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Abstract: Mutual information (MI) has been widely used for association mining in complex chemical
processes, but how to precisely estimate MI between variables of different numerical types, dis-
criminate their association relationships with targets and finally achieve compact and interpretable
prediction has not been discussed in detail, which may limit MI in more complicated industrial appli-
cations. Therefore, this paper first reviews the existing information-based association measures and
proposes a general framework, GIEF, to consistently detect associations and independence between
different types of variables. Then, the study defines four mutually exclusive association relations of
variables from an information-theoretic perspective to guide feature selection and compact prediction
in high-dimensional processes. Based on GIEF and conditional mutual information maximization
(CMIM), a new algorithm, CMIM-GIEF, is proposed and tested on a fluidized catalytic cracking (FCC)
process with 217 variables, one which achieves significantly improved accuracies with fewer variables
in predicting the yields of four crucial products. The compact variables identified are also consistent
with the results of Shapley Additive exPlanations (SHAP) and industrial experience, proving good
adaptivity of the method for chemical process data.

Keywords: chemical process; mutual information; feature selection; compact prediction; independence
tests; steady-state modeling

1. Introduction

Process models are the basis for simulation, control, optimization, safety management
and other relevant areas. They link industrial practices and engineering science by con-
structing mathematical connections between different variables and provide quantitative
descriptions for process behaviors. Generally, the process models can be classified into first-
principle and data-driven types. The first-principle models allow one to take deep insights
and interpret complex interactions between variables and parameters [1–3]. Meanwhile,
the data-driven models exhibit excellent performance on high-dimensional data for time
series prediction [4], fault diagnosis [5,6], etc.

Data-driven models are mainly achieved based on linear or nonlinear associations be-
tween different variables, and models such as decision trees and neural networks have been
proved effective for chemical processes [5–9]. One of the keys to developing data-driven
models is to match model structures and parameters with the inherent complexity of pre-
dictions. Various data-dimensionality reduction methods have been proposed to tackle this
problem. The main idea is to realize compact predictions, that is, fully exploiting the predic-
tive information related to the target while excluding redundant and irrelevant factors, and
finally achieving accurate models with small feature sets. However, in these methods, the
single-factor methods [10–12] cannot distinguish redundancy in the associated variables
and may lead to excessive features [7,13]. Linear methods such as Lasso [14] and Ridge [15]
regressions do not apply to nonlinear data [7]. The feature-extraction methods such as
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Principal Component Analysis (PCA) [16], Partial Least Square (PLS) [17], and Linear
Discriminant Analysis (LDA) [18] transform the data and variable relationships. In contrast,
graph methods [7,9,19–24] can achieve a better balance between accuracy, compactness
and interpretability. They use directed or undirected graphs to describe complex causal
associations, guiding data dimensionality reduction, prediction, and causal inference, etc.
The basis of constructing process graphs is identifying complex causal associations between
variables. Relevant approaches can be classified into two categories: knowledge-driven
and data-driven. The former is based on process rules, mechanism equations and flow-
sheet diagrams [9,25–29]; while the latter relies primarily on independence or conditional
independence tests between one- or multi-dimensional variables [30–32] with statistical
metrics such as Pearson’s coefficient (PearsonCorr), Spearman’s coefficient (SpearmanCorr)
and MI, etc.

Compared with metrics such as PearsonCorr and SpearmanCorr, MI is receiving
increasing attention in chemical process research due to its non-parametric characteristic
and adaptability to linear and nonlinear data. It has broadened scopes for chemical process
applications such as data dimensionality reduction [7,33], reaction networks [34], soft
sensors [35–37], fault diagnosis [13,38–41], etc. For example, He et al. [38] combined MI with
PLS and proposed the Dynamic Mutual Information Similarity (DMIS), which achieved
good performance in diagnosing transition state faults in the Tennessee Eastman Process
(TEP). Tian et al. [13] adopted MI to evaluate and eliminate the nonlinear redundancy
between variables, which, combined with PCA, achieved accurate fault diagnosis with
fewer variables in TEP. Ji et al. [39,40] used time-delay MI to identify fault propagation
paths in complex chemical processes and locate the root cause of faults, achieving good
effects in both TEP and ethylene cracking processes.

Although relevant studies have demonstrated the adaptability and accuracy of MI and
other data-information-based modeling approaches for chemical processes, some issues
remain. First, many studies treat variables as the same type of value [7,13,33,38,39], but
actually, there are mixed types of variables (e.g., continuous and discrete) in these processes,
something which few studies have stressed in algorithm realizations, while approximating
continuous variables to discrete with data quantization can bring significant bias in the
results [42]. So, there is still a lack of more general data information estimation procedures.
In addition, most studies adopt MI for association measurement [13,38,39]. They do not,
however, further explore possible forms of such associations and their statistical connections
to distill predictions from a higher information-theoretic perspective. Recent studies have
found that distinguishing different forms of associations can help eliminate redundancy
and irrelevancy in the data [7,43]. It can further help discover the target’s immediate
causes and effects, i.e., parents and children in the Bayesian network, thus guiding the
causal analysis and effective implementations of control interventions [30,31]. Finally, most
studies focus on small- or medium-scale simulated processes such as TEP or CSTR [39,40]
and lack further validations in actual processes with more complex variable relations.

Currently, in the context of complex process information, predictive models need to
extract from high-dimensional process data the necessary information with prediction to
reduce the complexity of the problem. The key lies in utilizing MI and relevant statistical
measurements to accurately identify necessarily associated variables while stripping out
irrelevance and redundancy to the greatest extent possible. Based on the above review and
discussion, this paper first aims to propose a more general data information estimation and
independence test approach for continuous and discrete variables, then explores different
association relations of the variables from the information-theoretic perspective to guide
compact prediction, and finally realizes relevant algorithms and applies them to actual
industrial data.

The rest of the paper is organized as follows. Section 2 will discuss the essence of
prediction, introduce information entropy (i.e., marginal entropy in the latter part of this
paper) and MI, and then propose a general information estimation framework (GIEF) for
data information measure and independence tests for chemical process variables. Next,
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Section 3 will define typical forms of process variable associations through probabilistic
graph and information theory, then discuss their graph-structural connections with compact
prediction, and finally put forward algorithms based on GIEF to achieve the compact
associated variable identification and differentiation, which will lay a foundation for future
research in local causal structure identification. Section 4 will apply the algorithms to
actual steady-state FCC data for predicting the yields of four products and evaluating
the performance of the algorithms. Finally, Section 5 concludes the paper. Figure 1 below
provides an overall flow chart of the rest of the paper to help readers understand the content.

Figure 1. An overall flow chart of the rest part of this paper.

