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Abstract: In this work, slim tube displacement tests for minimum miscibility pressure MMP were
carried out. Based on the displacement data, the MMP was calculated by statistical regression using
linear and quadratic extrapolation with threshold values of 90% and 95% oil recovery as well as
the intersection of trend lines for immiscible and miscible displacement regimes. The obtained data
show a significant variation in the range of MMP values depending on the calculation method. To
clarify the MMP value, an analysis of displacement dynamics was carried out. The ratio of the
volume flow rate of reservoir oil to the volume flow rate of the injected gas—flow rates ratio (FFR)—
was used as a new parameter. The MMP value calculated from the FRR value extrapolation was
determined as 37.09 MPa. According to the results obtained, the proposed methodology based on
the displacement dynamics can be useful as a criterion for clarifying the MMP value in slim tube
displacement experiments.

Keywords: associated petroleum gas; displacement dynamics; gas injection; miscible displacement;
multiphase flow; slim tube

1. Introduction

The implementation of gas enhanced oil recovery (EOR) provides increasing displace-
ment efficiency and favorable opportunities for the utilization of greenhouse gases, such as
the injection of carbon dioxide, flue gases, or associated petroleum gas into reservoirs [1].
The most effective gas injection process is miscible displacement that allows for high oil
recovery to be achieved. Depending on the reservoir conditions, miscibility can be devel-
oped using mass transfer processes between fluids under dynamic conditions [2,3]. The
efficiency of the oil displacement depends on development of mass transfer processes
and is affected by the injection pressure and gas/reservoir oil compositions. Mass change
processes occur at the boundary of interacting phases in the transition zone [4–7]. The
successful development of miscibility in the transition zone changes the key characteristics
of the interacting fluids such as interfacial tension, viscosity, density, and phase permeabil-
ity, which leads to the disappearance of phase boundaries and, hence, the single-phase
displacement process [8–11].

The main physical modeling technique for oil displacement by gas injection is the
slim tube experiment [12,13]. The slim tube model is usually a long, coiled tube measuring
2–40 m in length and 0.1–1 cm in diameter used to simulate the 1-D physical displacement
and minimize the effect of the viscous fingering and form a transition zone of the mass
transfer process [14]. Due to the characteristics of the slim tube, the transition zone can be
fully realized.

The main parameter obtained in a slim tube test is the minimum miscibility pressure
(MMP), defined as the minimum pressure, at reservoir temperature, required to achieve
miscibility. The main approach for MMP determination in slim tube testing is the value of
the oil recovery depending on the injection pressure; the MMP is defined as 90–95% recovery
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or the inflection point on the recovery versus the pressure plot [4,15]. However, in some
cases, it is difficult to accurately determine the MMP due to the blurring of the inflection
point. In such cases, it is necessary to apply additional criteria for MMP determination.
Several criteria have been proposed by various authors, including 90% oil recovery at 1.0 or
1.2 pore volume (PV) of the gas injection [16–18], 95+% oil recovery at gas breakthrough [19],
more than 80% oil recovery at gas breakthrough with 94% ultimate recovery [20], or, finally,
oil recovery of 94% when the gas–oil ratio (GOR) reaches 40,000 scf/bbl [7]. An analysis of
the change in fluid composition during the displacement process can be used additionally
with the recovery criterion, for example, the presence of a methane bank compared to the
original separated gas composition [21]. The technique provided in [22] takes advantage
of the fact that chromatographic separation occurs during two-phase flow at pressures
below the MMP and it is shown that the C1/C3 ratio in the produced gas is a very useful
parameter to track as a function of pressure. One of the criteria for determining the MMP is
the oil recovery rate (ORR) and instantaneous recovery rate (IRR) based on the recovery
rate data. The ORR shows the recovery over the time taken. The ORR curve has a different
unique point marking the maximum ORR values, which are a kind of boundary used to
predict the MMP. The IRR value shows a similarly good correlation with pressure and
allows the reliable determination of the MMP value [23].

