Single-Molecule Chemical Reactions Unveiled in Molecular Junctions
Abstract
:1. Introduction
2. Electric-Field-Driven Chemical Reactions
3. Reaction Dynamics and Kinetics in Single-Molecule Junctions
4. Host–Guest Interactions
5. Redox Reaction
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Stoddart, F.J. From molecular to supramolecular electronics. Nat. Rev. Mater. 2021, 6, 804–828. [Google Scholar] [CrossRef]
- Stone, I.; Starr, R.L.; Zang, Y.; Nuckolls, C.; Steigerwald, M.L.; Lambert, T.H.; Roy, X.; Venkataraman, L. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 2021, 5, 695–710. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Wang, F. Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level. ACS Nano 2008, 2, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jevric, M.; Borges, A.; Olsen, S.T.; Hamill, J.M.; Zheng, J.T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436. [Google Scholar] [CrossRef] [Green Version]
- Aradhya, S.V.; Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 2013, 8, 399–410. [Google Scholar] [CrossRef]
- Tang, C.; Ayinla, R.T.; Wang, K. Beyond electrical conductance: Progress and prospects in single-molecule junctions. J. Mater. Chem. C 2022, 10, 13717–13733. [Google Scholar] [CrossRef]
- Fu, T.; Frommer, K.; Nuckolls, C.; Venkataraman, L. Single-Molecule Junction Formation in Break-Junction Measurements. J. Phys. Chem. Lett. 2021, 12, 10802–10807. [Google Scholar] [CrossRef]
- Xu, B.; Tao, N.J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, B. Modulation and control of charge transport through single-molecule junctions. Top. Curr. Chem. 2017, 375, 17. [Google Scholar] [CrossRef]
- Giessibl, F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949. [Google Scholar] [CrossRef]
- Morita, T.; Lindsay, S. Determination of single molecule conductances of alkanedithiols by conducting-atomic force microscopy with large gold nanoparticles. J. Am. Chem. Soc. 2007, 129, 7262–7263. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.M.; Wang, K.; Xu, B. Characterizing molecular junctions through the mechanically controlled break-junction approach. Rep. Electrochem. 2014, 4, 1–11. [Google Scholar]
- Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater. 2013, 25, 4845–4867. [Google Scholar] [CrossRef]
- Simmons, J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, M.; Taniguchi, M. Single molecule electronics and devices. Sensors 2012, 12, 7259–7298. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Dong, S.; Liu, S.; Liu, Z.; Guo, X. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed. 2013, 52, 3906–3910. [Google Scholar] [CrossRef]
- Abbassi, M.E.; Sangtarash, S.; Liu, X.; Perrin, M.L.; Braun, O.; Lambert, C.; van der Zant, H.S.J.; Yitzchaik, S.; Decurtins, S.; Liu, S.-X. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Qin, A.; Tang, B.Z.; Guo, X. Fabrication and functions of graphene–molecule–graphene single-molecule junctions. J. Chem. Phys. 2020, 152, 120902. [Google Scholar] [CrossRef] [PubMed]
- Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controlled vacuum gap. Appl. Phys. Lett. 1982, 40, 178–180. [Google Scholar]
- Hirjibehedin, C.F.; Wang, Y. Recent advances in scanning tunneling microscopy and spectroscopy. J. Phys. Condens. Matter 2014, 26, 390301. [Google Scholar] [CrossRef]
- Liu, X.-W.; Stamp, A.P. Theory of scanning tunneling microscopy. J. Vac. Sci. Technol. B 1994, 12, 2189–2192. [Google Scholar] [CrossRef]
- Chakraborty, I.; Bodurtha, K.J.; Heeder, N.J.; Godfrin, M.P.; Tripathi, A.; Hurt, R.H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472–16475. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Guo, X. Single-molecule electrical detection: A promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 2019, 53, 159–169. [Google Scholar] [CrossRef]
