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Abstract: To study the influence of control parameters under cold-start and low-load conditions
on the performance of a heavy-oil, two-stroke, direct-injection, ignition engine for use in aviation,
the operation of a two-stroke, direct-injection engine was studied in a bench test. The results were
as follows: 1© When the ambient temperature is 15 ◦C, the battery voltage is 12.4 V, and the peak
speed of the starting motor is 1200 r/min. As the concentration factor increases, the cold-start
speed increases, and the fuel consumption increases. The influence on the cold start is reduced after
reaching a certain concentration. The cold-start time decreases with the increasing magnetization
pulse width. The cold-start time is the shortest at an oil–gas interval of 6 ms. 2© Under small-load
conditions of 3000 r/min and 14% to 16% throttle, a higher ignition energy increases the engine power.
Pollutant emissions are the lowest when the fuel injection is 7.5 mg and the excess air coefficient is
approximately 1.1.

Keywords: two-stroke direct-injection kerosene engine; cold start; small load conditions; oil–gas
interval; excess air coefficient

1. Introduction

Since Bartra made the world’s first two-stroke engine more than 100 years ago, two-
stroke engines have become the most widely used thermal power machinery, with a high
thermal efficiency and power-to-weight ratio, as a result of the continuous improvements
in combustion technology and electronic control technology [1,2]. Compared with a four-
stroke engine, a two-stroke engine with the same displacement has a higher mechanical
efficiency, smaller rotational inertia, and larger amount of power per liter, which are consis-
tent with the high endurance requirements of UAVs. A two-stroke, air-cooled engine can
also achieve a reverse arrangement, so it is widely used in medium and small UAVs [3,4].

Heavy oil is a product of petroleum fractionation. The utility model of an engine is
characterized by fuel with a suitable density, a high heat value, good combustibility, and
good low-temperature fluidity, and such engines have been researched and applied in jet
engines. However, there have been few studies on two-stroke, kerosene engines. Some
vehicles that are normally fueled by gasoline have also been fueled by alternative fuels,
mainly kerosene and diesel oil [5]. For example, specialized vehicles in military applications
have used a single fuel that is easy to store and transport in all vehicles and equipment,
rather than different fuels for different equipment, thus increasing safety [6]. The diesel
engine is representative of traditional heavy-oil engines but has obvious disadvantages,
such as a high fuel consumption and poor cold-start performance. An ignited heavy-oil
engine possesses the advantages of a gasoline engine, such as a high power-weight ratio, a
small size, and little vibration. Burning heavy oil in early ignition, reciprocating engines
has been attempted. However, the spark plugs developed serious carbon deposits, and the
engine exhibited a poor cold-start performance and could not perform satisfactorily in the
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full-load rpm range. These disadvantages limit the use of heavy-oil, two-stroke engines, so
it is important to study the factors affecting their performance.

2. Domestic and International Status Quo

The development of heavy-oil ignition engines began in the late 1980s, initially only
as compression, ignition engines used in military vehicles that burn aviation kerosene
and then gradually extending to outboard motorboats and aviation UAV power plant
applications [7,8].

2.1. Traditional Heavy-Oil, Ignition, Piston Engine

Since the 1990s, the traditional heavy-oil, ignition, piston engine has been widely
used by the military in Europe and the United States. After 2000, some foreign, private
engine companies or related state-owned research institutions gradually launched heavy-
oil, ignition engine products, usually called heavy-fuel engines (HFEs) or multifuel engines
(MFEs) [9,10]. Table 1 shows some product models of heavy-oil, ignition, piston engines
with inlet injections.

Table 1. Heavy-oil, ignition, piston engine with an inlet injection mode.

Engine
Manufacturer 3W Northwest Sonex RCV Rotron

Engine type Two-stroke Two-stroke Two-stroke Four-stroke Rotor piston
Representative 3W-56i B2 HFE FI NW-44 EFI MFE SONEX 3W240 HFE RCV DF70 MFE Rotron RT300 HFE

Engine picture
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Displacement (cm3) 56 44 240 70 300 

Weight (kg) 2.6 1.02 6.7 2.7 12.3 
Power rate (kW) 4.0 3.0 16.5 4.1 23.1 

Cooling type Air-cooled Air-cooled Air-cooled Air-cooled Water-cooled 
Usable fuel JP5/JP8/JET A1 JP5/JP8/JET A1 JP5/JP8/Gasoline JP5/JP8/JET A1 JP5/JP8/JET A1 

2.2. Heavy-Oil, Direct-Injection, Ignition, Piston Engine 
Engine enterprises, research institutes, and institutions of higher learning outside of 

