T1. Free
energy landscapes of (B) apo, (D) LCI-bound, (F) geniposidic-acid-bound, (H) quercetin-bound,
(J) geniposide-bound, (L) curcumin-bound, and (N) withanolide-bound CDK9/cyclin T1. Two large
troughs were found in the apo and LCI-bound CDK9/cyclinT1. Simultaneously, withanolide-bound
CDK9/cyclinT1 exhibited a single and large energy valley. Interestingly, geniposidic-acid-bound has
a single, exact deep-blue patch seen.

3.7. Network Pharmacology Analysis
3.7.1. PPI Network Analysis

Six hundred and nine target genes interacting with LCI, geniposidic acid, quercetin-
bound, geniposide, curcumin, and withanolide were collected from the Swiss Target Pre-
diction and DIGEP-Pred. Six hundred and nine target genes were exported to the string
database and were used to explore the interaction relationship between core targets. Then,
a PPI network was created using Cytoscape (Figure 8). The 609 candidate genes were
connected to establish an initial PPI network using Cytoscape 3.8.3 that included 563 nodes
and 6471 edges, and 46 isolated target genes were removed (Figure 8). In addition, the
top one protein–protein interacting cluster was constructed (Figure 5A), conducted by
MCODE of Cytoscape to identify the highly interacting nodes. It contained 42 nodes
and 617 edges, as presented in Figure 8A (red nodes). To validate the results, we further
used Cytoscape-hubba for identifying hub targets. We obtained a network of 42 nodes
and 699 edges, as illustrated in Figure 8B (colored nodes). Then, the target genes from
MCODE and Cyto-hubba were merged to obtain a single network with 51 target genes
and 855 edges (Figure 9). As can be seen from Figure 9, CASP3 (degrees = 50), KRAS



Processes 2022, 10, 2512 15 of 28

(degrees = 50), MTOR (degrees = 50), JUN (degrees = 49), HIF1A (degrees = 48), CCND1
(degrees = 48), HSP90AA1 (degrees = 48) and BCL2L1 (degrees = 47). Additionally, CASP3,
KRAS, MTOR, JUN, HIF1A, CCND1, HSP90AA1, and BCL2L1 had the highest betweenness
centrality value. The 51 target genes were exported into the DAVID database for KEGG
pathway enrichment.
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Figure 9. The network of the core target genes. A single network with 51 target genes and 855 edges
was created by combining the target genes retrieved from MCODE and Cyto-hubba. The 51 target
genes were imported into the DAVID database to enhance KEGG pathways that generated the
network of the core target genes.

3.7.2. KEGG Pathway Enrichment Analysis

We conducted a KEGG pathway enrichment analysis. The significant pathways
include cancers (−log p = 26.3045, target connections count = 33), Hepatitis B (−log
p = 23.1688, connections count = 23), PI3K-Akt signaling pathway (−log p = 19.76, tar-
get connections count = 27), prostate cancer (−log p-value = 19.55, and target connections
count = 18), pancreatic cancer (−log p-value = 16.7399, target connections count = 15),
proteoglycans with -log p value (15.89) and target connections (count = 20), TNF signaling
pathway (−log p-value = 14.99, and target connections count = 16), etc. These pathways are
crucial in initiating tumor cell growth and differentiation and promoting tumor cell progres-
sion. Then, the top 20 signaling pathways were visualized in Figure 10. The LCI, geniposidic
acid, quercetin, geniposide, curcumin, and withanolide, core targets, and 20 pathways were
imported into Cytoscape to create a “compound-target-pathway” network diagram and
visualize it (Figure 11). The compound–target–pathway had 128 nodes and 1302 edges. The
network analysis showed that curcumin had more significant interaction for targets genes
with degree 20, followed by withanolide (degree = 19), LCI (degree = 16), geniposidic acid
(degree = 12), quercetin (degree = 3) and geniposide (degree = 1).
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Figure 11. The pathways for the selected compounds with the target genes. The illustration describes
the promising target gene-triggered pathway networks for the selected ligands. These pathways are
vital in originating tumor, tumor cell growth, differentiation, and promoting tumor cell progression.

