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Abstract: Polytungstate melts are used for the electrodeposition of oxide tungsten bronzes (OTBs).
The scarce information on the ionic composition and properties of these electrolytes hinders effective
control of the electrochemical synthesis of OTBs with desired electrical and optical properties. In
this work, a comprehensive study of Na2WO4–WO3 melts that contained up to 55 mol% of tungsten
trioxide was performed in the temperature range from 983 to 1073 K. Melt densities were measured
using the Archimedes method. DFT calculations were carried out for various tungsten-containing
compounds, including WxO2+

3x−1, WxO2−
3x+1, NaWxO−3x+1, and Na2WxO3x+1. The calculated values

of the W–O bond energy indicate that the tested compounds are stable in the specified temperature
range, and the WO2+

2 cation is the most stable. The experimental dependences of the redox potential
on the mole fraction of tungsten trioxide in the Na2WO4–WO3 melt were obtained using the EMF
method. A model that considers the processes of interaction between tungsten-containing ions and
O2− ions was proposed for the quantitative interpretation of these dependences. The equilibrium
constants were found through fitting according to the Levenberg–Marquardt algorithm. The effect of
the WO3 mole fraction and temperature on the concentrations of WO2−

4 , W2O2−
7 , W3O2−

10 , W4O2−
13 ,

WO2+
2 , and O2− ions was analyzed.

Keywords: EMF method; platinum reference electrode; ionic composition model; melting process;
polytungstate melt density; DFT calculation

1. Introduction

Oxide tungsten bronzes (OTBs), i.e., nonstoichiometric compounds such as MxWO3
(here, M is an alkali metal and 0 < x < 1), have a wide range of composition-dependent
properties [1,2]. The diverse electrophysical and optical properties of MxWO3 with different
x and M [1–6] determine the broad use of OTBs in many fields of catalysis [7–9] and
photocatalysis [10–12], including air and wastewater purification, anti-virus sterilization
and hydrogen and oxygen production. OTB-based materials are also in demand for
electrochromic [13], plasmonic [14], innovative biomedical [15] and field emission [16]
applications, and NIR shielding [17].

Electrodeposition from polytungstate melts is one of the most promising methods
for the synthesis of OTBs [18–21] and multilayered hybrid systems with nanocrystalline
OTBs [9,22–24]. The main advantages of this method are the high process rate, the ability
to change the composition and structure of deposits by varying the electrolysis param-
eters, and low capital and operating costs. Evidently, understanding the regularities of
the processes that occur in the polytungstate electrolyte and at the electrolyte/electrode
interface is necessary for efficient control of electrodeposition and obtaining OTBs with the
desired physicochemical properties. However, the mechanism of OTB electrocrystallization
is difficult to determine without the availability of sufficient information on the structure
and ionic composition of polytungstate melts. The limited data lead to the emergence of
unfounded hypotheses about the mechanisms of OTB formation in these melts [21,25–28].
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The structures of molten Na2WO4 at 1033 K [29] and Na2W2O7 at 1087 K [30] were
investigated using the radial distribution function based on X-ray scattered intensity data.
The presence of tetrahedral (WO4)2− anions in molten Na2WO4 was proven [29]. In the
Na2WO4–WO3 (1:1) system [30], it was found that the pattern of the [(W2O7)2−]∞ anion
chain in the crystalline state is practically preserved in the molten state within a small
range (<0.45 nm), but the long-range order within one anion chain is almost lost in the
melt and the neighboring chains are randomly oriented relative to each other. A Raman
scattering study of molten alkali–metal tungstates [31,32] and transparent glasses obtained
by rapid quenching of ditungstate melts [32] showed the presence of isolated [WO4]2−

tetrahedral anions in Na2WO4 and K2WO4 melts and complexes that consisted of two
corner-sharing tetrahedra (i.e., [W2O7]2−) in Na2W2O7 and K2W2O7 melts. The vibration
modes of [W2O7]2− dimers were also found during the study of the microstructure of
molten M2W2O7 (M = Li, Na, K) by in situ high-temperature Raman spectroscopy, in
combination with density functional theory (DFT) analysis [33,34]. The cation influence is
mainly limited by the change in the characteristics of the W–Onb bond (nb is non-bridging
oxygen) in [W2O7]2− [31,33]. A joint analysis of the data of in situ high-temperature Raman
spectroscopy and a quantum-chemical ab initio calculation for the evolution of stably
existing structural units in Li2O–WO3 melts was carried out in [35]. It was concluded that
complexes ([WO4]2−) and chains ([W2O7]2−, [W3O10]2−, and [W4O13]2−) composed of two,
three, or four [WO4]2− are formed by sharing their corner oxygen atoms when the mole
ratio of Li2O:WO3 in the melt is 1:1, 1:2, 1:3, and 1:4, respectively [35]. Raman spectroscopy
or X-ray scattering data for the M2O–WO3 melts with any intermediate component ratio
(for example, 1:1.5) are not available, which does not allow us to predict changes in the
structure or structure-dependent properties of M2WO4–WO3 melts.

