Elimination of PCDD/Fs over Commercial Honeycomb-Like Catalyst of V2O5-MoO3/TiO2 at Low Temperature: From Laboratory Experiments to Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst and Characterization
2.2. Laboratory Experimental Design
2.3. Full-Scale Experiments Designed in the MSWI Plant
2.4. Statistical Analysis
3. Results and Discussion
3.1. Laboratory Research on the PCDD/Fs Removal
3.2. Field Investigation on the PCDD/F Removal
3.3. Characterization of Catalyst
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, S.; Xiang, Y.; Chen, Z.; Chen, T.; Lin, X.; Zhang, W.; Li, X.; Yan, J. Development of phosphorus-based inhibitors for PCDD/Fs suppression. Waste Manag. 2020, 119, 82–90. [Google Scholar] [PubMed]
- Karademir, A.; Bakoglu, M.; Taspinar, F.; Ayberk, S. Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environ. Sci. Technol. 2004, 38, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Hagenmaler, H.; Tichaczek, K.; Brunner, H. A technology for the reduction of PCDD/PCDF emissions from waste incineration facilities to below 0.1 ngTEQ/m3, in Dioxin 90. Organohalogen Compd. 1990, 3, 65–68. [Google Scholar]
- Hsu, W.T.; Hung, P.C.; Chang, S.H.; Young, C.W.; Chen, C.L.; Li, H.W.; Pan, K.L.; Chang, M.B. Catalytic Conversion of Multipollutants (Hg0/NO/Dioxin) with V2O5–WO3/TiO2 Catalysts. Ind. Eng. Chem. Res. 2018, 57, 15195–15205. [Google Scholar] [CrossRef]
- Chang, M.B.; Chi, K.H.; Chang, S.H.; Yeh, J.W. Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant. Chemosphere 2007, 66, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, J.; Wang, X.; Zhu, T. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant. Chemosphere 2015, 133, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Busca, G.; Notaro, M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl. Catal. B Environ. 2006, 62, 12–20. [Google Scholar] [CrossRef]
- Zhao, R.; Jin, D.; Yang, H.; Lu, S.; Potter, P.M.; Du, C.; Peng, Y.; Li, X.; Yan, J. Low-Temperature Catalytic Decomposition of 130 Tetra- to Octa-PCDD/Fs Congeners over CuOX and MnOX Modified V2O5/TiO2–CNTs with the Assistance of O3. Environ. Sci. Technol. 2016, 50, 11424–11432. [Google Scholar] [CrossRef]
- Stanmore, B. The formation of dioxins in combustion systems. Combust. Flame 2004, 136, 398–427. [Google Scholar] [CrossRef]
- Yu, M.-F.; Li, W.-W.; Li, X.-D.; Lin, X.-Q.; Chen, T.; Yan, J.-H. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs. Chemosphere 2016, 156, 383–391. [Google Scholar] [CrossRef]
- Ma, Y.; Lai, J.; Li, X.; Lin, X.; Li, L.; Jing, H.; Liu, T.; Yan, J. Field study on PCDD/F decomposition over VOx/TiO2 catalyst under low-temperature: Mechanism and kinetics analysis. Chem. Eng. J. 2022, 429, 132222. [Google Scholar] [CrossRef]
- Wang, Q.; Hung, P.C.; Lu, S.; Chang, M.B. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addi-tion. Chemosphere 2016, 159, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lai, J.; Lin, X.; Zhang, H.; Du, H.; Long, J.; Yan, J.; Li, X. Implication of operation time on low-temperature catalytic oxidation of chloroaromatic organics over VOx/TiO2 catalysts: Deactivation mechanism analysis. J. Clean. Prod. 2022, 372, 133447. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Xing, X.; Yang, J.; Li, X.; Wang, M.; Chen, Z.; Liu, Q. Poisoning mechanism of KCl, K2O and SO2 on Mn-Ce/CuX catalyst for low-temperature SCR of NO with NH3. Process Saf. Environ. Prot. 2022, 167, 609–619. [Google Scholar] [CrossRef]
- Guo, K.; Ji, J.; Song, W.; Sun, J.; Tang, C.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B Environ. 2021, 297, 120388. [Google Scholar] [CrossRef]