2. Data Predictability and Numerical Approach for Information Estimation

The essence of data-driven prediction lies in finding a subset of variablesX ′ = {X1, · · · , Xd}
in the full set X such that the posterior distribution of the target given X ′, P(Y|X ′), will
differ from the prior P(Y) [44,45]. If Y is associated with some variable X ∈ X ′, a more
precise prediction for it can be achieved compared to merely speculating from P(Y). That
is, ∃X = x, Y = y so that

P(Y = y|X = x) 6= P(Y = y) (1)

which means the association between X and Y can lead to a more accurate prediction.
Otherwise, if X is independent of Y, for ∀x, y,

P(Y = y|X = x) = P(Y = y) (2)

and X cannot provide a better prediction. Note that Equations (1) and (2) indicate feasibility,
not accuracy, while the latter characteristic is of more interest in industrial applications,
which can further indicate association strengths between the variables and targets and
imply the potential in the data for the prediction, i.e., predictability [44–46]. In statistics,
the predictability of X for Y can be measured with MI, i.e., I(Y; X) [47,48], which can
be regarded as the sum of the logarithmic differences between the prior and posterior
distributions of Y, i.e., P(Y) and P(Y|X), over the entire space. In this paper, the natural
logarithm ln(·) is used for logarithmic operations because relevant conclusions in the later
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part of this section are obtained based on the natural logarithm [49,50]. If X and Y are
both discrete,

I(X; Y) = ∑
x,y∈X ,Y

P(x, y)[ln P(y|x)− ln P(y)]

= ∑
x,y∈X ,Y

P(x, y) ln P(x,y)
P(x)P(y)

(3)

Similarly, if X and Y are both continuous,

I(X; Y) =
x

x,y∈X ,Y
p(x, y) ln

p(x, y)
p(x)p(y)

dxdy (4)

where X and Y are the sets of all possible values; P(x) and P(y) are the probabilities at
X = x and Y = y; p(x) and p(y) are the probability densities.

MI can also be decomposed into combinations of marginal entropies H(X), H(Y) and
joint entropies H(X, Y) [48] in Equation (5):

I(X; Y) = H(X) + H(Y)− H(X, Y) (5)

For discrete X and Y,

H(X) = − ∑
x∈X

P(x) ln P(x), H(Y) = − ∑
y∈Y

P(y) ln P(y) (6)

and for continuous X and Y,

H(X) = −
∫

x∈X

p(x) ln p(x)dx, H(Y) = −
∫

y∈Y

p(y) ln p(y)dy (7)

2.1. Numerical Approaches for Estimating Marginal Entropy and MI

Compared with classical statistical measurements such as Pearson’s and Spearman’s
coefficients which have strict application prerequisites (e.g., types of distributions and
monotonic linearity of data), marginal entropy and MI provides a non-parametric way
to quantify arbitrary associations between nonlinear and nonnormal data [7,13,38,51].
Besides, these data-information-based metrics also have elegant and rigorous mathematical
properties that make them applicable for bivariate or multivariate analysis. (Please see
Equations (A1)–(A15) in Appendix A for more details and proofs.) However, despite easy
prerequisites, the accuracy of the above data-information methods can still be affected
by factors such as variable numerical types and varying sample sizes. Few studies have
paid attention to such underlying computational details when applying the methods to
chemical process data. For example, some process variables, such as temperature and
pressure, are continuous, since their values are numerically comparable. While other
variables closely related to process operations, such as the on-off states of valves, pumps,
and wind blowers, are discrete since their values show no order and are incomparable. A
chemical process typically consists of numerous continuous and discrete variables, which
may lead to estimating entropies, MI, and conditional MI (CMI) for or between variables of
different value types. Besides, it often involves concatenating multiple low-dimensional
variables X and Y into the high-dimensional variable (X, Y) to estimate the joint entropy
H(X, Y). Equations (3), (4), (6) and (7) and Equations (A1)–(A4) in Appendix A have
demonstrated that continuous and discrete variables cannot be treated as the same type
of value when computing the above metrics. Only the variables of the same type can be
directly concatenated; otherwise, the type of the concatenated variable may be ambiguous.

If both X and Y are discrete, the estimated probabilities P̂(x), P̂(y) and P̂(x, y) can be
directly obtained by the sample frequencies, then taken into Equations (3), (6) and (A12) to
get the estimates Ĥdiscrete(X), Ĥdiscrete(Y), Îdiscrete(X; Y) and Îdiscrete(X; Y|Z). However, if
at least one of X or Y is continuous, common approaches using data quantization [44,52,53]
to transform continuous variables into discrete may cause significant errors [42,50,54]. To
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solve this problem, Kozachenko and Leonenko [49] and Singh [55] et al. first proposed a
classical KL entropy estimator based on the k-nearest neighbors:

ĤKL(X) = ψ(N)− ψ(k) + ln cd +
d
N

N

∑
i=1

ln εi (8)

where N denotes the sample size; k is the number of nearest neighbors; ψ denotes the
digamma function; cd denotes the volume of a unit ball in the d dimensional space of X;
and εi is the distance of the ith sample to its kth nearest neighbor. Note that the value of cd
is related to the spatial distance metric selected. For example, when taking the maximum
norm L∞, i.e., the Chebyshev distance, cd = 2d; and when taking the L2 norm, i.e., the
Euclidean distance, cd = πd/2/Γ(1 + d/2) and Γ denotes the gamma function [54]. Studies
show that the Euclidean distance generally applies to low-dimensional rather than high-
dimensional data [56,57]. Based on the KL entropy estimator, Kraskov [50], Ross [42],
Lombardi [54], Lord et al. [58], further proposed more accurate estimation approaches for
mixed types of variables.

If both X and Y are continuous, Kraskov proposed computing the marginal and
joint entropies of X and Y with adaptive k and replacing the Euclidean distance with the
Chebyshev distance to offset the bias caused by the scale differences between the marginal
and joint spaces [50]. Kraskov’s estimate is shown in Equation (9) below:

ÎKraskov(X; Y) = ψ(N) + ψ(k)− 1
N

N

∑
i=1

ψ(nX,i) + ψ(nY,i) (9)

where nX,i is the number of neighbors that lie within the range of xi ± εi/2. Furthermore, if
one of X and Y, say X, is discrete, Ross et al. [42] proposed the following MI estimate in
Equation (10):

ÎRoss(X; Y) = ψ(N) + ψ(k)− 1
N

N

∑
i=1

ψ(NX,i)−
1
N

N

∑
i=1

ψ(ni) (10)

where NX,i denotes the number of samples with the same Y value as sample i.

2.2. GIEF: A General Framework for Data Information Estimation

The above Equations (3), (6) and (8)–(10) have achieved accurate estimations for
marginal entropies and MI between variables of all value types. Further, some research
areas in chemical processes such as causality analysis [19,59,60] and time-delayed causal
analysis [40], often involve estimating conditional entropy and CMI to get transfer en-
tropy and other metrics between multiple variables. So, this section will realize relevant
algorithms and integrate them into the general information estimation framework (GIEF)
proposed by the paper. For the convenience of later discussion, the marginal entropy
estimations in Equations (6) and (8) is unified as H-GIEF, with the result denoted as Ĥg(X);
MI estimates in Equations (3), (9) and (10) is unified as MI-GIEF, with the result as Îg(X; Y).