China focused on heavy-oil, direct-injection, ignition engines in the early 21st century and 
then began systematic research on such engines before gradually launching a series of 
heavy-oil, direct-injection, ignition engines [11]. China is still in its infancy in this field and 
has not yet launched any similar products. Table 2 shows a heavy-oil, two-stroke, direct-
injection, spark-ignition, piston engine from the Hirth Company in Germany. 
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2.2. Heavy-Oil, Direct-Injection, Ignition, Piston Engine

Engine enterprises, research institutes, and institutions of higher learning outside
of China focused on heavy-oil, direct-injection, ignition engines in the early 21st century
and then began systematic research on such engines before gradually launching a series
of heavy-oil, direct-injection, ignition engines [11]. China is still in its infancy in this field
and has not yet launched any similar products. Table 2 shows a heavy-oil, two-stroke, direct-
injection, spark-ignition, piston engine from the Hirth Company in Germany.
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Table 2. Heavy-oil, two-stroke, direct-injection, spark-ignition, piston engine produced by the Hirth
Company, Germany.

Engine photographs
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Company Mercury Barrus Evinrude Zanzottera Ricardo 

Engine type Two-stroke Two-stroke Two-stroke Two-stroke Two-stroke 

Displacement (cm3) 3032 697 577 498 88 

Power rate (kW) 136 34.4 22.4 32.8 2.3 

Cooling type Water-cooled Water-cooled Water-cooled Air-cooled Air-cooled 

Ignition method Digital inductance Digital capacitance Digital inductance Digital induct-
ance 

Digital inductance 

Usable fuel JP5/JP8/ 
Jet A1 

Gasoline/JP5/ 
JP8/Diesel 

Gasoline/JP5/ 
JP8 

Gasoline/JP5/ 
JP8 

Gasoline/JP5/ 
JP8 

Hu Chunming et al. from Tianjin University studied the effects of parameters such 
as the oil and gas intervals on combustion stability during a cold start on a low-pressure, 
air-assisted, direct-injection, kerosene engine bench [12]. Wang Hu et al. studied the ef-
fects of different parameters on engine knock intensity and average effective pressure by 
numerical simulation [13]. Liu Rui studied the combustion characteristics of aviation ker-
osene (PR-3) at different loads on a four-stroke diesel engine [14] and the cold-start strat-
egy of the two-stroke engine [15]. In summary, there are relatively extensive studies from 
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Hu Chunming et al. from Tianjin University studied the effects of parameters such
as the oil and gas intervals on combustion stability during a cold start on a low-pressure,
air-assisted, direct-injection, kerosene engine bench [12]. Wang Hu et al. studied the effects of
different parameters on engine knock intensity and average effective pressure by numerical
simulation [13]. Liu Rui studied the combustion characteristics of aviation kerosene (PR-3)
at different loads on a four-stroke diesel engine [14] and the cold-start strategy of the
two-stroke engine [15]. In summary, there are relatively extensive studies from China on
the factors influencing the performance of gasoline and diesel engines. Research in other
countries has mainly focused on engine performance under different fuel mixing condi-
tions [16,17], but there are few studies on two-stroke, kerosene engines for use in aviation.
Therefore, it is important to study the factors influencing the performance of heavy-oil,
two-stroke, direct-injection, ignition engines for use in aviation. In this study, the variable
parameters are studied by using a test bench to provide a reference for related fields.

3. Test System Construction

Table 4 shows a comparison of the main characteristics of gasoline, diesel, and RP-3
aviation kerosene. Table 5 shows the test equipment and instruments used for testing.
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Table 4. Comparison of the main characteristics of gasoline, diesel, and RP-3 aviation kerosene.

Physicochemical Properties Gasoline Diesel RP-3 Aviation Kerosene

Composition C5~C11 C15~C23 C7~C16
Molecular weight 114 180~200 141

Liquid density (kg/L) 0.70~0.75 0.82~0.88 0.73~0.82
Solidification point (◦C) −80 −50 −60

Boiling point (◦C) 25~220 160~360 147~230
Self-ignition temperature (◦C) 220~250 350~380 275

Flash point (◦C) −45 50~65 35~51
Vapor pressure (kPa) (38 ◦C) 49~83 – 6

Concentration limit of the ignition flame (vol%) 1.4~7.6 1.58~8.2 0.71~5.19
Kinematic viscosity (mm2/s) (20 ◦C) 0.62 2.5 1.25
Surface tension (10−3 N/m) (20 ◦C) 21.6 27 23.6

Theoretical air–fuel ratio 14.82 14.40 14.65
Latent heat of vaporization (kJ/kg) 310~350 375 353~361

Lower calorific value (kJ/kg) 44,000 43,250 43,350
Heat value of mixture (kJ/kmol) 84,467 83,962 84,423

Table 5. Test equipment and instruments.