The data obtained by the EMF method can be used to estimate the ratio of anions
in polytungstate melts [18,36–38]. The approach is based on the analysis of the experi-
mental dependence of the potential difference between two platinum–oxygen electrodes
semi-immersed in melts with different concentrations of tungsten trioxide (the melts
are separated by a porous diaphragm); assumptions about ionic equilibria are required
for analysis. In [18], this method was applied to determine the WO2−

4 /W2O2−
7 ratios in

Na2WO4–M’2WO4–WO3 (M* = Li or K) melts that contained up to 20 mol% WO3. The
results of [18] satisfactorily explained the change in the OTB composition with an increase
in the tungsten trioxide content in the above concentration range. The M2WO4–WO3 melts
with a WO3 mole fraction up to 0.5 were studied using the EMF method in [38]. The
authors considered these melts as completely dissociated mutual solutions of Na2WO4 and
Na2W2O7 that consisted of an ion mixture (Na+, WO2−

4 , and W2O2−
7 ). A conclusion was

made about the weak interionic interaction in this system. An acceptable agreement was
achieved between the experimental and calculated results at a WO3 mole fraction up to
0.4 by introducing the activity coefficients of ditungstate ions [38]. According to [18,38], a
model that considers the formation of W3O2−

10 and W4O2−
13 is required to more accurately

describe the experimental results at high WO3 concentrations in melts.
The above literature data confirm that polytungstate melts contain various tungsten-

containing anions and alkali metal cations. However, it is unlikely that the anions are
directly involved in the cathodic process that leads to the electrodeposition of OTB and/or
tungsten on the cathode. An assumption was made in [18] about the formation of W6+

cations as a result of the following processes:

4W2O2−
7 � 7W2O2−

7 +W6+, (1)

7W4O2−
13 � 13W2O2−

7 +2W6+ (2)

However, the authors provide no evidence to support this hypothesis. Thus, the
problem of the ionic composition and its changes as the proportion of tungsten trioxide in
the melt increases remains topical.
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In this work, the stability of various tungsten-containing anions and cations is eval-
uated, and a model is proposed for calculating the ionic composition of Na2WO4–WO3
melts with a WO3 mole fraction up to 0.55.

2. Materials and Methods
2.1. Preparation of Electrolytes

Sodium tungstate and tungsten trioxide (purity 99.9 wt%, Vecton, RF) were used to
prepare the melts. The dried (523 K, 2 h) reagents were weighed using a VK-600 balance
(Massa-K, RF) with an accuracy of±0.01 g, and then the electrolyte components were mixed
in the required proportions in a porcelain container. The WO3 mole fraction in the mixtures,
ν, ranged from 0 to 0.55. The prepared mixtures were placed in platinum or alumina
crucibles (see Sections 2.2 and 2.3) and heated to the experimental temperature (983, 1023
or 1073 K). In accordance with the phase diagram of the Na2WO4–WO3 system [18], the
composition range was limited to 0 ≤ ν ≤ 0.40 at 983 K and 0 ≤ ν ≤ 0.55 at 1023 and 1073
K, respectively.

2.2. Electrochemical Measurements

All the electrochemical measurements were performed using Autolab PGSTAT302N
(Metrohm, The Netherlands) with Nova 1.9 software. Figure 1 shows the electrochemical
cell designs described in detail in Sections 2.2.1 and 2.2.2.
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Figure 1. Schemes of experimental setups (a) for determining the effect of oxygen partial pressure on
the potential of the Pt electrode and (b) for measuring the dependence of ∆E on the mole fraction of
WO3 in the melt. Designations: 1—shaft furnace, 2—quartz protective vessel, 3—platinum crucible
with the 0.8Na2WO4–0.2WO3 melt (standard melt), 4—Pt electrodes, 5—quartz test tube, 6—alumina
tubes, 7—Pt/Pt-Rh thermocouple, 8—stainless steel lid filled with kaolin wool, 9—thin-walled
alumina crucible with the melt under study.