According to Equation (A5), the estimation for conditional entropy can be realized as

Ĥg(X|Z) = Ĥg(X)− Îg(X; Z) (11)

where Ĥg(X) and Îg(X; Z) can be obtained by former Equations (3), (6) and (8)–(10). It may
be more difficult, however, to estimate CMI. If the conditional variable Z is of the same
type as X or Y, say Y, then Z and Y can be concatenated into a new variable. Thus, CMI
can be estimated by Equation (A7):

Îg(X; Y|Z) = Îg(Y, Z; X)− Îg(X; Z) (12)
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Suppose Z is not of the same type as X and Y (implying that X and Y are in the same
type). In this case, CMI can be estimated by Equation (A8) or (A9). Note that, although these
two equations are mathematically equivalent, the former will have higher computational
efficiency by avoiding the estimation of H(Z).

Îg(X; Y|Z) = Îg(X; Y) + Îg(X, Y; Z)− Îg(X; Z)− Îg(Y; Z)
= Îg(X; Y) + Ĥg(Z|X) + Ĥg(Z|Y)− Ĥg(Z|X, Y)− Ĥg(Z)

(13)

According to the above discussion, this paper puts forward a general approach for
estimating the four data-information metrics: marginal entropy, conditional entropy, MI
and CMI, as shown in Figure 2 below, which corresponds to the first part of the general
information estimation framework (GIEF) proposed in this paper. It first calculates the
marginal entropy estimate Ĥg(X) for continuous or discrete X with Equations (6) and (8),
respectively, then obtains the MI estimate Îg(X; Y) with Equations (3), (9) and (10), finally
gets the estimates Ĥg(X|Z) and Îg(X; Y|Z) for condition entropy and CMI, respectively.
The approach is applicable to both continuous and discrete variables in chemical processes.

Figure 2. A general framework for GIEF.

2.3. Performance Tests for GIEF and Other Association Measuring Methods

The complex mechanisms in chemical processes can result in various forms of data
relations and associations, coupled with significant differences in sample sizes. Hence,
association analysis algorithms applied to studies should consistently quantify arbitrary
linear and nonlinear associations with different distribution types and sample sizes. Ac-
cording to the test framework proposed by Kinney et al. [61], this section first conducts
consistency and time cost tests for common association measuring approaches in chemical
processes, such as PearsonCorr, distance correlation coefficient (DistCorr), SpearmanCorr
and MI. Especially for estimating MI, four methods will be adopted: isometric quantization,
iso-frequency quantization, adaptive quantization proposed by Darbellay et al. [53] and
GIEF proposed in this paper, which are denoted as MI-cut, MI-qcut, MI-Darbellay and
MI-GIEF, respectively.
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2.3.1. Consistency and Time Costs

Figure S1 in the Supplementary Materials presents association values measured by
different methods for 16 types of data relations (please refer to [61] for more dataset
details). For each relation, the coefficients measured at different noise levels 1− R2 are
plotted by fixing x and adding uniform noises on y. As the color varies from blue to red,
the data linearity and monotonicity become gradually stronger. As Figure S1 illustrates,
classical measures such as PearsonCorr, SpearmanCorr and DistCorr have obvious biases
for different relations. They get higher coefficient values on linear or monotonic data but
fail to detect nonlinearities. For the other four MI methods, only MI-qcut and MI-GIEF can
achieve consistent results under a large sample size N = 2000, with highly overlapped
result points in each plot. Note, though, that as N increases, the coefficient of MI-qcut on
irrelevant data (where 1− R2 equals to 0) deviates from 0 and becomes positive, which is
inappropriate for use. Finally, only MI-GIEF achieves consistent measurements on all the
data with N ≥ 2000. Besides, Figure S2 shows variations of average computational time
costs obtained by different methods in Figure S1 and the corresponding 95% confidence
intervals (CIs) with increasing sample sizes. Combining Figures S1 and S2 suggests that
MI-GIEF can obtain more accurate estimates than other MI methods with comparable time
costs as DistCorr and MI-Darbellay’s. The algorithm can be further optimized in the future
to improve its accuracy and computational efficiency.

2.3.2. Test of Independence in GIEF

The independence test aims to determine whether the variables are independent or
conditionally independent from the vantage of statistical significance, and identify hidden
associations from a large amount of data. It is an essential topic in statistical analysis
and facilitates data dimensionality reduction, process modeling, causal analysis, and
identification of control variables in industrial practices [30,31,62]. Compared to traditional
linear metrics such as PearsonCorr and SpearmanCorr, MI can detect arbitrary (linear or
nonlinear) associations and conditional associations [7,61,63]. Although, compared with
quantization-based methods, MI-GIEF and CMI-GIEF can achieve more accurate and stable
estimations for mixed-type data [42], studies show that their results are also susceptible
to data noise, sample size and association forms [64,65]. This section will propose more
accurate independence and conditional independence tests and integrate them into the
GIEF framework as the second part.

Figure A1 in Appendix B illustrates that the means and variances of the MI-GIEF
estimates can be significantly affected by sample size N; the fluctuations in Îg(X; Y) de-
crease with increasing N. Thus, discriminating independence and association based on a
fixed threshold of the estimate is not suitable for different data distributions and sample
sizes; otherwise, it will cause high rates of Type I errors [62]. So it is necessary to propose
more accurate and general independence tests that are less affected by data distributions
and sample sizes. This paper will consider the surrogate independence test, which has
been proven to be adaptive to varying sample sizes [52,62]. First, the method will ran-
domly construct a set of surrogate samples Dsurrog =

{(
xs

1, y1
)
,
(
xs

2, y2
)
, . . . ,

(
xs

N , yN
)}

from the original set D = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where the superscript s denotes
the randomly shuffled indexes of X. Then, it will estimate Îg(xs; y) for all the surrogate
samples and obtain the distribution corresponding to the null hypothesis denoted as H0.
The method will finally check whether Îg(x; y) is in the distribution of H0: if P is greater
than significance level α, accept H0, i.e., reject independence; otherwise, accept H1, i.e.,
accept independence. Based on the above discussion, this paper proposes the algorithm
CHECKINDEP in Table S1, which composes the second part of the GIEF framework.

Table 1 below shows the effects of CHECKINDEP on the datasets in Figure A1. The data
of X in the top three datasets (random, linear and parabola) are randomly sampled from
the uniform distribution: x ∼ Uniform(0, 1). In the last dataset (categorical), x is sampled
from {0.25, 0.5, 0.75, 1} with equal probability. The data of Y are obtained as described in
the table, where ε is the uniform noise imposed: ε ∼ Uniform(0, 0.01). Each test is repeated
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for 100 rounds, and the results are denoted in the format as median, (q1, q3), corresponding
to the median, lower and upper quantiles of percentages that accept independence. The
results of the random dataset show that when N are set to 100 and 1000, the surrogate-data
method can identify all the independence relations with rates equal to 94%. As for the other
three datasets, the surrogate-data method identifies all the associations accurately.