4. Discussion

In the early stages of the drug lead development process, computational approaches
are a potent and well-established tool. High-throughput molecular docking is one of these
methods, and it has proven to be quite effective in locating new bioactive substances within
sizable chemical libraries [157,158]. Protein and the selected ligands are prepared before
performing molecular docking. Each small molecule’s preferred binding mode within a
target binding site is evaluated throughout the docking process. A docking score indicates
how likely the ligand molecule will attach. The techniques also provide insight into how a
particular ‘hit’ may be altered to enhance protein–ligand interactions, which can be used
to direct lead optimization. The strategy was very tempting since it had the potential to
save time and money in comparison to experimental alternatives [119,159]. Geniposidic
acid interacted with the protein 6GZH (docking score of −13.908 kcal/mol) and demon-
strated high affinity compared to other ligands (Table 1; Figure 3), LCI (−11.425 kcal/mol),
quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol),
and withanolide C (−8.114 kcal/mol).

To speed up the transformation of hits and leads into qualified development candi-
dates, the evaluation of physicochemical and pharmacological characteristics is carried out
at the early stages of drug discovery [160–162]. Over the years, qualities linked to ADMET
have emerged as one of the most crucial factors to consider when evaluating the hazards or
effects of these substances on the human body [99,163,164]. Withanolide C (523.06 g/mol)
demonstrated a violation in molecular weight (<500 g/mol) as of “the rule of 5” compared
to other ligands [165]. Other parameters of “the rule of 5” include H-bond donors (not
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more than 5), and H-bond acceptors (not more than 10) are maintained accordingly [165].
TPSA, which uses functional group contributions based on a sizable database of structures,
is a practical way to estimate polar surface area without determining the appropriate
biological conformation or conformations or computing the ligand’s three-dimensional
structure [166,167]. Geniposidic acid, quercetin, geniposide, and withanolide C denote
polarity violation (20 Å2 < TPSA < 130 Å2) compared to other ligands (Table 2, Figure 4).
More than 140 angstroms squared polar surface areas of molecules make them challenging
to penetrate cell membranes [168]. A TPSA of less than 90 Å2 is typically required for
chemicals to cross the BBB and subsequently act on receptors in the CNS [169].

The idea of drug-likeness has been widely utilized to screen out compounds with un-
desired qualities and inferior ADMET profiles based on assessments of the physiochemical
properties and structural features of current small organic medicines or/and drug prospects.
The drug-likeness of a molecule is an essential consideration during the early stages of drug
development. It is defined as the resemblance of chemicals and medications [10,170]. The
standard fraction Csp3 value is needed at a minimum of 0.25 (fraction Csp3 ≥ 0.25) with
the correlation of sp3-hybridized carbons for saturation [10,100]. Quercetin and curcumin
violated the fraction Csp3 parameter (fraction Csp3 ≥ 0.25) compared to others.

A medicine’s capacity to dissolve in aqueous media is called its solubility. The highest
concentration of a material that can be entirely dissolved in a particular solvent at a specific
temperature and pressure level is referred to as drug solubility [133,171,172]. The LogS
(ESOL) value should not overreach 6.0 for the solubility of a ligand [133]. All the selected
ligands maintained the solubility parameter. Lipophilicity plays an essential role in drug
discovery and design. Lipophilicity is a critical physicochemical feature that influences
ADMET properties and the overall appropriateness of drug candidates [124]. Controlling
physicochemical parameters such as lipophilicity within a defined optimum range has
increased compound quality and the chances of medicinal efficacy. Moreover, the XLOGP3
value is needed from −0.7 to +6.0 to maintain lipophilicity [173]. LCI, quercetin, curcumin,
and withanolide C maintained the XLOGP3 parameter of lipophilicity compared to other
ligands (Table 2).