- Tong, T.; Chen, J.; Xiong, S.; Yang, W.; Yang, Q.; Yang, L.; Peng, Y.; Liu, Z.; Li, J. Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts. Catal. Sci. Technol. 2019, 9, 3779–3787. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Li, X.; Luo, J.; Li, J.; Crittenden, J.; Hao, J. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Appl. Catal. B Environ. 2016, 181, 692–698. [Google Scholar] [CrossRef]
- Yu, M.F.; Li, X.D.; Ren, Y.; Chen, T.; Lu, S.Y.; Yan, J.H. Low temperature oxidation of PCDD/Fs by TiO2-based V2O5/WO3 catalyst. Environ. Prog. Sustain. Energy 2016, 35, 1265–1273. [Google Scholar] [CrossRef]
- Kuma, R.; Kitano, T.; Tsujiguchi, T.; Tanaka, T. Effect of molybdenum on the structure and performance of V2O5/TiO2–SiO2–MoO3 catalysts for the oxidative degradation of o-chlorotoluene. Appl. Catal. A Gen. 2020, 595, 117496. [Google Scholar] [CrossRef]
- Debecker, D.P.; Delaigle, R.; Hung, P.C.; Buekens, A.; Gaigneaux, E.M.; Chang, M.B. Evaluation of PCDD/F oxidation catalysts: Confronting studies on model molecules with tests on PCDD/F-containing gas stream. Chemosphere 2011, 82, 1337–1342. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Chang, H.; Wu, Q.; Zhang, T.; Li, J. New Insight into SO2 Poisoning and Regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 Catalysts for Low-Temperature NH3–SCR. Environ. Sci. Technol. 2018, 52, 7064–7071. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Du, X.; Li, Z.; Tao, Y.; Xue, J.; Chen, Y.; Yang, Z.; Ran, J.; Rac, V. Rakić; V Electrothermal alloy embedded V2O5-WO3/TiO2 catalyst for NH3-SCR with promising wide operating temperature window. Process Saf. Environ. Prot. 2022, 159, 213–220. [Google Scholar] [CrossRef]
- Huang, X.; Peng, Y.; Liu, X.; Li, K.; Deng, Y.; Li, J. The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation. Catal. Commun. 2015, 69, 161–164. [Google Scholar] [CrossRef]
- Chai, Y.; Zhang, G.; He, H.; Sun, S. Theoretical Study of the Catalytic Activity and Anti-SO2 Poisoning of a MoO3/V2O5 Selective Catalytic Reduction Catalyst. ACS Omega 2020, 5, 26978–26985. [Google Scholar] [CrossRef] [PubMed]
- Debecker, D.P.; Bertinchamps, F.; Blangenois, N.; Eloy, P.; Gaigneaux, E.M. On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene. Appl. Catal. B Environ. 2007, 74, 223–232. [Google Scholar] [CrossRef]
- Cai, M.; Bian, X.; Xie, F.; Wu, W.; Cen, P. Formation and Performance of Monolithic Catalysts for Selective Catalytic Reduction of Nitrogen Oxides: A Critical Review. ChemistrySelect 2021, 6, 12331–12341. [Google Scholar] [CrossRef]
- Zhan, M.-X.; Fu, J.-Y.; Ji, L.-J.; Deviatkin, I.; Lu, S.-Y. Comparative analyses of catalytic degradation of PCDD/Fs in the laboratory vs. industrial conditions. Chemosphere 2018, 191, 895–902. [Google Scholar] [CrossRef]
- Ji, S.-S.; Li, X.-D.; Ren, Y.; Chen, T.; Cen, K.-F.; Ni, M.-J.; Buekens, A. Ozone-enhanced oxidation of PCDD/Fs over V2O5–TiO2-based catalyst. Chemosphere 2013, 92, 265–272. [Google Scholar] [CrossRef]
- Bhavsar, S.P.; Reiner, E.J.; Hayton, A.; Fletcher, R.; MacPherson, K. Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another. Environ. Int. 2008, 34, 915–921. [Google Scholar] [CrossRef]
- Smolka, A.; Schmidt, K.-G. Gas/particle partitioning before and after flue gas purification by an activated-carbon-filter. Chemosphere 1997, 34, 1075–1082. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, J.; Yu, X.; Feng, Y.; Wang, Q.; Sun, Y.; Tang, X.; Zeng, X.; Lin, L. Insight into the Mars-van Krevelen mechanism for production 2,5-diformylfuran over FeNx@C catalyst. Biomass-Bioenergy 2021, 156, 106320. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, S.; Yang, Y.; Zhang, T.; Cao, Q.; Huang, J.; Yu, G. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5–WO3/TiO2 catalyst. Chemosphere 2012, 87, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Sakurai, T.; Hagenmaier, H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5–WO3 catalysts. Appl. Catal. B Environ. 1999, 20, 249–256. [Google Scholar] [CrossRef]