Table 1. Detection rates of independence with GIEF.

Dataset Description N = 100 N = 1000

random y ∼ Uniform(0, 1) 0.94 (0.92, 0.96) 0.94 (0.93, 0.96)
linear y = x + ε 0 (0, 0) 0 (0, 0)

parabola y = 4x2 + ε 0 (0, 0) 0 (0, 0)

categorical
y =


0.287 + ε, if x = 0.25
0.796 + ε, if x = 0.5
0.290 + ε, if x = 0.75
0.924 + ε, if x = 1

0 (0, 0) 0 (0, 0)

Table 2 below lists the results of conditional independence tests with GIEF for datasets
M1 to M4. Samples x̃, ỹ and z̃ are drawn from the standard normal distribution indepen-
dently. Values εx and εy are uniform noises imposed on the outputs. It is easy to check
that conditional independence (X⊥Y|Z) holds for M1 and M2, which is confirmed by the
test results.

Table 2. Detection rates of conditional independence with GIEF.

Dataset Description N = 100 N = 1000

M1 x = x̃ + z + εx
y = ỹ + z + εy

0.96 (0.95, 0.98) 0.94 (0.92, 0.95)

M2 x = x̃ + z + εx
y = z2 + εy

0.92 (0.90, 0.93) 0.92 (0.91, 0.94)

M3 x = x̃ + z + εx
y = 0.5· sin(πx̃) + εy

0 (0, 0) 0 (0, 0)

M4 x = x̃ + z + εx
y = x̃ + ỹ + z + εy

0 (0, 0) 0 (0, 0)

In summary, Section 2 proposes and tests a general framework GIEF for estimating
information entropy, conditional entropy, MI and CMI and independence tests for or
between arbitrary types of variables, one which is applicable for chemical processes and
will be the basis for the later part of this paper.

3. Compact Prediction for Chemical Process Data Based on Association Measure,
Independence Test and Probabilistic Graph
3.1. Compact Variables Set and the Markov Blanket

Due to nonlinear mechanisms and complex material flows, chemical process variables
often exhibit complex data-information relations. For example, sometimes multiple sensors
may be placed together to precisely measure an important variable X (such as the sensitive
plate temperature, reactor temperature, and pressure in distillation columns) for predicting
a key outcome Y (such as product yield). Assume the measured signals are denoted as X1,
X2 and X3, and their data should be highly linearly correlated so that Xi ≈ X1 for 2 ≤ i ≤ 3.
According to Equation (A14), I(Xi; Y|X1) = 0, so that I(X1, X2, X3; Y) = I(X1; Y), which
indicates repeating measurements for the same variable is redundant for prediction. Since
X2 and X3 are linearly correlated with X1, such redundancy can be removed through
multicollinearity analysis [66,67]. In other situations, sometimes series connections of
devices via pipelines can link X1, X2, X3 and Y as a Markov chain: X1 → X2 → X3 → Y ,
so that the variation of Y depends only on X3 and is independent of upper-stream X1 and
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X2, so that I(Xi; Y|X3) = 0 for 1 ≤ i ≤ 2. In this case, only X3 should be kept, while X1
and X2 are redundant for Y. In this circumstance, due to potentially nonlinear process
mechanisms, X1 and X2 may not be linearly correlated with X3, and multicollinearity
analysis may fail to exclude the redundancy effectively.

The above-mentioned repeated measurements and information transfer Markov chains
are typical chemical process phenomena related to data redundancy and irrelevancy. Actu-
ally, the relations between different process variables can be more complex, which can be
described by the Bayesian network GB in Figure 3a [9,68–70]. The nodes of GB correspond
to process variables, and the arrows denote causal connections. For a target Y, its parents,
children and spouses are denoted as X p (corresponding to Xp

1 , Xp
2 and Xp

3 in the figure), X c

(Xc
1 and Xc

2) and X s (Xs
1), respectively. It is easy to see that Y is directly connected with X p,

X c and indirectly connected with X s and other remaining nodes X r = X\(X p ∪ X c ∪ X s).

Figure 3. (a) Schematic of Bayesian network; (b) data association relations in (a).

According to the d-separation theorem [51], for a target Y in GB, its parentsX p, children
X c and spouses X s together block the effects of other process variables transmitted to it. In
other words, Y is conditionally independent of all the remaining nodes X\(X p ∪ X c ∪ X s)
given X p, X c and X s, that is,

I(Y;X r|X p,X c,X s) = 0 (14)

In this way, X p, X c and X s can be considered as a whole, i.e., the Markov blanket
(MB) of Y, which is the union of X p, X c and X s in the Bayesian network GB [30,51,71]:

MY = X p ∪ X c ∪ X s (15)

Then Equation (14) can be re-written to Equation (16), which demonstrates the
information-blocking nature of MB:

I(Y;X\MY|MY) = 0 (16)

The paper also finds that the MB variables are irreplaceable for prediction; other-
wise, it will lead to unavoidable data information loss and prediction accuracy decrease,
as illustrated in the following Equation (17). For any non-empty subsetM′ ⊂MY, the
information inM′ about Y will not be blocked by the other nodes in MB,MY\M′, so that
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I(Y;M′|MY\M′) > 0. At the same time, I(Y;MY) = I(Y;MY\M′)+ I(Y;M′|MY\M′)
and I(Y;MY) > 0, so that

I
(
Y;MY\M′) < I(Y;MY), ∀M′ ⊂MY (17)

Combining the above Equations (16) and (17) demonstrates that MB contains sufficient
information for the prediction without redundancy and irrelevancy, implying that it is the
compact set of associated variables for Y.

3.2. Variable Differentiation from the Information-Theoretic Perspective

Section 3.1 shows that a sufficiently accurate and compact prediction depends on
precisely identifying MB in GB, which is composed of parents, children and spouses of the
target. Note that the parents and children are directly associated with the target, while
some spouses are conditionally associated [30]. Due to the data information transmission
discussed in Section 3.1, some variables outside MB may also be associated with the target.
Therefore, the independence test algorithm CHECKINDEP proposed in Section 2.3.2 and
Table S1 cannot directly identify MB [31] without further defining and differentiating
various types of variables. In addition, in industrial applications, accurately identifying the
directly associated variables (i.e., parents and children) can help eliminate redundancy and
irrelevancy in the data and discriminate the direct causes and effects of the target [30,72],
thus guiding the construction of local causal networks [31], which will be our future work.