Instrument Name Model/Type Manufacturer

Dynamometer CW110G Complant
Throttle position sensor Linear output type Bosch

Cylinder block temperature sensor NTC thermistor (10 K) Advantech
Atmospheric temperature sensor NTC thermistor (10 K) Advantech

Intake pressure sensor Linear output type Delphi
Engine speed sensor Grooved photoelectric switch Shinkon

Oil/gas pressure sensor MIK-P300 Meacon
Cylinder pressure sensor 6113B Kistler

Air–fuel ratio analyzer LM-2 Ecotrons
Exhaust gas analyzer FGA-4100 FGA

Fuel consumption meter YHW-010 Complant

3.1. Test Electrical Control System

The electronic control system of an engine is mainly composed of sensors, ECUs, and
actuators. A structure diagram is shown in Figure 1, and the timing of fuel injection and
the application of ignition parameters is shown in Figure 2.
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Figure 2. Timing diagram for the fuel injection and ignition parameters.

The abbreviations in Figure 2 correspond to the following parameters: fuel pulse
width, FPW; start of fuel injection, SOFI; end of fuel injection, EOFI; air pulse width, APW;
start of air injection, SOAI; end of air injection, EOAI; charge pulse width, CPW.

3.1.1. Microcontroller

The microcontroller is the core of the control system of a two-stroke, direct-injection
engine. In this study, an MC9S12DP512 microcontroller with a 12-core CPU (Star Core) and
25 MHs bus speed is adopted. The advantages of this controller are a low clock frequency,
high noise, and high vibration. The laboratory environment and the large memory can
quickly realize complex mathematical operations to accurately control the parameters in
the test.

3.1.2. Power Circuit

The function of the power circuit is to provide a stable power supply to the ECU,
sensors, and actuators. Figure 3 shows the power circuit.
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In Figure 3, Bead1 and Bead2 are the input and output fuses, respectively. Diode D1.1
prevents a reverse current, and D1.2 is a transient voltage suppressor (TVS) with a power
of 300~1500 W. C1.3 and C1.7 are input and output filter capacitors, respectively, which
remove high-frequency signals.
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3.1.3. Supply Rejection Ratio

The actuator mainly includes an air-assisted injector and ignition coil. The ECU deter-
mines the current state of the engine according to the sensor signal; analyzes and calculates
the optimal injection time, ignition time, injection pulse width, and magnetization pulse
width; and drives the injector and ignition coil to achieve accurate control of the engine
injection and ignition. The driving circuit designed in this study is shown in Figure 4,
and a high-power N-channel MOS tube is used to control the power switching of the
electromagnetic coil of the injector.
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3.1.4. Serial Communication Circuit

To monitor the working state of the engine in real time and prepare for the calibration
of the engine, the ECU needs to communicate with the monitoring software and calibration
software of the host computer. The running state of the engine is transmitted to the host
computer software through the serial port. The calibration software transmits the calibration
command to the ECU via serial port communication. The serial communication circuit
designed in this study is shown in Figure 5.
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3.2. Test Machine and Bench

The two-stroke, spark-ignition, kerosene engine is mainly composed of an engine,
dynamometer, battery, and fan. Figure 6 shows a structural diagram of the engine test
bench. Figure 7 shows the engine bench site. Figure 8 depicts the fuel tank and recorder.
Figure 9 shows the oil pipe, oil pump, and oil-pressure-regulating device. Figure 10 shows
the cooling device, and Figure 11 depicts the control interface of the whole test bench.
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4. Test Scheme and Analysis of Results
4.1. Analysis of Data Acquired under Cold-Start Conditions

A cold start refers to starting an engine at ambient temperature after the engine has
been idle for a certain period of time. In the test, the ambient temperature is set to 13 ◦C,
the battery voltage is 12.4 V, the peak speed of the starting motor is 1200 r/min, and no
other auxiliary starting measures are defined during the startup. The startup is divided
into four stages, as shown in Figure 12: dragging, starting, stabilizing, and warming up.
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Figure 12. Cold-start phase of the engine.

In this study, the target speed of the cold start is set to 2000 r/min. When the engine
speed reaches 2000 r/min, the engine startup stage is considered to be over. The sum of the
durations of the engine-drag phase and the start phase is counted as the cold-start time,
that is, the time from the start of motor rotation to the first time the engine speed reaches
2000 r/min.