All high-temperature experiments were carried out in a shaft furnace with a quartz
protective vessel installed inside. The melt temperature was controlled using a Pt/Pt-Rh
thermocouple and a Varta TP703 temperature controller (Varta, RF) with an accuracy of
±1 K. The operating temperature range corresponded to the usual conditions for OTB
electrodeposition from Na2WO4–WO3 melts.

2.2.1. Measurement of the Oxygen Function of the Pt Electrode

The dependences of the potential difference between two Pt electrodes half-immersed
in the melt on the partial pressure of oxygen over one of the electrodes were measured at
983 K. This was carried out to confirm that the reaction

1
2

O2 + 2e � O2− (3)
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is the potential-determining process of the platinum–oxygen electrode. Both electrodes were
made of Pt foil; the surface area of each electrode was S = 0.9 cm2. Before measurements,
one of the electrodes and a quartz test tube equipped with a vacuum rubber stopper, a
spout for gas removal, and a bottom channel for electrolyte inflow were lowered into the
0.8Na2WO4–0.2WO3 melt in a platinum crucible (Figure 1a). The Pt electrode and a quartz
tube for supplying a mixture of air with high-purity argon (99.999%, Uralcryogas, RF) were
inserted into the stopper holes beforehand. The volume fraction of air in the gas flow was
changed using a mass flow controller (LOW-∆P-FLOW F-201DV) and a mass flow meter
(LOW-∆P-FLOW F-101D) for low pressure drops or corrosive gas (Bronkhorst High-Tech
B.V., Ruurlo village, The Netherlands).

2.2.2. EMF Measurement

The EMF of the cell

Pt, O2(air)|0 .8Na2WO4−0.2WO3¦(1− ν)Na2WO4−νWO3 |O 2(air), Pt (4)

was measured at 983, 1023 and 1073 K in air (pO2= 21.3 kPa). The cell design is pre-
sented in Figure 1b. A small thin-walled alumina crucible 1.8 cm in diameter with the
(1 − ν)Na2WO4–νWO3 melt was placed on the bottom of a platinum crucible 3.5 cm in
diameter, which served as a container for the standard melt (0.8Na2WO4–0.2WO3 in this
work). The electrodes (Pt foil, S = 0.9 cm2) were half-immersed in the above melts before
measurements. Alumina tubes protected the platinum current leads; air was blown through
the second opening of these tubes. The recording of the potential difference was stopped
when the ∆E value remained constant (within ±0.5 mV) for 30 min.

2.3. Density Measurement

The densities of the Na2WO4–WO3 melts with a mole fraction of tungsten trioxide
up to 0.5 were measured using the Archimedean method, according to the technique
described in [39,40]. A platinum sphere was suspended on a platinum wire 0.5 mm in
diameter and 0.6 m long attached to a Mettler AT20 analytical balance (Mettler Toledo,
Billerica, MA, USA). A weighed amount of a prepared oxide–salt mixture was placed in an
alumina crucible. The measurements were performed within a temperature range from
983 K to 1073 K. The platinum sphere was placed into the melt at 1073 K, and temperature
dependence of the sphere weight was registered. The density was calculated according to
the equation

ρ = ∆m/Vs, (5)

where ∆m (g) is the difference between the sphere weight in the melt and in air, and Vs (cm3)
is the sphere volume. The cargo weight in the air was 14.5126 g. The temperature depen-
dence of the sphere volume was determined by calibration using molten chlorides [40].
The experimental error for the density did not exceed ±0.5%.

2.4. Density Functional Theory (DFT) Calculations

Calculations of the stability of tungsten-containing compounds (WxO2+
3x−1, WxO2−

3x+1,
NaWxO−3x+1, and Na2WxO3x+1) were performed using the Siesta software package [41] on
a cluster-type hybrid computer with 1864 CPUs and a peak performance of 216 Tflops.
Geometric optimization was carried out using the general gradient approximation method
in the PBE form [42] for all proposed systems. The dynamic relaxation of atoms continued
until the change in the total energy of the system became less than 0.1 meV. The cutoff energy
of the plane wave basis was 400 Ry. A cubic unit cell with a face translation vector of 20 Å
was used. After geometric optimization, the resulting systems were tested for temperature
stability using ab initio molecular dynamics with a Nose–Hoover thermostat [43] at 983,
1023 and 1073 K for 1000 time steps with a step of 1 fs.
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3. Experimental Results
3.1. Electrochemical Measurements