This paper first realizes the identification of MB from the data information perspective
and then differentiates the types of variables in and out of MB to determine the compact and
directly associated variables of the target. Recent studies have defined several association
relations, e.g., strong and redundant associations, in different forms [43,73–75], but there
is still no unified way for numerical computations. Therefore, this paper redefines all the
association relations in the forms of MI and CMI and unifies the calculation procedures into
the independence tests based on GIEF in Table S1, which will facilitate more convenient
calculations. Different sets of variables are defined as follows:

1. Strongly associated variables X sa: if a variable node Xi is directly connected to Y on
GB and cannot be blocked by any other node sets X ′ ⊆ X\{Xi}, then Xi ∈ X sa is
strongly associated with Y, that is, for ∀X ′ ⊆ X\{Xi}, I(Xi; Y|X ′) > 0;

2. Interactively associated variables X ia: if a node Xi is not directly connected to Y on
GB but conditionally associated with Y given nodes set X ′ ⊆ X\{Xi}, then Xi ∈ X ia

is interactively associated with Y, that is, I(Xi; Y) = 0 and ∃X ′ ⊆ X\{Xi} so that
I(Xi; Y|X ′) > 0;

3. Redundantly associated variables X ra: if a node Xi is associated with Y but condi-
tionally independent of Y given some nodes X ′ ⊆ X\{Xi}, then Xi ∈ X ra is called a
redundant associated variable for Y, that is, I(Xi; Y) > 0 and ∃X ′ ⊆ X\{Xi} so that
I(Xi; Y|X ′) = 0;

4. Irrelevant variables X ir: if a node Xi is neither associated nor conditionally associated
with Y given any subset X ′ ⊆ X\{Xi}, then Xi ∈ X ir is called completely irrelevant
to Y, that is, for ∀X ′ ⊆ X\{Xi}, I(Xi; Y|X ′) = 0.

Based on the above definitions, Figure 4 below provides a variable differentiation
flowsheet that separates all the variables into four mutually exclusive sets:

X = X sa ∪ X ia ∪ X ra ∪ X ir (18)
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Figure 4. Flowsheet diagram of variable differentiation from the information-theoretical perspective.

According to the probabilistic graph theory [30,51], the above four types of relations
correspond to different types of nodes in the Bayesian network in Figure 3b, where the
strongly associated variables correspond to the combination of parents and children, as
they are directly connected to Y: X sa = X p ∪ X c; the interactively associated variables
correspond to spouses, X ia = X s, as they are indirectly connected with Y via colliders; the
redundantly associated variables correspond to the nodes associated with Y but blocked
by X sa and X ia; and the irrelevant variables correspond to the remaining nodes in the
network, which are not associated or conditionally associated with Y. In addition, according
to Figure 3 and Equation (15), X sa and X ia constitute the compact association variables,
i.e., the MB, of Y, and X sa contains all the direct causes and effects.

Figure 4 also implies that differentiating variables based on pairwise single-factor
methods (for example, measuring direct associations by PearsonCorr, SpearmanCorr and
MI) are inadequate for identifying compact variables. As shown by the first step in the
figure, the methods may probably keep redundant variables and exclude interactively
associated variables, which will increase the model’s dimensionality and lose essential
predictive information, making it more likely for the model to encounter the curse of
dimension problem under limited samples [24]. In the next section, relevant algorithms
based on GIEF will be proposed to identify compact associated variables and differentiate
them according to the above definitions from the information-theoretic perspective.

3.3. Algorithms for Identifying and Differentiating Compact Variables in Chemical Processes

According to the analysis in Sections 3.1 and 3.2, this section first considers identifying
MB from the information-theoretic perspective. It supposes that the process variables
that can provide additional data information about the target should be iteratively se-
lected into the Markov blanket setMY, until the total MI value I(MY; Y) reaches max-
imum. According to this principle, an incremental feature selection procedure called
Conditional Mutual Information Maximization (CMIM) [43,73] is adopted for study (please
see Equations (A16)–(A23) in Appendix C for detailed derivations). Note that, in this
paper, the algorithm will be realized as Equation (19) based on GIEF, where the CMI es-
timate Îg( f ; Y|r) is supposed to be more accurate and reliable for chemical process data.
Table S2 presents a detailed flowsheet for identifying MB step by step with GIEF, which is
named CMIM-GIEF and the final result S corresponds to MB,MY. As a comparison, the
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CMIM realized by CMI with iso-frequency quantization is named CMIM-Q. The effects of
CMIM-GIEF and CMIM-Q will be compared with other methods later in Section 4.

S(t) = arg max
f∈F−S (t−1)

{
min

r∈R(t)
Îg( f ; Y|r)

}
(19)

After CMIM-GIEF, the flowsheet in Figure 4 and algorithms CHECKINDEP proposed in
Section 2.3.2 are combined to further differentiate the MB and non-MB variables according
to their associations with the target. The corresponding algorithm DIFFERENTIATEVARI-
ABLES is proposed in Table S3. In summary, this section has completed the data-information-
based algorithms for identifying compact associated variables and differentiating their
data-information relations with the target. The next section will apply and evaluate the
effects of these algorithms on actual FCC process steady-state data for predicting the yields
of some important products.

4. Case Study on Actual Steady-State FCC Process Data

The FCC process is one of the most important conversion processes in the petrochemi-
cal industry. It mainly uses high-temperature thermal cracking reactions with catalysts to
convert high-boiling-point and high-molecular-weight hydrocarbon components in crude
oil into valuable products such as gasoline and diesel. The process is highly complex due
to nonlinear mechanisms, intricate flows, and numerous variables. Real-time prediction
for steady-state FCC product yields is challenging and can provide powerful guidance for
reactor design, product property prediction, operation optimization and catalyst selection.
Besides, it can also provide more profound knowledge and understanding of reaction
mechanisms, further promoting the development of process technology. However, due to
the highly coupled reactions and complex variable relations, it is not easy to build models
for the process. This paper attempts to use data-driven approaches to achieve regressive
predictions for the yields of four critical products: light diesel (LD), heavy diesel (HD),
gasoline (GAS), and dry gas (DG). A total number of N = 2727 steady-state samples from
July 2016 to May 2017 are collected for the study, which contain 217 continuous and discrete
variables and 4 continuous product yields in the reaction-regeneration and fractionation
systems, as shown in Figure S3, in which the four product flows are marked as blue lines
and the variables of temperature (T), flow (F), pressure (P), liquid level (L), density (D), and
analytical data (A) account for 38%, 27%, 19%, 10%, 5%, and 1% of the total, respectively.
The variables and targets are highly coupled with complex relations.

In this section, the algorithms proposed in Section 3 RESOLVEMARKOVBLANKET and
DIFFERENTIATEVARIABLES will be applied to first identify the compact set of associated
variables for the four yields, and then differentiate the variables according to their data-
information relations with the targets. In the MB identification and variable differentiation
steps, key variables associated with the targets are not set in advance by expert experience.
The entire calculation is automatically executed based on data, which can better reflect and
verify the data interactions. Machine-learning prediction models are also built with the
compact associated variables identified. The prediction effects are evaluated, compared
and interpreted.