The science of pharmacokinetics examines how drugs enter, move through, and leave
the body. The pharmacological features of a drug at the site of action dictate how a person
reacts to it [174,175]. The BOILED-Egg model predicts passive human gastrointestinal
(GI) absorption and blood–brain barrier (BBB) penetration. All of the individuals chosen
have high GI absorption rates and negative BBB permeant characteristics. Evaluation
of active efflux across biological membranes, such as from the brain or the gastrointesti-
nal wall to the lumen, depends on whether substances are substrates or non-substrates
for the permeability glycoprotein (P-gp), considered to be the most crucial member of
the ABC-transporters [122,176–178]. Hepatotoxicity caused by antituberculosis medica-
tions is a significant adverse response that can result in considerable morbidity and, in
rare cases, death. This type of toxicity may affect the outcome of TB treatment in some
individuals [179–181]. The co-crystalized ligand LCI is predicted to have hepatotoxicity
compared to other selected ligands.

Molecular dynamics (MD) simulations may offer a plethora of energetic data on in-
teractions between proteins and ligands in addition to a wealth of dynamical data on
biomacromolecules [182]. Such knowledge is crucial for determining the target’s structure–
function connection and the fundamentals of protein–ligand interactions and directing the
drug discovery and design processes. As a result, MD simulations have been successfully
utilized at every stage of contemporary drug research [183,184]. RSMD is a widely em-
ployed metric for comparing values (sample or population values) predicted by a model
or estimated values observed. The RMSD is the quadratic mean of the square root of
the second sample moment of the discrepancies between expected and observed values.
When computations are made outside the data sample used for the estimate, the deviations
are referred to as errors (or prediction errors) instead of residuals [185,186]. The RMSD
combines the sizes of forecasts’ mistakes for different data points into a single indicator
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of predictive power. Since RMSD is scale-dependent, it should only be used to evaluate
predicting errors of several models for a single dataset and not between datasets [187,188].
The average distance between the atoms of overlaid proteins (often the backbone atoms) is
measured by the RMSD. Be aware that RMSD calculations can be used to analyze smaller
chemical molecules and other non-protein compounds [185,189]. CDK9/cyclinT1 ‘apo’
and ‘holo’ arrangements were subjected to 100 ns MD simulations in an unambiguous
solvated system with RMSD (Figure 5). The RMSD of the backbone atoms of apo, LCI-
CDK9/cyclinT1, geniposide-CDK9/cyclinT1, and withanolide-CDK9/cyclinT1 complex
remained steady during the MD simulation research. The RMSD of backbone atoms for
the described systems, on the other hand, fluctuated between 0.2 and 0.44 nm during
the MD simulation (Figure 5). Curcumin exhibited the most considerable variation in-
side the CDK9/cyclinT1 binding site, according to RMSD measurements. This could be
because of how curcumin is arranged in the active site, which has two rings connected
by seven rotatable links, one deep inside the binding site and the other near the active
site’s gate. However, it is essential to remember that withanolide had remarkably steady
dynamic behavior inside the binding site of CDK9/cyclinT1. Due to binding to quercetin
and curcumin, the RMSF plot demonstrated that more significant residual fluctuations
are present in most CDK9/cyclinT1 areas. On the other hand, in the majority of locations,
binding geniposidic acid, geniposide, and withanolide reduced the residual fluctuations.
The Rg plot also showed that the CDK9/cyclinT1 coupled with withanolide, geniposidic
acid, and LCI attained more secure packing (Figure 5). LCI was shown to have the most
outlandish average hydrogen bond count (count as of 3.51), followed by geniposide (count
as of 2.57 hydrogen bonds) and curcumin (count as of 1.5 hydrogen bonds) (Figure 6).