- Yu, M.-F.; Lin, X.-Q.; Li, X.-D.; Yan, M.; Prabowo, B.; Li, W.-W.; Chen, T.; Yan, J.-H. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts. Environ. Sci. Pollut. Res. 2016, 23, 16249–16258. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Plinke, M.; Xu, Z.; Wilken, M. Destruction efficiency of catalytic filters for polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation–insight into destruction and adsorption behavior of semivolatile compounds. Appl. Catal. B Environ. 2001, 31, 195–207. [Google Scholar] [CrossRef]
- Zhong, R.; Wang, C.; Zhang, Z.; Liu, Q.; Cai, Z. PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge. Waste Manag. 2020, 106, 110–119. [Google Scholar] [CrossRef]
- Chi, K.H.; Chang, M.B. Evaluation of PCDD/F Congener Partition in Vapor/Solid Phases of Waste Incinerator Flue Gases. Environ. Sci. Technol. 2005, 39, 8023–8031. [Google Scholar] [CrossRef]
- Li, Y.; Yu, G.; Huang, J.; Wang, B.; Deng, S.; Wang, Y. Catalytic decomposition of dioxins and other unintentional POPs in flue gas from a municipal waste incinerator (MWI) in China: A pilot testing. Environ. Sci. Pollut. Res. 2018, 25, 31799–31804. [Google Scholar] [CrossRef]
- Wang, L.-C.; Lee, W.-J.; Tsai, P.-J.; Lee, W.-S.; Chang-Chien, G.-P. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere 2003, 50, 1123–1129. [Google Scholar] [CrossRef]
- Han, Y.; Liu, W.; Hansen, H.C.B.; Chen, X.; Liao, X.; Li, H.; Wang, M.; Yan, N. Influence of long-range atmospheric transportation (LRAT) on mono-to octa-chlorinated PCDD/Fs levels and distributions in soil around Qinghai Lake, China. Chemosphere 2016, 156, 143–149. [Google Scholar] [CrossRef]
- Cai, J.; Zhong, R.; Liu, X.; Liu, Q.; Wu, H.; Yan, F.; Huang, J.; Zhang, Z. Effects of evaporation capacity on the formation and removal of PCDD/Fs in a full-scale municipal solid waste incinerator. Process. Saf. Environ. Prot. 2021, 154, 18–31. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Xu, T.; Weng, D.; Si, Z.; Ran, R. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst. Chin. J. Catal. 2016, 37, 1340–1346. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P.; Ma, Y.; Lin, X.; Li, X. Experimental Study on the Effect of Activated Carbon Pore Parameters on Dioxins Gas-phase Adsorption. Environ. Sanit. Eng. 2020, 28, 52–56. (In Chinese) [Google Scholar]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, H.; Wang, J.; Hong, J.; Sun, W.; Wu, Y.; Wang, Y. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks. Small Methods 2022, 6, 2200314. [Google Scholar] [CrossRef]
- Lin, C.; Liu, H.; Guo, M.; Zhao, Y.; Su, X.; Zhang, P.; Zhang, Y. Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2022, 646, 128962. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Y.; Gao, C.; Liu, L.; Zhang, Y.; Chen, Y.; Shao, Y. Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduc-tion of CO2 to CO under visible light. Sep. Purif. Technol. 2022, 303, 122288. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Keller, D.E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 2003, 78, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Besselmann, S.; Freitag, C.; Hinrichsen, O.; Muhler, M. Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts. Phys. Chem. Chem. Phys. 2001, 3, 4633–4638. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, G.-H.; Chou, K.-C.; Reddy, R.G.; He, Y.; Sun, Y. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int. J. Refract. Met. Hard Mater. 2013, 41, 216–223. [Google Scholar] [CrossRef]