4.1. Identifying Compact Associated Variables for the FCC Product Yields

All the steady-state samples are randomly partitioned into training and testing sets
at a ratio of 7:3 for later compact variables identification, differentiation and predictive
modeling. In this section, the MB and non-MB variables are first identified for the four yields
YLD, YHD, YGAS and YDG based on RESOLVEMARKOVBLANKET with CMIM-GIEF. Then, the
variables are differentiated according to DIFFERENTIATEVARIABLES. Table 3 and Figure 5a
show the Markov blankets identified by CMIM-GIEF for the four targets, illustrating that
the MB of each target contains significantly fewer variables than the total. The variables
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in MBs have significantly higher MI values and stronger associations with the targets,
demonstrating the validity of the GIEF-based association measurement.

Table 3. Sizes of MBs identified and the corresponding medians and quantiles of the MI-GIEF estimates.

Target Variables in MB Variables Not in MB Total

- Number Distribution of MI Number Distribution of MI Number Distribution of MI

YLD 25 0.701 (0.569, 0.808) 192 0.447 (0.303, 0.584) 217 0.476 (0.338, 0.615)
YHD 23 0.890 (0.787, 1.000) 194 0.549 (0.373, 0.744) 217 0.583 (0.408, 0.773)
YGAS 20 0.840 (0.707, 0.961) 197 0.526 (0.354, 0.692) 217 0.555 (0.382, 0.705)
YDG 28 0.520 (0.409, 0.598) 189 0.313 (0.222, 0.403) 217 0.340 (0.231, 0.439)

Figure 5a also illustrates that some variables can affect multiple targets simultaneously
(e.g., the fifth variable in the figure, i.e., the temperature on the fresh feed nozzle of the
lift tube in Table 4, affects all the yields), indicating the compact association network in
Figure 5b, in which the red and white nodes denote the targets and variables with variable
numbers and target names in the center of each node. The undirected edge between two
nodes indicates the association relation, and the thickness corresponds to the MI value
between them. The figure shows that there are stronger associations between YLD, YHD,
and YGAS and their Markov blankets, implying better prediction effects for them. Table 4
lists the information of some important compact variables identified including material
flow rates, temperatures and pressures in the lift tube, settler, waste heat boiler and stripper
tower, which correspond to the variables presented in the figures in Section 4.3.

Table 4. Variables information related to the product yields of the process in Figure 5b.

Variable
Number

Variable
Name Note Value Range Targets Affected

5 TI-3107B fresh material temperature in the lifting tube nozzle, ◦C [401, 457] YLD, YHD, YGAS, YDG
24 TI-3112 outlet temperature of the settler, ◦C [504, 514] YDG
26 TI-3117 temperature of the slide valve in the settler, ◦C [499, 518] YDG

132 TI-3546 outlet temperature (A) of the evaporation section, ◦C [391, 547] YLD, YHD, YDG
133 TI-3542 outlet temperature (B) of the evaporation section, ◦C [127, 181] YLD, YGAS, YDG
134 TI-3551 outlet temperature of coal saver in the waste heat boiler, ◦C [129, 192] YGAS, YDG
201 TI-3237 outlet temperature at the bottom of the stripper tower, ◦C [136, 180] YLD, YHD, YGAS
13 FIC-3104 flowrate of refining slurry in the lift tube, t/h [6, 35] YHD, YGAS, YDG
52 FIC-3118 flowrate of combustion oil in the first regenerator, m3/min [0, 7] YLD, YHD

158 FIQ-3519 inlet flowrate (A) of fuel gas in the waste heat boiler, t/h [0, 2717] YLD, YHD, YDG
159 FIQ-3520 inlet flowrate (B) of fuel gas in the waste heat boiler, t/h [0, 1163] YGAS
194 FIC-3203 flowrate of oil slurry returning to the fractionation tower, t/h [220, 407] YHD, YGAS, YDG
204 FIC-3223 steam flowrate (A) in the stripper tower, t/h [1, 2] YLD
212 FIC-3403 steam flowrate (B) in the stripper tower, t/h [16, 83] YLD, YHD, YGAS
71 PI-3114 main air pressure of the second regenerator, MPa [0.27, 0.35] YHD
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Figure 5. (a) Distributions of Îg(X; Y) for MB and non-MB variables identified by CMIM-GIEF; (b) compact association network identified by CMIM-GIEF.
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Table 5 below shows the results of DIFFERENTIATEVARIABLES, demonstrating that
only a few variables are strongly associated with the yields, while the others are redundant
or irrelevant. In addition, the algorithm does not find any interactively associated variables
in this case, which is reasonable. Otherwise, if a variable is interactively associated with
an outcome yield, there will be a collider between them according to Figure 3a. In this
circumstance, the yield will cause the collider (a process variable), which rarely happens
and is not detected.

Table 5. Variable differentiation results.

Target Strongly
Associated

Interactively
Associated

Redundantly
Associated Irrelevant Total

YLD 25 0 144 48 217
YHD 23 0 151 43 217
YGAS 20 0 157 40 217
YDG 28 0 101 88 217

In summary, with the algorithms proposed in Section 3, Section 4.1 has identified
compact associated variables for the FCC product yields, which form a network structure.
The variable differentiation results show that all the targets are only affected by small
numbers of strongly associated variables. The accuracy and compactness of the results will
be further verified in the next section.

4.2. Prediction Based on the Compact Associated Variables Identified

This section will use the results in Section 4.1 for building and testing machine-
learning predictive models for the four yields to verify the accuracy and compactness of
the associated variables identified. Since all the four targets are continuous, only regressive
models are considered, and the metrics such as the determination coefficient R2, mean
absolute error (MAE), mean square error (MSE) and mean absolute percentage error (MAPE)
are adopted for the model evaluation process [7,8,76]. First, five rounds of five-fold cross-
validations are executed on the training dataset to examine and compare the prediction
performance of different candidate machine-learning models, of which the random forest
(RF) shows the overall best performance in R2, MAE, MSE and MAPE, and is selected
for the modeling in the later part of this paper [8,77,78]. Please refer to Table S4 in the
Supplementary Materials for model evaluation details. Table 6 shows the parameter settings
for RF obtained by the Grid Search strategy [7].

Table 6. Parameter settings for RF.