4.1.1. Influence of the Concentration on the Cold-Start Conditions

During a cold start, due to the low temperature in the cylinder, the friction resistance
during the engine operation is large, and the combustion conditions are poor. An optimized
starting concentration is necessary for a successful start. The concentration coefficient τ0 is
the ratio of the fuel supply in the dragging stage and the starting stage to the fuel supply in
the stable stage during a cold start. The formula is as follows:

τ0 =
Vdrag + Vstart

Vstable
(1)

Vdrag is the fuel supply in the dragging phase, Vstart is the fuel supply in the starting
phase, and Vstable is the fuel supply in the stable phase.

Keeping the concentration coefficient in the stable stage constant, the concentration
coefficients are set to 1, 1.5, 2, 3.5, and 4.5. Figure 13 shows the rotation speed curves
for different concentration coefficients during a cold start. Figure 14 shows the engine
cold-start time corresponding to different concentration coefficients.
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Figure 14. Engine cold-start time under different enrichment coefficients.

Figure 13 shows that when the concentration factor is 1, the flameout is caused by an
insufficient oil supply, and the engine can be successfully started when the concentration
factor is 1.5 and above. Figure 14 shows that as the concentration coefficient increases, the
time needed for the cold start gradually decreases. When the concentration reaches a certain
level, the effect on the start time decreases, and the fuel consumption increases. Therefore,
the recommended concentration coefficient is set to 3.5.

4.1.2. Influence of the Oil–Air Interval on the Cold-Start Conditions

The oil–gas interval refers to the delay between the opening of the jet valve and the
closing of the injector. The oil–air interval is set to 2 ms, 4 ms, 6 ms, 8 ms, and 10 ms. Figure 15
shows the rotation speed for different oil–air intervals during a cold start, and Figure 16 shows
the correspondence curves for different oil–air intervals and cold-start times.
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Figure 16. Correspondence curves for different oil–gas intervals and cold-start times.

As seen from Figure 15, the cold-start time is different with different oil–air intervals,
while the speed of the warm-up stage tends to be consistent. From Figure 16, it can be
seen that the cold-start time is longer when the oil and gas intervals are 2 ms and 10 ms,
respectively, and the shortest cold-start time occurs when the interval is 6 ms, which reflects
the quality of fuel atomization to a certain extent.

4.1.3. Influence of Ignition Energy on a Cold Start

Increasing ignition energy is an important measure that can be taken to address
problems with a cold start. Inductive ignition is adopted, and the magnetization pulse width
is set to 1 ms, 2 ms, 3 ms, 4 ms, and 5 ms. Figure 17 shows the rotation speed at different
magnetization pulse widths in a cold start, and Figure 18 shows the correspondence curves
for different magnetization pulse widths and cold-start times.
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Figure 17 shows that in the dragging stage and the starting stage, the slope of the
velocity curve increases with increasing magnetization pulse width, indicating that the
greater the ignition energy is, the greater the acceleration is. When the magnetization pulse
width is 1 ms, the engine speed fluctuates greatly during the starting process, and the
ignition is extinguished after starting. Figure 18 shows that increasing the magnetization
pulse width of the engine can reduce the cold-start time.

4.2. Influence of the Control Parameters on the Engine Performance at Low Load
4.2.1. Effect of the Ignition Advance Angle and Ignition Energy on the Engine Performance

Under indoor environmental conditions, the relative humidity is 47%, the pressure
is 101 kPa, and the cooling water temperature is 85~100 ◦C. The excess air coefficient α
and the fuel injection parameters are adjusted online. The exhaust temperature is the
temperature of the sensor at the exhaust pipe, and the specific ignition parameters are
shown in Table 6.

Table 6. Ignition parameters at low load.

Parameter Condition 1 Condition 2

Type of combustion Kerosene Kerosene
Rotation speed (r/min) 3000 3000
Throttle opening angle 14% 16%

Advance angle of ignition (◦BTDC) 15~35 15~35
Magnetization time (ms) 2~6 2~6

Injection end angle (◦BTDC) 50 70
Injection quantity (mg) 8.4 8.4

Excess air coefficient 0.9–1.1 0.9–1.1

The engine power, fuel consumption rate, exhaust temperature, and HC, CO, and CO2
emission curves obtained from the test under Condition 1 are shown in Figures 19–24.
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Figure 24. Effect of the ignition parameters on CO2 emissions.