The data obtained in the experiment described in Section 2.2.1 and their analysis are
shown in Figure 2. Figure 2a demonstrates the experimental dependence of the potential
difference, ∆E (V), between two Pt electrodes half-immersed in the 0.8Na2WO4–0.2WO3
melt with a stepwise change in the volume fraction of air in the gas mixture, Wair (vol%),
above one of the electrodes. Evidently, an increase in Wair causes a decrease in the ∆E value.
The dependence of ∆E on the logarithm of the air volume fraction is linear (Figure 2b) and
the slope is close to theoretical one, as shown in the following equation:

∆E =
kT
4e

ln
[O2]1
[O2]2

=
kT
4e

ln
pO2 airWair

pO2 air
= 21.54 · 10−3T ln Wair, (6)

where k (1.38 × 10−23 J K−1) is the Boltzmann constant, T (K) is the absolute temperature,
e (C) is the elementary electric charge, [O2]1 and [O2]2 (mol L−1) are the concentrations
of oxygen in the atmosphere above the first and second Pt electrodes, respectively (see
Figure 1a), and pO2 air is the partial pressure of oxygen in air. The error is small and equal to
0.39%. Formula (6) was derived using the Nernst equation for Reaction (3) and is as follows:

E = E0 +
kT
2e

ln
[O2]

1
2

[O2−]
, (7)

where E0 (V) is the standard electrode potential and [O2] and [O2−] (mol L−1) are the
concentrations of oxygen (above the melt) and O2− ions (in this melt), respectively. This
means that the potential of the platinum electrode is indeed determined by Reaction (3).
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In this case, the potential difference measured in Cell (4) is described by the following equation:

∆E =
kT
2e

ln
[O2−]melt 1

[O2−]melt 2
, (8)

This allows us to find the ratio of oxide–ion concentrations in melts with different
WO3 contents. Equation (8) can be rewritten as follows:

∆E =
kT
2e

ln
g1Vm2

g2Vm1
, (9)
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where g (mol) is the amount of O2− ions in the melt, Vm (cm3 mol−1) is the molar volume of
the melt, and subscripts 1 and 2 refer to the (1 − ν)Na2WO4–νWO3 melt and the standard
melt (0.8Na2WO4–0.2WO3 in this work), respectively.

The experimental concentration dependences of ∆E measured in Cell (4) at 983, 1023
and 1073 K are shown in Figure 3. Since the decrease in ∆E is associated with a change
in the O2− concentration in the melt due to an increase in the WO3 mole fraction (see
Equation (8)), these experimental dependences can be interpreted as follows. In pure
molten sodium tungstate, the O2− concentration is significantly higher than in the standard
melt (by six orders of magnitude at 983 K). A sharp decrease in the O2− concentration
occurs when the WO3 mole fraction is only 0.01 (about 4 orders of magnitude at 983 K).
In the range of ν from 0.05 to 0.55, the concentration of O2− ions decreases approximately
according to the logarithmic law, since the ∆E(ν) dependences decrease almost linearly. At
1073 K, the range of the O2− concentration becomes noticeably narrower, as demonstrated
by the ∆E values at ν = 0 and ν > 0.4 (see Figure 3).
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The quantitative interpretation of these data is difficult because the dependences of g
and V on the WO3 mole fraction are unknown. Dependences V(ν) can be found from the
measured densities of melts with different contents of tungsten trioxide (see Section 3.2).
The situation for g(ν) is much more complicated, since information is required on the
processes in the melt and equilibria with the participation of O2− ions, as well as on the
corresponding equilibrium constants. The absolute values of the equilibrium concentrations
of ions in the melt can be found only in this case.

The problem is that there is still no unambiguous opinion regarding the ionic composi-
tion of polytungstate melts. Published data [29–34] show that various polytungstate anions
with the general formula WxO2+

3x−1 can exist in the melt. At the same time, the results
obtained by electrochemical methods (see, for example, [9,18,21]) indicate the presence of
tungsten-containing cations in the melt, but do not allow one to determine their composi-
tion and charge. Nevertheless, the hypothesis of the presence of W6+ ions in the melt seems
unlikely, due to the high molecularity of Equilibria (1) and (2) and the high concentration
of oxygen-containing ions. It is more likely that WxO2+

3x−1 cations can be formed as a result
of the dissociation of WxO2−

3x+1 anions. However, we must ensure that WxO2+
3x−1 cations

are stable at the experimental temperatures (see Section 4) before modeling equilibria that
involve these cations (see Section 5).