Parameter Note Value

criterion the function to measure the quality of a split “mse” 1

max_features the number of features to consider when looking
for the best split “sqrt” 2

min_samples_split the minimum number of samples required to
split an internal node 10

min_samples_leaf the minimum number of samples needed to be at
a leaf node 3

n_estimators the number of trees in the forest 100
1 Mean square error, i.e., MSE. 2 The number of features considered for split equals to the square root of the
total number.
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Next, the total and compact associated variables identified by CMIM-GIEF and CMIM-
Q are used for building RF models, respectively. Meanwhile, other well-known methods
frequently used in chemical processes, such as PearsonCorr [11], SpearmanCorr [10],
DistCorr [11], MI [13,79], Mean Decrease Impurity (MDI) [80], Mean Decrease Accuracy
(MDA) [81], Genetic Algorithm (GA) [8], Lasso [14], Ridge [15], Principal Component
Analysis (PCA) [16], Kernal PCA (KPCA) [72,82], Locally Linear Embedding (LLE) [83] and
Partial Least Square (PLS) [17], are also included in building the models. For each method,
a hundred-round bootstrap test is performed. In each round, the model is first trained with
the resampled data from the training set, and then the prediction metrics are obtained on
the test set. Figure 6 and Table S5 show the number of variables (or features) and average
metric values corresponding to the best model performance. Figures 7–10 further exhibit
the distributions of metric values on the four yields, where the circles within each box
plot indicate mean values. From the comparison in Figure 6, the numbers of variables
obtained by the feature selection methods except for CMIM-GIEF are significantly higher
than those of the feature extraction methods. However, they achieve better predictions
as shown in Table S5 and Figures 7–10. Among these methods, CMIM-GIEF achieves the
overall best prediction accuracies with minimal variables. It obtains the best results on YLD
and YGAS and good results on YHD and YDG as well, results which are close to the optimal
ones. In addition, comparing CMIM-GIEF and CMIM-Q shows that the former method
achieves slightly better accuracies than the latter with fewer variables, which proves the
effectiveness of GIEF in CMIM-GIEF for variable information estimation.

Figure 6. Comparison of feature numbers obtained by different data-dimensionality reduction methods.
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Figure 7. Comparison of metrics obtained by different methods with RF on YLD.

Figure 8. Comparison of metrics obtained by different methods with RF on YHD.
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Figure 9. Comparison of metrics obtained by different methods with RF on YGAS.

Figure 10. Comparison of metrics obtained by different methods with RF on YDG.
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In summary, this section compares CMIM-GIEF, CMIM-Q and other well-known data
dimensionality reduction methods for predicting the yields of four FCC products. The
results show that CMIM-GIEF achieves the overall best prediction effects regarding model
dimensionality and accuracy with the compact associated variables identified.

4.3. Evaluating and Interpreting the Compact Associated Variables Identified

Section 4.2 shows that the compact associated variables identified by CMIM-GIEF
achieve the overall best dimensionality reduction results compared to other commonly
used methods in chemical processes. This section will further analyze and interpret the
results. In 2017, Lundberg and Lee proposed the Shapley Additive exPlanations (SHAP)
method to explain various machine-learning classification and regression models [84],
quantifying each feature’s linear and nonlinear impacts on the model predictions. The
SHAP value of each feature Xi, SHAPi, reflects the direction and strength of the impact on
the target. SHAPi > 0 or < 0 indicates that Xi positively or negatively affects the target to
obtain higher or lower values than the baseline level, which equals to the average predicted
value over all the samples.

This section interprets the variables identified by CMIM-GIEF, and Figure 11 shows
the summary plots and variable importance scores obtained by SHAP. The scatter-points in
each row of the summary plot exhibit the SHAP values (horizontal coordinates) of Xi in the
test set. The higher the Xi value is, the more red the point. Please see Table 4 for variables
information. As a variable’s importance score decreases, the variable poses a weaker effect
on the target, and this leads to a greater concentration of SHAP values at SHAPi = 0 in
the plot.

Figure 11. Summary plots and importance scores of the compact variables identified by CMIM-GIEF.

Figure 12 also shows Partial Dependence Plots (PDP) obtained from the SHAP values
for each target. In each plot corresponding to variable Xi and target Yj, the bold blue line
indicates the PDP curve; the horizontal coordinates indicate the normalized variable values
(please see Table 4 for the original value ranges); the vertical coordinates indicate the model
outputs; the vertical dashed line indicates the expectation of Xi, E(Xi); and the horizontal
dashed line indicates the expectation of the model outputs, E( f (Xi)). In addition, each PDP
plot also shows the individual conditional expectation (ICE) curves, which are denoted
as light-blue dashed lines. For each individual sample, its ICE curve is obtained by first
randomly setting the values of Xi while keeping other variables constant and then obtaining
the relation between the expectation of the model outputs and Xi. Both the ICE and PDP
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curves in Figure 12 reflect the detailed effects of variables on the model outputs. As the
importance scores of the variables decrease, the ICE and PDP curves become flattened.

Figure 12. ICE and PDP plots between each target and the top five important variables identified by
CMIM-GIEF.

The above analysis finds that the compact associated variables identified by CMIM-
GIEF, such as outlet temperature TI-3107B in the riser tube, steam flow rates FIC-3223
and FIC-3403 in the stripper tower, outlet temperatures TI-3546 and TI-3551 and fuel gas
flow rate FIQ-3520 in the waste heat boiler, do have significant impacts on the targets
with different forms and degrees. For example, the temperature TI-3107B simultaneously
affects YLD, YHD and YGAS, which has been reported in other studies and is adopted as a
critical variable in process studies called the riser outlet temperature (ROT) [85,86]. In this
case, higher values of TI-3107B will lead to higher values of YHD and lower values of YLD.
These complementary relations may be related to the diesel fraction blending process. The
analysis also reveals that higher values of rise tube temperature TI-3107B and feed flowrate
FIC-3203 can decrease the values of YGAS, which are also consistent with the findings of
relevant studies [85,86]. In addition, the results find that the bottom outlet temperature
and the steam flow rate of the stripper tower, TI-3237 and FIC-3403, are also associated
with YLD and YHD. Higher values of TI-3237 and lower values of FIC-3403 result in higher
values of YHD and lower values of YLD.

In summary, this section has verified that the compact associated variables obtained
by CMIM-GIEF do have different forms of association relations with the targets. The results
are reasonable and consistent with related studies and industrial practices.
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5. Conclusions

This paper first demonstrates data association and predictivity in chemical processes
from the information-theoretic perspective and introduces non-parametric MI and CMI
to quantify the strengths of associations between different process variables. It proposes
a generalized framework named GIEF for information estimations and independence
tests for different types of variables, which is verified on different datasets and achieves
better accuracy than the traditional approaches based on data quantization and fixed
thresholds. Next, according to probabilistic graphs and information theory, this paper
relates data dimensionality reduction and prediction with compact variable identification
and differentiation and unifies relevant definitions with MI and CMI to integrate GIEF for
more convenient realization. In the final part of this paper, the proposed compact variable
identification and differentiation algorithms based on GIEF are applied to high-dimensional
FCC process data to predict the yields of four critical products. They achieve significantly
better dimensionality reduction effects and accuracies than traditional methods such as
Lasso, Ridge, PCA and PLS, obtaining average values of R2 between 0.918 and 0.990 on the
four targets with less than 30 features. The SHAP-based model interpretation results also
verify the rationality of the compact association structure identified by CMIM-GIEF, which
is in accordance with relevant studies.