- Stuyver, T.; Danovich, D.; Joy, J.; Shaik, S. External electric field effects on chemical structure and reactivity. Comput. Mol. Sci. 2020, 10, e1438. [Google Scholar] [CrossRef]
- Xie, X.; Li, P.; Xu, Y.; Zhou, L.; Yan, Y.; Xie, L.; Jia, C.; Guo, X. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022, 16, 3476–3505. [Google Scholar] [CrossRef]
- Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Recent progress of break junction technique in single-molecule reaction chemistry. Acta Phys.-Chim. Sin. 2019, 35, 829–839. [Google Scholar] [CrossRef]
- Zhang, H.; Shiri, M.; Ayinla, R.T.; Qiang, Z.; Wang, K. Switching the conductance of a single molecule: Lessons from molecular junctions. MRS Commun. 2022, 12, 495–509. [Google Scholar] [CrossRef]
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Sun, L.; Diaz-Fernandez, Y.A.; Gschneidtner, T.A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411. [Google Scholar] [CrossRef] [Green Version]
- Aragones, A.C.; Haworth, N.L.; Darwish, N.; Ciampi, S.; Bloomfield, N.J.; Wallace, G.G.; Diez-Perez, I.; Coote, M.L. Electrostatic catalysis of a diels–alder reaction. Nature 2016, 531, 88–91. [Google Scholar] [CrossRef]
- Quintans, C.; Andrienko, D.; Domke, K.F.; Aravena, D.; Koo, S.; Díez-Pérez, I.; Aragonès, A.C. Tuning single-molecule conductance by controlled electric field-induced trans-to-cis isomerisation. Appl. Sci. 2021, 11, 3317. [Google Scholar] [CrossRef]
- Tang, C.; Shiri, M.; Zhang, H.; Ayinla, R.T.; Wang, K. Light-driven charge transport and optical sensing in molecular junctions. Nanomaterials 2022, 12, 698. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, K.; Xu, B.; Dubi, Y. Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc. 2018, 140, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, D.; Tan, Z.; Bai, J.; Xiao, Z.; Yang, Y.; Shi, J.; Hong, W. Supramolecular systems and chemical reactions in single-molecule break junctions. Top. Curr. Chem. 2017, 375, 42. [Google Scholar] [CrossRef]
- Taniguchi, M. Paving the way to single-molecule chemistry through molecular electronics. Phys. Chem. Chem. Phys. 2019, 21, 9641–9650. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; De Visser, S.P.; Kumar, D. External electric field will control the selectivity of enzymatic-like bond activations. J. Am. Chem. Soc. 2004, 126, 11746–11749. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Danovich, D.; Joy, J.; Wang, Z.; Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562. [Google Scholar] [CrossRef]
- Vasilev, K.; Doppagne, B.; Neuman, T.; Rosławska, A.; Bulou, H.; Boeglin, A.; Scheurer, F.; Schull, G. Internal Stark effect of single-molecule fluorescence. Nat. Commun. 2022, 13, 677. [Google Scholar] [CrossRef]
- Shaik, S.; Mandal, D.; Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Videla, P.E.; Cattaneo, M.; Batista, V.S.; Lian, T.; Kubiak, C.P. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode–solution interfaces. Chem. Sci. 2021, 12, 10131–10149. [Google Scholar] [CrossRef]
- Darwish, N. Chemical mechanisms, one molecule at a time. Nat. Nanotechnol. 2021, 16, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Wesley, T.S.; Román-Leshkov, Y.; Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal−liquid interfaces. ACS Cent. Sci. 2021, 7, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Meir, R.; Chen, H.; Lai, W.; Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 2010, 11, 301–310. [Google Scholar] [CrossRef]