A potent theoretical paradigm for examining, comprehending, and forecasting the
conformational characteristics of biomolecules is provided by statistical thermodynamics.
The primary quantity, which comprises the intramolecular and solvation-free energy, is
the prospect of mean strength, also known as adequate energy as a configuration function.
Molecular-mechanics-style functions are a reasonable way to characterize the intramolec-
ular potential [190,191]. Although describing the unrestricted solvation power is more
challenging, useful findings may be achieved using straightforward approximations. These
calculations have been used to determine how much intramolecular energy contributes
to protein stability and to understand how thermodynamic properties of protein folding,
such as heat capacity, first came about. The thermodynamics, as well as the kinematics of
any molecular activities in solution, are driven by the FEL. The coordinates of each atom
in a target molecule serve as the point on a graph representing the free energy over the
arrangement region [192–194]. Two unique large troughs in CDK9/cyclinT1 were seen in
the apo and LCI-bound forms. At the same time, CDK9/cyclinT1 coupled with withanolide
possesses a single, wide valley of energy. Surprisingly, a single, deep point of the blue
region may be seen in geniposidic-acid-bound CDK9/cyclinT1 (Figure 7).

An emerging field called network pharmacology (NP), which utilizes computational
biological tools to merge system biology and genomic technology, is helpful in drug de-
velopment. Network pharmacology is a method that can explain intricate connections
between biological systems, medications, and disorders [195,196]. Protein–protein inter-
actions (PPIs) are potential targets for drug development because they are connected to
critical cellular processes and pathways. This assurance, however, has not been fulfilled
in the case of small-molecule medications. Due to this, many PPI surfaces are physically
incapable of supporting the binding of tiny drug-like compounds [197,198]. The chosen
protein and ligand PPI interactions were carried out. From the Swiss Target Prediction and
DIGEP-Pred, 689 target genes interacting with LCI, geniposidic acid, quercetin, geniposide,
curcumin, and withanolide were gathered (Figure 8) with the networks of the core target
genes (Figure 9). Genes, small molecules, proteins, and other molecular objects are mapped
to networks of molecular interactions, reactions, and relationships using the KEGG map-
ping procedure [199,200]. Enrichment examination on KEGG pathways of crucial targets
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from active substances was investigated for the chosen ligands (Figure 10). Moreover, the
pathways for the preferred compounds with the target genes were anticipated (Figure 11).

LCI-bound, geniposidic-acid-bound, geniposide-bound, and withanolide-bound
CDK9/cyclinT1 remained constant during the MD simulation research for the RMSD
of the backbone atoms of apo. The Rg plot showed that the CDK9/cyclinT1 bound to
withanolide, geniposidic acid, and LCI attained more secure packing. While in the majority
of the locations, the binding of geniposidic acid, geniposide, and withanolide reduced the
residual fluctuations. On the other hand, there were noticeable variations in the backbone
atoms of CDK9/cyclinT1 that were linked to quercetin and curcumin. Geniposidic acid is a
more potential CDK9 inhibitor than other ligands, documented by comparing molecular
docking score and binding interactions with protein, ADMET attributes, MD simulation
investigation, PCA, and FEL analysis.

5. Conclusions

CDK blockers have been developed to treat various diseases caused by abnormalities
in CDKs, which are critical for cell formation, gene transcription, and other processes. In
addition, CDK9 regulates short-lived anti-apoptotic genes that are essential for cancer cell
survival. As a result, blocking CDK9 has emerged as a possible cancer therapy. Natural-
derived compounds, including geniposidic acid, quercetin, geniposide, curcumin, and
withanolide C, interacted with the protein with increased affinity. Geniposidic acid has a
high binding affinity (−13.908 kcal/mol) with the protein CDK9 compared to other ligands.
Moreover, the network-pharmacology-based analysis of the selected ligands demonstrated
different signaling pathways for cancers. This study showed that the selected compounds
are considered potential CDK9 blockers through computational approaches. In addition to
encouraging medicinal chemistry experts to conduct relevant studies on these prospective
natural lead compounds, the outcomes will assist future preclinical, nonclinical, and clinical
investigations involving these molecules.
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