As mentioned above, an additional value on recovery is used to determine the MMP.
Even if miscibility is achieved, part of the oil will not be displaced at the entrance of the
model due to the fact that the miscibility does not have time to form [24]. This, in turn,
may cause uncertainty when choosing the value of the achieved ultimate recovery or as a
criterion of miscibility, since the amount of residual oil in each case will be determined by
the behavior of the phases. When the miscibility is reached, a transition zone is formed in
which the properties of the phases gradually change from the injected gas to the reservoir
oil. The mobility of the displacing and displaced phases is equal, and displacement will
occur in a piston like manner [25], in which the volumetric rates of the displacing and
displaced phases will be equal. In this case, based on the above, it can be assumed that by
analyzing the displacement dynamics, it is possible to assess the phase conditions of fluids
and hence determine whether miscibility has been achieved or not.

2. Experimental Apparatus and Methodology

In this work, slim tube displacement tests were carried out. Live oil samples were
prepared using separated oil and prepared recombination gas. The resulting fluid was
used for the displacement experiments. The experimental procedure for isothermal slim
tube tests includes saturating the slim tube with solvent (kerosene) at test pressure and
displacing the kerosene with recombined oil at test temperature and pressure. The quality
of the slim tube saturation was monitored by the fluid characteristics at the separation
line gas–oil ratio (GOR) and composition according to PVT analysis. After the slim tube
saturation, gas was injected at a constant rate of 0.1 mL/min. The volume of the displaced
separated oil was determined using a graduated burette and the separated gas by a gas
flow meter (Ritter TG 05) for each 0.05 pore volume injected (PVI). The gas was injected
until a 1.4 PVI or a GOR of 10,000 was reached. The scheme of the slim tube unit is shown
in Figure 1.

Based on the displacement results, both the oil recovery (Equation (1)) and GOR
(Equation (2)) were calculated. The methane concentration in the effluent gas was de-
termined using the gas chromatography methodology described below. The effluent
composition of inorganic and hydrocarbon gases was determined on a Khromatek-Kristall
5000 gas chromatograph with flame ionization and thermal conductivity detectors. The
calculation of the oil volume at reservoir conditions was carried out using the volume of
the separated oil and oil formation volume factor.
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Figure 1. Slim tube unit: 1—slim tube; 2—back pressure regulator (BPR); 3—injected gas sample; 
4—oil sample; 5—differential manometer; 6—inlet manometer; 7—outlet manometer; 8—thermo-
couple; 9—plunger pump; 10—oil burette; 11—gas meter; 12—constant temperature oven; 13—gas 
sample line. 
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The gas oil ratio was determined using Equation (2). 
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where Vgas.eff—volume of effluent gas (cm3), Voil.sep—volume of displaced separated oil 
(cm3). 
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(MMP) determination with a slim tube model. To determine the MMP, a series of five slim 
tube experiments with the associated petroleum gas (APG) injections was carried out at 
pressure steps of 21–45 MPa, and a constant temperature of 47 °C. Based on the displace-
ment data, the MMP was calculated by statistical regression using linear and quadratic 
extrapolation (Figures 2 and 3) with threshold values of 90% and 95% oil recovery as well 
as using the intersection of trend lines for immiscible and miscible displacement regimes 
(Figure 4). The MMP calculation results are presented in Table 1. 

Figure 1. Slim tube unit: 1—slim tube; 2—back pressure regulator (BPR); 3—injected gas sample; 4—
oil sample; 5—differential manometer; 6—inlet manometer; 7—outlet manometer; 8—thermocouple;
9—plunger pump; 10—oil burette; 11—gas meter; 12—constant temperature oven; 13—gas
sample line.

The recovery was determined using Equation (1).

Recovery = Voil.sep × Bo/Voil.init (1)

where Voil.sep—volume of displaced separated oil (cm3), Bo—oil formation volume factor
(u.f.), Voil.init—initial oil volume in slim tube (cm3).

The gas oil ratio was determined using Equation (2).

GOR = Vgas.eff/Voil.sep (2)

where Vgas.eff—volume of effluent gas (cm3), Voil.sep—volume of displaced separated
oil (cm3).