3.2. Density Measurement

The experimental dependences of the density on the WO3 mole fraction in
(1 − ν)Na2WO4–νWO3 melts are shown in Figure 4. Figure 4a demonstrates that the
decrease in density occurs both with an increase in temperature and with a decrease in
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ν. The measured dependences of density on temperature and concentration of tungsten
trioxide can be described by the following equations:

ρ = −2.64·10−3·Tν −7.69·10−4·T + 3.781ν + 4.555, 0 < ν ≤ 0.3, (10)

ρ = −1.20·10−3·Tν −1.01·10−3·T + 2.362ν + 4.816, 0.3 < ν ≤ 0.5. (11)

Note that these dependences are much more accurate than the approximate equation
proposed in [44] (see Figure 4a):

ρ = 4.808 +1.282 ν −0.962·10−3·T, 0 ≤ ν ≤ 0.2. (12)
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Figure 4. (a) Experimental temperature dependences of the density of the (1 − ν)Na2WO4–νWO3

melts. The WO3 mole fraction values (ν) are shown in the figure. Our results are compared with the
calculation by Equation (12) [44] at a ν equal to 0 (�), 0.1(4) and 0.2(#). (b) Dependences of density
on the WO3 mole fraction at 983, 1023 and 1073 K.

The dependences of the density of the tested melt on the WO3 mole fraction are
presented in Figure 4b. These dependencies can be described by the equations

ρ(ν) = −5.4406ν3 + 4.0947ν2 + 0.4392ν + 3.8182, T = 983 K, (13)

ρ(ν) = −3.8131ν3 + 3.3646ν2 + 0.3974ν + 3.7866, T = 1023 K, (14)

ρ(ν) = −3.7622ν3 + 3.513ν2 + 0.2277ν + 3.7489, T = 1073 K. (15)

These equations are suitable for calculating the dependence of the molar volume of
the melt on the WO3 mole fraction.

Vm(ν) =
[
(1− ν)MNa2WO4 + νMWO3

]
/ρ(ν), (16)

where M (g mol−1) is the molar mass.

4. DFT Calculation

To determine the stability of WxO2+
3x−1 and WxO2−

3x+1 compounds, the W–O bond
energy, Eb (eV), was calculated according to the following formula:

Eb = − (Etot − E1WNW − E1ONO)/Nb, (17)

where Etot (eV) is the total energy of the compound, E1W and E1O (eV) are the energies
calculated for single W6+ and O2− ions, respectively, NW and NO are the amount of
tungsten and oxygen ions in the system, respectively, and Nb is the amount W–O bonds in
the compound.
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The W–O binding energies in the NaWxO−3x+1 and Na2WxO3x+1 compounds were
calculated, taking into account the interaction of Na+ with tungsten-containing anions.

Eb = (Etot − Eb
Na − E1WNW − E1ONO)/Nb, (18)

Eb
Na = Etot − EWO − ENa, (19)

where Eb
Na (eV) is the binding energy between Na+ and WxO2−

3x+1, EWO (eV) is the energy
calculated for the system without Na+, and ENa (eV) is the energy calculated for the sodium
subsystem only.

The calculation results indicate that all the tested compounds are stable in the tem-
perature range from 983 to 1073 K. The geometric structures of WxO2+

3x−1 and WxO2−
3x+1 at

983 K are shown in Figure 5a. An increase in temperature does not affect the geometric
structure of the compounds in most cases. The only exception is the rearrangement of the
[W4O13]2− compound at 1073 K (Figure 5b).
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Figure 5. (a) Geometric structures of WxO2−
3x+1 and WxO2+

3x−1 compounds after geometric optimiza-
tion and ab initio molecular dynamics with a Nose–Hoover thermostat at 983 K. (b) Geometric
structure of [W4O13]2− at 1073 K. Bond lengths are given in angstroms.

Figure 6a shows the dependences of the W–O bond energy on the number of tungsten
atoms in WxO2+

3x−1, WxO2−
3x+1, NaWxO−3x+1 and Na2WxO3x+1 compounds at 983 K. The

Eb value in WxO2+
3x−1 is lower than in WxO2−

3x+1 by 54% at x = 1 and by 6.7% at x = 4. The
W–O bond energy for the WO2+

2 cation is minimal (Eb = −105.48 eV), which indicates its
high stability. An increase in the number of tungsten atoms in WxO2+

3x−1 and WxO2−
3x+1 leads

to an increase in the Eb value from −105.48 to −66.13 eV and from −68.41 to −62.01 eV,
respectively. The addition of one or two sodium ions to the second coordination sphere
contributes to a decrease in the W–O bond energy; namely, the Eb values are 2.5–8.3% (for
NaWxO−3x+1) or 4.6–13.8% (for Na2WxO3x+1) lower than those for WxO2−

3x+1.
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At 1073 K, the Eb value increases slightly in most cases (Figure 6b). The maximum
increase is observed for Na2[W2O7] and does not exceed 0.7%. On the contrary, the W–O
bond energy in the [W4O13]2− compound decreases from −62.01 eV at 983 K to −65.71 eV
at 1073 K, which is associated with the breaking of one W–O bond (see Figure 5).