In general, based on information theory and improved estimation framework GIEF,
this paper presents a novel strategy for identifying and differentiating compact variables for
prediction from high-dimensional process data. The whole procedure can be automatically
executed without any participation of experts’ experience and process knowledge, and
obtains the best compact prediction effects compared with other well-known methods. Rel-
evant methods and algorithms can be further used in future studies of compact prediction
and causal structure extraction in chemical processes.
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types of variables and targets in the process; Table S1: Algorithm flowsheet of (conditional) inde-
pendence test based on GIEF; Table S2: Algorithm flowsheet of resolving Markov blanket with
CMIM-GIEF; Table S3: Algorithm flowsheet of differentiating variables; Table S4: Prediction effects of
different models with full features on the four targets; Table S5. Average prediction metrics obtained
by different data-dimensionality reduction methods with RF on the four targets.
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Appendix A

Most of the following content can be found in papers and books related to information
theory [48].
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Definition A1. (Conditional entropy) For discrete X and Y,

H(Y|X) = ∑
x∈X

P(x)H(Y|X = x) (A1)

and for continuous X and Y,

H(Y|X) =
∫

x∈X

∫
y∈Y

p(x, y) ln p(y|x)dxdy (A2)

Definition A2. (Condition MI) For discrete X, Y and Z,

I(X; Y|Z) = ∑
x∈X

∑
y∈Y

∑
z∈Z

P(x, y, z) ln
P(z)P(x, y, z)
P(x, z)P(y, z)

(A3)

and for continuous X, Y and Z,

I(X; Y|Z) =
∫

x∈X

∫
y∈Y

∫
z∈Z

p(x, y, z) ln
p(z)P(x, y, z)
p(x, z)P(y, z)

dxdydz (A4)

The following identities reveal some important relations between marginal entropy,
joint entropy, condition entropy, MI and conditional MI, which are utilized for constructing
the framework of GIEF in the paper:

I(X; Y) = H(Y)− H(Y|X) (A5)

I(X; Y) = H(X) + H(Y)− H(X, Y) (A6)

I(X; Y|Z) = I(Y, Z; X)− I(X; Z) (A7)

I(X; Y|Z) = I(X; Y) + I(X, Y; Z)− I(X; Z)− I(Y; Z) (A8)

I(X; Y|Z) = I(X; Y) + H(Z|X) + H(Z|Y)− H(Z|X, Y)− H(Z) (A9)

Besides, there are also some crucial theorems for mutual information mentioned in
the paper:

Theorem A1. (Nonnegativity of MI) for two variables X and Y in a process,

I(X; Y) ≥ 0 (A10)

The identity holds iff X and Y are independent, i.e., X⊥Y. Thus, MI can be used to test the
independence between different variables [62].

Theorem A2. (Exchange Law of MI) the mutual information between two variables satisfies

I(X; Y) = I(Y; X) (A11)

Theorem A3. (CMI and Information Blocking Effect) the conditional mutual information (CMI)
between discrete X and Y given Z is defined as

I(X; Y|Z) = ∑
x

∑
y

∑
z

P(z)P(x, y|z) ln
P(x, y|z)

P(x|z)P(y|z) (A12)
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while for continuous X , Y and Z,

I(X; Y|Z) =
y

x,y,z∈X ,Y ,Z
p(x, y, z) ln

p(z)p(x, y, z)
p(x, z)p(y, z)

dxdydz (A13)

Nonnegativity holds
I(X; Y|Z) ≥ 0 (A14)

and the identity holds iff X and Y are conditionally independent given Z, which means the variation
of Y is irrelevant to X once Z is observed. In this circumstance, Z blocks the effect of X on Y.

Theorem A4. (Chain Rule) MI between high-dimensional process variables X = (X1, X2, . . . , Xd)
and Y can be decomposed in the following way:

I(X; Y) =
d

∑
i=1

I(Xi; Y|Xi−1, Xi−2 . . . , X1) (A15)

which transforms the high-dimensional MI into a sum of lower-dimensional CMI, which has lower
sample requirements and is easier to get reliable estimates [43,73,74].

Appendix B

Figure A1 below shows variations of the estimates Îg(X; Y) with increasing sample
size N, corresponding to different data relations: (a) random, (b) linear, (c) quadratic and
(d) categorical. In (a) to (c), X and Y are both continuous, while in (d), X is discrete and Y
is continuous. The results demonstrate that MI-GIEF correctly recognizes the associations
in (b), (c) and (d). As N increases, the means and variances of the estimates converge.
However, the results also illustrate that discriminating independence and association based
on fixed thresholds is not suitable for varying N due to the fluctuations of Îg(X; Y). For
example, in (a), let null hypothesis H0 and alternative hypothesis H1 indicate independence
and nonindependence, respectively. When N is small, the estimated MI value may reject
H0 and mistakenly accept H1, resulting in a higher rate of Type I error [62].

Figure A1. Variation of Îg(x; y) with increasing sample size N.
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Appendix C

The following incremental variable selection procedure is proposed for identifying the
MB of target Y from an information-theoretic perspective. At each step t, a newly selected
variable S(t) ∈ F − S (t−1) should provide the highest amount of addition information
about Y given the preselected variables Sp for S(t), i.e.,

S(t) = arg max
f∈F−S (t−1)

I
(

f ; Y
∣∣∣Sp,S (t−1)

)
(A16)

where S (t−1) are variables selected from the total candidates F in the former t− 1 steps
(t > 1), which can be obtained from data or empirically set through expert experience. Let
R(t) = Sp ∪ S (t−1) denote the concatenated set of variables determined before step t, then

S(t) = arg max
f∈F−S (t−1)

I
(

f ; Y
∣∣∣R(t)

)
= arg max

f∈F−S (t−1)
I( f ; Y)−

[
Îg

(
f ;R(t)

)
− I
(

f ;R(t)
∣∣∣Y)] (A17)

Note that there are usually tens to hundreds of variables in a chemical process, which
can lead to high-dimensional R(t), and make direct estimating CMI in Equation (A17)
easily encounters the curse of dimension problem [22,23]. If assume the variables inR(t)

are independent and conditionally independent given Y [87], then

I
(

f ;R(t)
)
= ∑

r∈R(t)

I( f ; r) (A18)

I
(

f ;R(t)
∣∣∣Y) = ∑

r∈R(t)

I( f ; r|Y) (A19)

Thus,

S(t) = arg max
f∈F−S (t−1)

I( f ; Y)−
[

∑
r∈R(t)

(I( f ; r)− I( f ; r|Y))
]

(A20)

If approximate the summation in Equation (A20) with the maximum element value,

∑
r∈R(t)

(I( f ; r)− I( f ; r|Y)) ≈ max
r∈R(t)

{I( f ; r)− I( f ; r|Y)} (A21)

then

S(t) ≈ arg max
f∈F−S (t−1)

{
I( f ; Y)− max

r∈R(t)
{I( f ; r)− I( f ; r|Y)}

}
(A22)

≈ arg max
f∈F−S (t−1)

{
min

r∈R(t)
I( f ; Y|r)

}
(A23)

Equation (A23) corresponds to the CMI maximization (CMIM) [43,73].
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