3. Results and Discussion

This section presents the results of the experiments for minimum miscibility pressure
(MMP) determination with a slim tube model. To determine the MMP, a series of five
slim tube experiments with the associated petroleum gas (APG) injections was carried
out at pressure steps of 21–45 MPa, and a constant temperature of 47 ◦C. Based on the
displacement data, the MMP was calculated by statistical regression using linear and
quadratic extrapolation (Figures 2 and 3) with threshold values of 90% and 95% oil recovery
as well as using the intersection of trend lines for immiscible and miscible displacement
regimes (Figure 4). The MMP calculation results are presented in Table 1.
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Figure 2. Results of linear extrapolation to determine the MMP.
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Figure 3. Results of quadratic extrapolation to determine the MMP.

Table 1. Results of MMP calculation using statistical regression methods.

Calculation Method MMP, MPa

Linear extrapolation
90% recovery threshold 36.68
95% recovery threshold 38.46
Quadratic extrapolation
90% recovery threshold 35.05
95% recovery threshold 36.30

Linear intersection 38.79

Range 35.05–38.79

Average 37.06
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According to the calculation results, the average MMP value was determined as
37.06 MPa, while the range of values was 35.05–38.79 MPa. The obtained data show a
significant variation in the range of MMP values depending on the calculation method.
The considered methods for determining MMP use the total value of the displacement
efficiency, which depends on the amount of residual oil saturation.

Next, the dynamics of displacement during gas injection is considered, such as recov-
ery curves, gas–oil ratio dynamics, and the additional criteria—the ratio of the reservoir oil
volumetric flow rate to the volumetric flow rate of the injected gas, or the flow rates ratio
(FRR). The gas injection rate in the experiment remained constant. The measurement step
was performed every hour, which is every 0.05 pore volume injected (PVI). The calculation
of this ratio was carried out according to Equation (3).

FRR = Qoil.disp./Qgas.inj. (3)

where FRR—flow rate ratio (u.f.), Qoil.disp.—reservoir oil displacement rate (cm3/hr),
Qgas.inj.—gas injection rate (cm3/hr).

The recovery curves are shown in Figure 5. At the initial stage of displacement, the
rate of oil displacement is the same for all injection pressures, and then due to the gas
breakthrough, the rate of displacement decreases. As the injection pressure increases, the
final displacement efficiency increases, and the recovery curves’ inflection point shifts
towards a later pore volume injected, from 0.15–0.25–0.3 PVI at 21–25–30 MPa, respectively,
with immiscible displacement, and up to 0.9–0.95 PVI with miscible displacement at
pressures of 40 and 45 MPa, respectively.

The gas–oil ratio dynamics are shown on Figure 6. In a case where immiscible dis-
placement two-phase flow occurs, the mobility of the gas phase is greater in comparison
with the oil, which leads to rapid breakthrough at the outlet of the slim tube. A rapid gas
breakthrough occurs in cases of displacement at 21–30 MPa. With further displacement,
the amount of gas phase in the flow increases, which in turn causes a gradual increase in
the gas content. At the same time, with an increase in the pressure due to the development
of miscibility, the gas breakthrough point shifts to a later PVI. When the pressure reaches
40–45 MPa, miscibility is formed and a single-phase flow occurs, the gas content remains
unchanged, and the breakthrough with a sharp increase in the gas–oil ratio occurs at a late
stage of displacement.
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The dynamics of the FRR values are shown in Figure 7. At the initial stage of displace-
ment, the FFR curves reach values of 0.8–1. Further, in the case of immiscible displacement
at pressures of 21–30 MPa, there is a sharp decrease in the FRR values. This behavior is
related to the presence of a two-phase flow due to the gas breakthrough, which leads to a
decrease in efficiency displacement and, hence, a decrease in the FRR values. An increase
in the injection pressure accompanies the development of mass transfer processes, leading
to an increase in the displacement efficiency, a shift of the FRR decreasing points to later
pore volumes, and an increase in the FRR values. These changes occur simultaneously and
gradually with the recovery, and GOR changes when the pressure stage changes. Since the
FRR parameter is sensitive to the phase conditions, its value in some way characterizes
the local displacement efficiency at each measurement interval, and its total value for the
injection interval should show the overall displacement efficiency.
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In the case of a miscible displacement, on the contrary, the FRR reaches a plateau of
stable values near 1 and does not change until the gas breakthrough at 0.9–0.95 PVI.