- Yang, C.C.; Chang, S.H.; Hong, B.Z.; Chi, K.H.; Chang, M.B. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5–WO3/TiO2-based catalysts. Chemosphere 2008, 73, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.W.; Park, K.H.; Hong, S.C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chem. Eng. J. 2016, 284, 315–324. [Google Scholar] [CrossRef]
160 °C | 180 °C | 200 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
Homologues | Initial | After | RE | Initial | After | RE | Initial | After | RE |
TCDD | 4.28 | 1.99 | 53.5% | 8.99 | 1.24 | 86.2% | 5.57 | 2.01 | 63.9% |
PeCDD | 47.17 | 19.28 | 59.1% | 91.25 | 10.34 | 88.7% | 62.97 | 15.71 | 75.0% |
HxCDD | 19.63 | 8.43 | 57.1% | 39.48 | 3.78 | 90.4% | 26.24 | 6.16 | 76.5% |
HpCDD | 28.57 | 13.28 | 53.5% | 65.93 | 7.19 | 89.1% | 72.63 | 12.72 | 82.5% |
OCDD | 12.62 | 5.49 | 56.5% | 27.92 | 3.24 | 88.4% | 49.85 | 10.00 | 79.9% |
TCDF | 5.58 | 2.57 | 54.0% | 9.14 | 1.37 | 85.0% | 7.10 | 2.38 | 66.5% |
PeCDF | 2.33 | 1.04 | 55.6% | 7.81 | 1.56 | 80.1% | 3.75 | 0.96 | 74.3% |
HxCDF | 1.27 | 0.63 | 50.8% | 2.81 | 0.40 | 85.7% | 1.55 | 0.53 | 65.6% |
HpCDF | 0.39 | 0.31 | 22.5% | 1.04 | 0.24 | 77.3% | 0.92 | 0.24 | 73.8% |
OCDF | 0.23 | 0.11 | 53.0% | 0.57 | 0.09 | 84.9% | 0.82 | 0.22 | 73.5% |
PCDD | 112.28 | 48.48 | 56.8% | 233.57 | 25.79 | 89.0% | 217.27 | 46.61 | 78.5% |
PCDF | 9.81 | 4.64 | 52.7% | 21.37 | 3.65 | 82.9% | 14.14 | 4.34 | 69.3% |
PCDD/Fs | 122.09 | 53.12 | 56.5% | 254.94 | 29.44 | 88.5% | 231.41 | 50.94 | 78.0% |
I-TEQ | 1.55 | 0.70 | 55.0% | 3.39 | 0.36 | 89.3% | 2.34 | 0.56 | 76.0% |
Inlet | Outlet | RE | ||||
---|---|---|---|---|---|---|
Gas Phase | Particulate Phase | Gas Phase | Particulate Phase | Gas Phase | Particulate Phase | |
TCDD | 7.04 | 0.04 | 0.49 | 0.06 | 93.0% | −26.4% |
PeCDD | 2.14 | 0.01 | 0.24 | 0.02 | 88.6% | −87.6% |
HxCDD | 0.41 | 0.02 | 0.08 | 0.03 | 79.6% | −56.7% |
HpCDD | 0.14 | 0.02 | 0.07 | 0.01 | 50.2% | 55.1% |
OCDD | 1.83 | 1.37 | 0.58 | 0.04 | 68.3% | 96.8% |
TCDF | 16.39 | 0.05 | 1.17 | 0.08 | 92.9% | −55.6% |
PeCDF | 2.01 | 0.02 | 0.20 | 0.04 | 90.0% | −69.7% |
HxCDF | 0.44 | 0.02 | 0.16 | 0.03 | 64.6% | −50.9% |
HpCDF | 0.14 | 0.01 | 0.09 | 0.01 | 37.2% | −21.1% |
OCDF | 0.05 | 0.01 | 0.04 | 0.01 | 26.5% | −24.6% |
PCDD | 11.55 | 1.46 | 1.47 | 0.16 | 87.3% | 89.1% |
PCDF | 19.03 | 0.11 | 1.65 | 0.16 | 91.3% | −51.6% |
PCDD/Fs | 32.15 | 3.44 | 3.12 | 0.32 | 89.8% | 79.4% |
32.15 | 3.44 | 89.3% | ||||
Toxicity of PCDD | 0.040 | 0.0018 | 0.0083 | 0.0010 | 79.4% | 50.0% |
Toxicity of PCDF | 0.097 | 0.0011 | 0.0150 | 0.0016 | 84.7% | −45.5% |
Total toxicity | 0.14 | 0.0029 | 0.0230 | 0.0025 | 83.1% | 13.6% |
0.141 | 0.026 | 81.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Ma, Y.; Wu, J.; Yu, H.; Li, X.; Lin, X. Elimination of PCDD/Fs over Commercial Honeycomb-Like Catalyst of V2O5-MoO3/TiO2 at Low Temperature: From Laboratory Experiments to Field Study. Processes 2022, 10, 2619. https://doi.org/10.3390/pr10122619
Lai J, Ma Y, Wu J, Yu H, Li X, Lin X. Elimination of PCDD/Fs over Commercial Honeycomb-Like Catalyst of V2O5-MoO3/TiO2 at Low Temperature: From Laboratory Experiments to Field Study. Processes. 2022; 10(12):2619. https://doi.org/10.3390/pr10122619
Chicago/Turabian StyleLai, Jianwen, Yunfeng Ma, Jiayao Wu, Hong Yu, Xiaodong Li, and Xiaoqing Lin. 2022. "Elimination of PCDD/Fs over Commercial Honeycomb-Like Catalyst of V2O5-MoO3/TiO2 at Low Temperature: From Laboratory Experiments to Field Study" Processes 10, no. 12: 2619. https://doi.org/10.3390/pr10122619
APA StyleLai, J., Ma, Y., Wu, J., Yu, H., Li, X., & Lin, X. (2022). Elimination of PCDD/Fs over Commercial Honeycomb-Like Catalyst of V2O5-MoO3/TiO2 at Low Temperature: From Laboratory Experiments to Field Study. Processes, 10(12), 2619. https://doi.org/10.3390/pr10122619