Figures 19–21 show that at the same magnetization pulse width, as the ignition ad-
vance angle gradually increases, the engine power gradually increases, while the fuel
consumption and exhaust temperature gradually decrease. The reason is that if the ignition
duration is short, and ignition occurs relatively late, the piston moves down when the
mixture starts to burn, increasing the cylinder volume and reducing the combustion pres-
sure. Figures 22–24 show that when the injection pulse width increases from 2 ms to 6 ms,
the HC and CO emissions decrease, while the CO2 emissions gradually increase. These
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changes are mainly due to the low ignition energy produced by the small magnetization
pulse width, the difficulty in igniting kerosene fuel, and the insufficient combustion of the
in-cylinder mixture, resulting in an unanticipated increase in HC and CO but a decrease
in CO2.

The engine power, fuel consumption rate, exhaust temperature, and HC, CO, and CO2
emission curves obtained from the test under Condition 2 are shown in Figures 25–30.
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Figures 25–30 show that at the same magnetization pulse width, as the ignition advance
angle gradually increases, the engine power and CO2 emissions gradually increase, while the
fuel consumption rate, exhaust temperature, and HC and CO emissions gradually decrease.
Appropriately increasing the ignition advance angle within a certain range will have an
improvement effect, fully burning in the cylinder, and HC and CO will be appropriately
reduced [18,19]. Combined with the test results under Condition 1, these results show that
the appropriate ignition time can improve the combustion in the cylinder of the engine.
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4.2.2. Effects of the Injection End Angle and Injected Fuel Quantity on Engine Performance

The ambient settings are the same as those described in Section 4.2.1. The ignition
parameters of the engine are shown in Table 7.

Table 7. Ignition parameters under low-load conditions.

Parameter Condition 3 Condition 4

Type of combustion Kerosene Kerosene
Rotation speed (r/min) 3000 3000
Throttle opening angle 14% 16%

Advance angle of ignition (◦BTDC) 25 30
Magnetization time (ms) 5 5

Injection end angle (◦BTDC) 40~70 40~70
Injection quantity (mg) 7.5~8.5 7.5~8.5

Excess air coefficient 0.9–1.1 0.9–1.1

The engine power, fuel consumption rate, exhaust temperature, and HC, CO, and CO2
emission curves obtained from the test under Condition 3 are shown in Figures 31–36.
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Figure 36. Effect of the injection parameters on CO2 emissions.

Figures 31–36 show that with increasing injected fuel, the engine power, exhaust
temperature, and CO2 emissions increase, while the fuel consumption and HC and CO
emissions decrease. The main reason is that a proper ignition advance angle can completely
mix the oil and gas to ensure complete combustion, and a proper delay of the injection end
angle can increase HC and CO emissions.

The power, fuel consumption, exhaust temperature, and pollutant emission curves of the
engine are obtained under operating condition 4, as shown in Figures 37–42, respectively.
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Figures 37–42 show that with the increase in the injection end angle, the power, exhaust
temperature, and CO2 emissions of the engine increase, while the fuel consumption and
HC and CO emissions decrease. The pollutant emissions are lowest when the injection
volume is 7.5 mg and the excess air coefficient is approximately 1.1.

5. Conclusions

In this study, experimental research is carried out under cold-start conditions and
small-load conditions, and the conclusions are as follows:

(1) The ambient temperature is set to 13 ◦C, the battery voltage is set to 12.4 V, and the
peak speed of the starting motor is set to 1200 r/min.
1© The enrichment coefficients are sequentially set to 1, 1.5, 2, 3.5, and 4.5. As the

enrichment coefficient increases, the cold-start time decreases. After reaching a certain
concentration, the amplitude decreases, while the fuel consumption increases.

2© The oil–gas interval is sequentially set to 2 ms, 4 ms, 6 ms, 8 ms, and 10 ms, and
there is a quadratic relationship between the oil–gas interval and the cold-start time. The
required cold-start time is the smallest when the oil–gas interval is 6 ms.

3© The magnetization pulse width is sequentially set to 1 ms, 3 ms, 4 ms, and 5 ms,
and, as the magnetization pulse width increases, the cold-start time decreases.

(2) The ambient temperature is set at 25 ◦C, the relative humidity at 47%, the pressure
at 101 kPa, the cooling water temperature at 85~1~100 ◦C, the rotation speed at 3000
r/min, and the throttle opening at 14% to 16%.

1© The injection end angles are set to 50◦ and 70◦ BTDC. As the ignition advance angle
increases, the power and CO2 emissions also increase, while the fuel consumption, exhaust
temperature, and HC and CO emissions gradually decrease. The ignition energy exerts a
great influence on the performance of the engine. A larger ignition energy can improve the
combustion in the engine cylinder and increase the output power.

2© The ignition advance angle is set to 25◦ and 30◦ BTDC. Moderately increasing the
injection end angle can improve the engine’s power, fuel consumption, and HC and CO
emissions. A lean mixture makes the combustion more efficient and decreases the emission
of pollutants.
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