5. Model of Ionic Equilibria
The above results of DFT calculations and published data [29–34] indicate the presence

of several species of ions in the Na2WO4–WO3 melt. The most probable set of ions includes
Na+, WO2−

4 , W2O2−
7 , W3O2−

10 , W4O2−
13 , WO2+

2 , and O2−
. One can assume that the ratios

between tungsten-containing ions depend on the WO3 mole fraction in the initial oxide–salt
mixture before its melting. If the initial mixture consists of ν mol of WO3 and (1 − ν) mol
of Na2WO4, then the melting process can be described as follows:

(1− ν)Na2WO4 + νWO3 = 2(1− ν)Na+ + aWO2+
2 + bWO2−

4 + cW2O2−
7 + dW3O2−

10 + f W4O2−
13 + gO2−, (20)

where 0 ≤ ν ≤ 0.55 and the coefficients a, b, c, d, f, and g are equal to the number of moles of the
corresponding ion if the total amount of the initial mixture is one mol. The balances of tungsten
atoms and electric charges for reaction (20) give the following equalities::

a + b + 2c + 3d + 4 f = 1, (21)

b + c + d + f + g− a = 1− ν. (22)

The tungsten-containing ions interact and are in dynamic equilibrium with each other and with
O2− ions.

WO2−
4 � WO2+

2 + 2O2− , k0 =
[WO 2+

2

]
[O 2−

]2

[WO 2−
4

] =
ag2

bV2
m

, (23)

WO2−
4 + W3O2−

10 � 2W2O2−
7 , k1 =

c2

bd
, (24)

W2O2−
7 + W4O2−

13 � 2W3O2−
10 , k2 =

d2

c f
, (25)

2WO2−
4 � W2O2−

7 + O2− , k3 =
cg
b2 , (26)

3W2O2−
7 � 2W3O2−

10 + O2− , k4 =
d2g
c3 , (27)

4W3O2−
10 � 3W4O2−

13 + O2− , k5 =
f 3g
d4 (28)

where k0, k1, k2, k3, k4, and k5 are the equilibrium constants of the corresponding processes.
Equilibria (24) and (25) were written under the assumption that all the tungsten trioxide is consumed
for the formation of tungsten-containing anions as a result of the reactions WO2−

4 + WO3 →W2O2−
7 ,

W2O2−
7 + WO3 →W3O2−

10 , and W3O2−
10 + WO3 →W4O2−

13 .
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It is easy to prove that the equilibrium constants k3, k4 and k5 are interdependent, as demon-
strated by the following equations:

g = k3
b2

c
= k4k2

1
b2

c
= k5k2

1k3
2

b2

c
, (29)

k4 =
k3

k2
1

, k5 =
k3

k2
1k3

2
. (30)

Therefore, only the constants k0, k1, k2 and k3 are required to determine the coefficients in
Equation (20) for any ν value. Accordingly, the problem is reduced to solving a system of non-
linear equations. 

a + b + 2c + 3d + 4 f = 1
b + c + d + f + g− a = 1− ν

log a + 2 log g− log b = log k0 + 2 log Vm
2 log c− log b− log d = log k1
2 log d− log c− log f = log k2
log c + log g− 2 log b = log k3

. (31)

The values of the equilibrium constants that provide the best agreement between the experi-
mental and calculated ∆E(ν) dependences can now be found using a non-linear fit. As a result, a(ν),
b(ν) c(ν), d(ν), f (ν), and g(ν) that correspond to the experimental conditions can be determined.

6. Results and Discussion
To calculate ∆E(ν), Equation (32) was used in the following form:

∆E(ν) =
kT
2e

ln
g(ν)Vm(ν=0.2)

gν=0.2Vm(ν)
. (32)

Dependences Vm(ν) were found using Equation (16). To find g(ν), the numerical solution of
System (31) was first performed with random values of k0, k1, k2 and k3, and then the equilibrium
constants were iteratively changed according to the Levenberg–Marquardt algorithm, until the best
agreement between the experimental and calculated ∆E(ν) dependences was achieved.