- Zang, Y.; Zou, Q.; Fu, T.; Ng, F.; Fowler, B.; Yang, J.; Li, H.; Steigerwald, M.L.; Nuckolls, C.; Venkataraman, L. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 2019, 10, 4482. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Tang, C.; Li, J.; Chen, L.-C.; Zheng, J.; Zhang, P.; Le, J.; Li, R.; Li, X.; Liu, J. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Li, W.; Chen, J.; He, G.; Li, L.; Olson, M.A.; Sue, A.C.-H.; Stoddart, J.F.; Guo, X. Complex formation dynamics in a single-molecule electronic device. Sci. Adv. 2016, 2, e1601113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Yang, C.; Li, H.; Zhang, L.; Zhou, S.; Zhu, X.; Fu, H.; Li, Z.; Liu, Z.; Jia, C. Accurate Single-Molecule Kinetic Isotope Effects. J. Am. Chem. Soc. 2022, 144, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K.N.; Zhang, D. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 2018, 4, eaar2177. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, X.; Gong, Z.; Jia, C.; Lin, Y.; Gu, C.; He, G.; Zhong, Y.; Yang, J.; Guo, X. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 2018, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Liu, Z.; Li, Y.; Zhou, S.; Lu, C.; Guo, Y.; Ramirez, M.; Zhang, Q.; Li, Y.; Liu, Z. Electric field–catalyzed single-molecule diels-alder reaction dynamics. Sci. Adv. 2021, 7, eabf0689. [Google Scholar] [CrossRef]
- Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019, 21, 381–405. [Google Scholar] [CrossRef]
- Han, F.-S. Transition-metal-catalyzed suzuki–miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270–5298. [Google Scholar] [CrossRef] [PubMed]
- D’Alterio, M.C.; Casals-Cruañas, È.; Tzouras, N.V.; Talarico, G.; Nolan, S.P.; Poater, A. mechanistic aspects of the palladium-catalyzed suzuki-miyaura cross-coupling reaction. Chem.-Eur. J. 2021, 27, 13481–13493. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Glorius, F. Controlled iterative cross-coupling: On the way to the automation of organic synthesis. Angew. Chem. Int. Ed. 2009, 48, 5240–5244. [Google Scholar] [CrossRef]
- Dobrounig, P.; Trobe, M.; Breinbauer, R. Sequential and iterative pd-catalyzed cross-coupling reactions in organic synthesis. Mon. Chem.-Chem. Mon. 2017, 148, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Boisjan, A.; Allemann, C.; Fadini, L. Impact of solvent and their contaminants on pd/c catalyzed suzuki-miyaura cross-coupling reactions. Helv. Chim. Acta 2021, 104, e2100035. [Google Scholar]
- Yang, C.; Zhang, L.; Lu, C.; Zhou, S.; Li, X.; Li, Y.; Yang, Y.; Li, Y.; Liu, Z.; Yang, J.; et al. Unveiling the full reaction path of the suzuki–miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 2021, 16, 1214–1223. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef]
- Hu, Q.D.; Tang, G.P.; Chu, P.K. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: From design to applications. Acc. Chem. Res. 2014, 47, 2017–2025. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Z.; Du, J.; Li, W.; Pei, Z. Host–guest interaction based supramolecular photodynamic therapy systems: A promising candidate in the battle against cancer. Chem. Commun. 2020, 56, 5865–5876. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, V.; Bonati, L.; Ansari, N.; Parrinello, M. The role of water in host-guest interaction. Nat. Commun. 2021, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.H.; Wang, Q.C.; Zhang, Q.W.; Ma, X.; Tian, H. Photoresponsive host–guest functional systems. Chem. Rev. 2015, 115, 7543–7588. [Google Scholar] [CrossRef] [PubMed]
- Loh, X.J. Supramolecular host–guest polymeric materials for biomedical applications. Mater. Horiz. 2014, 1, 185–195. [Google Scholar] [CrossRef]
- Li, J.; Qian, Y.; Duan, W.; Zeng, Q. Advances in the study of the host-guest interaction by using coronene as the guest molecule. Chin. Chem. Lett. 2019, 30, 292–298. [Google Scholar] [CrossRef]
- Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 2020, 30, 1909049. [Google Scholar] [CrossRef]
- Milan, D.C.; Krempe, M.; Ismael, A.K.; Movsisyan, L.D.; Franz, M.; Grace, I.; Brooke, R.J.; Schwarzacher, W.; Higgins, S.J.; Anderson, H.L. The single-molecule electrical conductance of a rotaxane-hexayne supramolecular assembly. Nanoscale 2017, 9, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Qian, Q.; Zhou, Y.; Zhao, S.; Lin, L.; Duan, P.; Xu, X.; Shi, J.; Xu, W.; Feng, A.; et al. Tracking confined reaction based on host–guest interaction using single-molecule conductance measurement. Small 2022, 18, 2104554. [Google Scholar] [CrossRef]