On the FRR profile, with an increase in the pressure stage, the shape of the curve tends
to the characteristic shape of the curves corresponding to the miscible displacement, as
shown by the arrow. It can be assumed that the injection pressure at which the FRR curves
have a characteristic profile and at average FRR values equal to 1, the miscibility will be
reached. Based on this, the average FRR values on the immiscible displacement pressure
steps 21–30 MPa were extrapolated to find an intersection with the FRR value of 1, which
refers to a miscible displacement (Figure 8).
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The starting point for the measurements was selected at 0.05 PVI due to the first oil and
gas volume measurement, and the finishing points were selected as different intervals from
0.8 to 1.15 PVI. The extrapolation of the average values was carried out using a second-order
polynomial. Polynomial equation extrapolating points are located from top to bottom,
respectively, for 0.8–1.15 PV. According to the results of the extrapolation, several groups of
curves can be distinguished: 0.8–0.85 PVI (blue curves) have a downward trend relative
to others; the curve 0.9 PVI (black dashed line) has an intermediate position between the
curves 0.8–0.85 PVI and a series of curves 0.95–1.05 PVI (red lines); and the curves at
1.1–1.15 PVI (green lines) have a similar trend with the curves at 0.95–1.05, but they are
separated and shifted towards high pressures.

Returning to the dynamics of displacement, the curve for the interval up to 0.9 PVI
(black dashed line) occupies an intermediate position. In addition, this is the last point
that characterizes the displacement mode before the gas breakthrough point for miscible
injection at pressures of 40–45 MPa. Based on this, the intersection of the extrapolation
curve with an abscissa equal to one for this interval can be considered the theoretical point
of achieving miscibility. The value calculated based on the curve equation was 37.09 MPa.

A summary of the results of the determination of MMP using all of the above calcula-
tions is shown in Figure 9.
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Figure 9. Summary of the results of the MMP calculation.

The value of the MMP calculated from the displacement dynamics when selecting the
point 0.9 PVI was 37.09 MMP. The average range value for all of the measured methods
was 36.92 MPa. The results of the analysis indicate the possibility of using the proposed
method based on the analysis of displacement dynamics to estimate the MMP value more
accurately when the values of the MMP calculation by the recovery value, depending on
the selected recovery value and the calculation method, show a wide range of MMP values.

4. Conclusions

In this work, the MMP value was calculated by statistical regression using linear
and quadratic extrapolation with threshold recovery values of 90% and 95%, as well as
using the intersection of trend lines for immiscible and miscible displacement modes.
According to the results of the calculations, the average value of the MMP was determined
as 37.06 MPa, while the range of values was 35.05–38.79 MPa. To clarify the MMP value,
an analysis of displacement dynamics was carried out. The ratio of the volume flow rate
of reservoir oil to the volume flow rate of the injected gas—the flow rate ratio (FFR)—
was used as a new parameter. Depending on the displacement mode and the injection
pressure step, patterns of changes in the displacement dynamics were demonstrated in
comparison with other displacement parameters (recovery, gas–oil ratio). Based on the
FRR values, an extrapolation was carried out to calculate and refine the MMP. The MMP
value calculated from the extrapolation of the FRR values was determined as 37.09 MPa,
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while the average range values for all measured methods was determined as 36.92 MPa.
Based on the results, it can be concluded that the proposed methodology based on the
displacement dynamics can be useful as a criterion for clarifying the MMP value in slim
tube displacement experiments.

Author Contributions: Conceptualization, A.S.S. and A.V.B.; Formal analysis, A.S.S. and D.R.N.; In-
vestigation, A.S.S., D.R.N. and V.K.D.; Resources, I.F.M.; Data curation, I.F.M.; Writing—original draft,
A.V.B.; Writing—review & editing, V.K.D.; Visualization, D.R.N. and V.K.D.; Project administration,
M.A.V. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by RFBR, project number 20-35-90116.

Data Availability Statement: The data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.
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