Figure 7 shows a comparison of the experimental and fitted ∆E(ν) dependences at 983, 1023
and 1073 K. Table 1 gives the values of the equilibrium constants for Reactions (23)–(26), i.e., k0, k1, k2
and k3, at which the optimal coincidence of the curves was achieved.
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Figure 7. Experimental (symbols) and fitted (lines) dependences of the redox potential on the mole
fraction of WO3 in the Na2WO4–WO3 melt. The curves have been shifted relative to each other to
show them in one figure (the actual relative position of the experimental points is shown in Figure 3).
The points that correspond to the standard melt 0.8Na2WO4–0.2WO3 (∆E(ν = 0.2) = 0) are marked
with blank symbols.

Table 1. Equilibrium constants of Reactions (23)–(26).

T, K k0, mol2cm−6 k1 k2 k3

983 9.82 × 10−33 8.40 × 103 3.05 × 101 1.77 × 10−13

1023 1.09 × 10−28 4.32 × 102 1.65 3.45 × 10−11

1073 4.64 × 10−24 1.44 × 101 5.82 × 10−2 1.44 × 10−8
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Figure 8 shows the dependences of the concentrations of WO2+
2 WO2−

4 , W2O2−
7 , W3O2−

10 ,
W4O2−

13 , and O2− ions on the WO3 mole fraction at 983, 1023 and 1073 K that correspond to the
obtained values of the equilibrium constants. For some ν values, the concentrations of these ions
and Na+ ions are presented in Table 2. The calculation results indicate the following. The Na+ and
WO2−

4 ions predominate in molten sodium tungstate, which is consistent with the results of structural
studies of this melt [29,31,32]. The fraction of other ions included in our model does not exceed
0.008%. The addition of even very small amounts of tungsten trioxide leads to a sharp decrease
in the concentration of O2− ions, which is especially noticeable at lower temperatures (Figure 8f).
The WO2−

4 concentration, [WO2−
4 ], also decreases as the WO3 mole fraction increases, and the de-

crease in [WO2−
4 ] is directly proportional to ν and almost does not depend on temperature up to

ν ≈ 0.3 (Figure 8b).
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Table 2. Calculated values of ionic concentrations in Na2WO4–WO3 melts.

WO3 Mole
Fraction (ν)

Concentrations of Ions (cm−3)
WO2+

2 WO2−
4 W2O2−

7 W3O2−
10 W4O2−

13 O2− Na+

983 K

0 2.57 × 106 7.82 × 1021 3.29 × 1015 1.65 × 105 2.71 × 10−7 3.29 × 1015 1.56 × 1022

0.1 2.72 × 1017 6.52 × 1021 8.15 × 1020 1.21 × 1016 5.90 × 109 9.25 × 109 1.47 × 1022

0.2 2.42 × 1018 5.17 × 1021 1.72 × 1021 6.77 × 1016 8.77 × 1010 2.76 × 109 1.38 × 1022

0.3 1.64 × 1019 3.70 × 1021 2.70 × 1021 2.35 × 1017 6.71 × 1011 8.96 × 108 1.28 × 1022

0.4 1.22 × 1020 2.30 × 1021 3.62 × 1021 6.79 × 1017 4.17 × 1012 2.59 × 108 1.16 × 1022

1023 K

0 1.47 × 108 7.76 × 1021 4.55 × 1016 6.19 × 108 5.11 4.55 × 1016 1.55 × 1022

0.1 8.02 × 1016 6.46 × 1021 8.06 × 1020 2.33 × 1017 4.10 × 1013 1.78 × 1012 1.45 × 1022

0.2 7.19 × 1017 5.10 × 1021 1.69 × 1021 1.30 × 1018 6.10 × 1014 5.29 × 1011 1.36 × 1022

0.3 5.04 × 1018 3.61 × 1021 2.67 × 1021 4.59 × 1018 4.78 × 1015 1.68 × 1011 1.26 × 1022

0.4 5.06 × 1019 2.06 × 1021 3.66 × 1021 1.51 × 1019 3.76 × 1016 4.01 × 1010 1.14 × 1022

0.5 3.73 × 1020 1.16 × 1021 4.17 × 1021 3.48 × 1019 1.77 × 1017 1.1 × 1010 9.96 × 1021

1073 K

0 1.52 × 1010 7.68 × 1021 9.21 × 1017 7.68 × 1012 1.10 × 109 9.21 × 1017 1.54 × 1022

0.1 1.90 × 1016 6.37 × 1021 7.80 × 1020 6.62 × 1018 9.65 × 1017 7.51 × 1014 1.43 × 1022