- Zhang, W.; Gan, S.; Vezzoli, A.; Davidson, R.J.; Milan, D.C.; Luzyanin, K.V.; Higgins, S.J.; Nichols, R.J.; Beeby, A.; Low, P.J. Single-molecule conductance of viologen–cucurbit [8] uril host–guest complexes. ACS Nano 2016, 10, 5212–5220. [Google Scholar] [CrossRef]
- Nichols, R.J.; Higgins, S.J. Single molecule electrochemistry in nanoscale junctions. Curr. Opin. Electrochem. 2017, 4, 98–104. [Google Scholar] [CrossRef]
- Nichols, R.J.; Higgins, S.J. Single molecule nanoelectrochemistry in electrical junctions. Acc. Chem. Res. 2016, 49, 2640–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, H.; Chen, S.; Froehlich, T.; Yi, C.; SchÖnenberger, C.; Calame, M.; Decurtins, S.; Liu, S.-X.; Borguet, E. Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. J. Am. Chem. Soc. 2014, 136, 8867–8870. [Google Scholar] [CrossRef] [PubMed]
- Leary, E.; Higgins, S.J.; van Zalinge, H.; Haiss, W.; Nichols, R.J.; Nygaard, S.; Jeppesen, J.O.; Ulstrup, J. Structure-property relationships in redox-gated single molecule junctions-a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 2008, 130, 12204–12205. [Google Scholar] [CrossRef] [PubMed]
- de Nijs, B.; Benz, F.; Barrow, S.J.; Sigle, D.O.; Chikkaraddy, R.; Palma, A.; Carnegie, C.; Kamp, M.; Sundararaman, R.; Narang, P. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 2017, 8, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, R.J.; Higgins, S.J. Single-molecule electronics: Chemical and analytical perspectives. Annu. Rev. Anal. Chem. 2015, 8, 389–417. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 2015, 44, 875–888. [Google Scholar] [CrossRef]
- Kuznetsov, A.M.; Ulstrup, J. Mechanisms of in situ scanning tunnelling microscopy of organized redox molecular assemblies. J. Phys. Chem. A 2000, 104, 11531–11540. [Google Scholar] [CrossRef]
- Haiss, W.; van Zalinge, H.; Higgins, S.J.; Bethell, D.; Höbenreich, H.; Schiffrin, D.J.; Nichols, R.J. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 2003, 125, 15294–15295. [Google Scholar] [CrossRef]
- Haiss, W.; Albrecht, T.; Van Zalinge, H.; Higgins, S.; Bethell, D.; Höbenreich, H.; Schiffrin, D.; Nichols, R.J.; Kuznetsov, A.M.; Zhang, J.; et al. Single-molecule conductance of redox molecules in electrochemical scanning tunneling microscopy. J. Phys. Chem. B 2007, 111, 6703–6712. [Google Scholar] [CrossRef]
- Zhang, J.; Kuznetsov, A.M.; Medvedev, I.G.; Chi, Q.; Albrecht, T.; Jensen, P.S.; Ulstrup, J. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 2008, 108, 2737–2791. [Google Scholar] [CrossRef]
- Ward, J.S.; Vezzoli, A. Key advances in electrochemically-addressable single-molecule electronics. Curr. Opin. Electrochem. 2022, 35, 101083. [Google Scholar] [CrossRef]
- Kuznetsov, A.M.; Ulstrup, J. Single-molecule electron tunnelling through multiple redox levels with environmental relaxation. J. Electroanal. Chem. 2004, 564, 209–222. [Google Scholar] [CrossRef]
- Gittins, D.I.; Bethell, D.; Schiffrin, D.J.; Nichols, R.J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000, 408, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Hines, T.; Díez-Pérez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 2013, 135, 3319–3322. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, A.; Salerno, M.; Frabboni, S.; Facci, P. Single-metalloprotein wet biotransistor. Appl. Phys. Lett. 2005, 86, 133902. [Google Scholar] [CrossRef]
- Davis, J.J.; Peters, B.; Xi, W. Force modulation and electrochemical gating of conductance in a cytochrome. J. Phys. Condens. Matter 2008, 20, 374123. [Google Scholar] [CrossRef]