0.2 1.53 × 1017 5.07 × 1021 1.57 × 1021 3.36 × 1019 1.24 × 1019 2.36 × 1014 1.34 × 1022

0.3 7.77 × 1017 3.76 × 1021 2.25 × 1021 9.38 × 1019 6.72 × 1019 9.02 × 1013 1.23 × 1022

0.4 3.46 × 1018 2.53 × 1021 2.63 × 1021 1.90 × 1020 2.35 × 1020 3.51 × 1013 1.12 × 1022

0.5 1.51 × 1019 1.50 × 1021 2.52 × 1021 2.92 × 1020 5.84 × 1020 1.30 × 1013 9.77 × 1021

The W2O2−
7 concentration initially increases in proportion to ν (Figure 8c), and the slopes are

almost equal at lower temperatures. At 1073 K, the slope is noticeably lower and the maximum value
is reached at ν = 0.43. Interestingly, the melt contains not only Na+ cations and W2O2−

7 anions at
ν = 0.5, contrary to the a priori assumption in [30,33–35]. Our calculations indicate that the fraction
of W2O2−

7 in the 0.5Na2WO4–0.5WO3 melt (among other tungsten-containing ions) is only 72.7% at
1023 K and 51.2% at 1073 K.

The WO2+
2 concentration (Figure 8a) increases dramatically as ν increases. For example, at

T = 983 K, the [WO 2+
2 ] = 2.57 × 106 cm−3 at ν = 0, while the [WO 2+

2 ] = 2.72 × 1017 cm−3 at ν = 0.1.
The WO2+

2 concentration, as is the case for the W2O2−
7 concentration, increases more slowly at 1023 K.

At a high mole fraction of WO3, the concentration of these cations is inferior to the concentrations of
WO2−

4 and W2O2−
7 only by 1–2 orders of magnitude.

The concentrations of W3O2−
10 and W4O2−

13 ions increase as the WO3 mole fraction and tempera-
ture increase (Figure 8d,e). The largest values of d[W 3O2−

10 ]/dν and d[W 4O2−
13 ]/dν are observed at

low ν values. When T = 1073 K and ν ≥ 0.4, the W4O2−
13 concentration exceeds those of W3O2−

10 and
WO2+

2 ions.
Thus, the proposed model allows us to calculate the equilibrium concentrations of ions, which

are necessary for simulating electrodeposition from polytungstate melts and determining the compo-
sition of cathode products.

7. Conclusions
The problem of the ionic composition of Na2WO4–WO3 melts was studied within the frame-

work of a model that considers the equilibria between tungsten-containing and O2− ions. The
concentrations of O2−, WO2+

2 , WO2−
4 , W2O2−

7 , W3O2−
10 , and W4O2−

13 ions were determined by fitting
the EMF dependences calculated by Equation (32) to the experimental EMF values measured in the
cell Pt, O2 (air)|0 .8Na2WO4 − 0.2WO3¦(1 − ν)Na2WO4 − νWO3 | O 2(air), Pt with 0 ≤ ν ≤ 0.55 at
983, 1023 and 1073 K. Preliminarily, the adequacy of the approach was confirmed by measuring the
EMF of the cell Pt, O2(air + Ar)|0 .8Na2WO4 − 0.2WO3¦0.8Na2WO4 − 0.2WO3 | O 2(air), Pt, and
the stability of tungsten-containing anions and cations at experimental temperatures was established
using DFT calculations.

The calculated dependences of the ion concentrations on the mole fraction of tungsten trioxide,
taking into account the change in the density of the melt, indicate the following. In molten sodium
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tungstate, Na+ and WO2−
4 ions predominate, and the fraction of other ions is less than 0.01%.

The addition of tungsten trioxide causes a sharp decrease in the concentration of O2− ions and a
sharp increase in the concentrations of WO2+

2 , W3O2−
10 , and W4O2−

13 . In addition, an increase in the
WO3 mole fraction leads to a decrease in the WO2−

4 concentration and an increase in the W2O2−
7

concentration. It was found that the W2O2−
7 ion does not dominate among other tungsten-containing

ions, even in the 0.5Na2WO4–0.5WO3 melt, and its main competitors are WO2−
4 and WO2+

2 at 1023 K
or WO2−

4 , W4O2−
13 and W3O2−

10 at 1073 K.
In conclusion, we emphasize that the main advantage of the proposed approach is the ability

to obtain quantitative information about the change in the ionic composition of the melt that is
associated with a change in temperature and/or the ratio of components in the initial oxide–salt
mixture, based on a simple procedure for analyzing experimental data.
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