- Zhang, J.; Chi, Q.; Hansen, A.G.; Jensen, P.S.; Salvatore, P.; Ulstrup, J. Interfacial electrochemical electron transfer in biology-towards the level of the single molecule. FEBS Lett. 2012, 586, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Diez-Perez, I.; Li, Z.; Hihath, J.; Li, J.; Zhang, C.; Yang, X.; Zang, L.; Dai, Y.; Feng, X.; Muellen, K.; et al. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nat. Commun. 2010, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Zhang, Q.; Vezzoli, A.; Zhao, C.; Zhao, C.; Higgins, S.J.; Smogunov, A.; Dappe, Y.J.; Nichols, R.J.; Yang, L. Electrochemical gating for single-molecule electronics with hybrid Au| graphene contacts. Phys. Chem. Chem. Phys. 2022, 24, 6836–6844. [Google Scholar] [CrossRef]
- Wu, C.; Qiao, X.; Robertson, C.M.; Higgins, S.J.; Cai, C.; Nichols, R.J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem. Int. Ed. 2020, 132, 12127–12132. [Google Scholar] [CrossRef]
- Li, X.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 2007, 129, 11535–11542. [Google Scholar] [CrossRef]
- Li, C.; Mishchenko, A.; Li, Z.; Pobelov, I.; Wandlowski, T.; Li, X.-Q.; Würthner, F.; Bagrets, A.; Evers, F. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J. Phys. Condens. Matter 2008, 20, 374122. [Google Scholar] [CrossRef] [PubMed]
- Diez-Perez, I.; Li, Z.; Guo, S.; Madden, C.; Huang, H.; Che, Y.; Yang, X.; Zang, L.; Tao, N. Ambipolar transport in an electrochemically gated single-molecule field-effect transistor. ACS Nano 2012, 6, 7044–7052. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Brune, D.; He, J.; Lindsay, S.; Gorman, C.B.; Tao, N. Redox-gated electron transport in electrically wired ferrocene molecules. Chem. Phys. 2006, 326, 138–143. [Google Scholar] [CrossRef]
- Li, Y.; Baghernejad, M.; Qusiy, A.G.; Zsolt Manrique, D.; Zhang, G.; Hamill, J.; Fu, Y.; Broekmann, P.; Hong, W.; Wandlowski, T.; et al. Three-state single-molecule naphthalenediimide switch: Integration of a pendant redox unit for conductance tuning. Angew. Chem. Int. Ed. 2015, 127, 13790–13793. [Google Scholar] [CrossRef]
- Chen, H.; Brasiliense, V.; Mo, J.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L.O.; He, G.; Guo, Q.-H.; Chen, X.-Y.; et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895. [Google Scholar] [CrossRef]
- Naghibi, S.; Sangtarash, S.; Kumar, V.J.; Wu, J.-Z.; Judd, M.M.; Qiao, X.; Gorenskaia, E.; Higgins, S.J.; Cox, N.; Nichols, R.J.; et al. Redox-addressable single-molecule junctions incorporating a persistent organic radical. Angew. Chem. Int. Ed. 2022, 61, e202116985. [Google Scholar] [CrossRef]
- Yin, X.; Zang, Y.; Zhu, L.; Low, J.Z.; Liu, Z.-F.; Cui, J.; Neaton, J.B.; Venkataraman, L.; Campos, L.M. A reversible single-molecule switch based on activated antiaromaticity. Sci. Adv. 2017, 3, eaao2615. [Google Scholar] [CrossRef] [Green Version]
- Reddy, H.; Wang, K.; Kudyshev, Z.; Zhu, L.; Yan, S.; Vezzoli, A.; Higgins, S.J.; Gavini, V.; Boltasseva, A.; Reddy, P. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 2020, 369, 423–426. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Ojambati, O.S.; Duffin, T.J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C.A. Plasmonic phenomena in molecular junctions: Principles and applications. Nat. Rev. Chem. 2022, 6, 681–704. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunker, I.; Ayinla, R.T.; Wang, K. Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes 2022, 10, 2574. https://doi.org/10.3390/pr10122574
Bunker I, Ayinla RT, Wang K. Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes. 2022; 10(12):2574. https://doi.org/10.3390/pr10122574
Chicago/Turabian StyleBunker, Ian, Ridwan Tobi Ayinla, and Kun Wang. 2022. "Single-Molecule Chemical Reactions Unveiled in Molecular Junctions" Processes 10, no. 12: 2574. https://doi.org/10.3390/pr10122574
APA StyleBunker, I., Ayinla, R. T., & Wang, K. (2022). Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes, 10(12), 2574. https://doi.org/10.3390/pr10122574