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Abstract: It is well known that with the development of economic globalization and increasing
competition in the market, enterprises are facing a huge challenge in the unrelated parallel machine
scheduling problem with setup time (UPMST). Determining the processing order of all jobs and as-
signing machines to production scheduling has become more complex and has research implications.
Moreover, a reasonable production scheduling scheme can not only complete the production plan
efficiently but also contribute to reducing carbon emissions. In this paper, a mathematical model with
the goal of the shortest completion time is studied for the UPMST problem. An improved line-up
competition algorithm (ILCA) is proposed to solve this model, and the search accuracy and rate of
the algorithm are improved by the newly proposed heuristic workpiece allocation rules and variation
strategies. From the perspective of evaluation purposes, the effectiveness and stability of the method
are significantly superior to other methods, and it is competitive in solving the UPMST problem.

Keywords: unrelated parallel machine scheduling; line-up competition algorithms; heuristic rules;
variant policies; production scheduling

1. Introduction

Production scheduling is the work of an enterprise to produce jobs in strict accordance
with the requirements of a production plan [1]. When jobs can be processed on multiple
machines with similar functions and neither interfere nor disturb each other during simul-
taneous processing, such a problem is defined as a parallel machine scheduling problem [2].
There are a large number of manufacturing and service problems in modern industrial pro-
duction, such as chemical, metallurgical, textile, mechanical, semiconductor, and logistics
fields [3]. In this type of practical production, the processing times of artifacts on different
machines are generally different, and the processing times on different machines are not
correlated with each other, which is the uncorrelated parallel machine scheduling (UPM)
problem that widely exists in manufacturing [4]. However, in actual production, many
constraints have to be considered, such as storage space, raw material storage, release time,
machine preparation time, etc. Generally, common constraints are the ready time, and UPM
problems with such constraints are called UPMST problems, which are NP-hard problems.

Solutions to this kind of problem can be roughly divided into exact algorithms and
heuristic algorithms. The exact algorithm can obtain the optimal solution, but as the scale
of the problem becomes larger, it becomes almost impossible for the exact algorithm to
find and obtain the optimal solution. Rakovitis et al. [5] developed a novel mathematical
formulation to solve the large-scale instances that existing models fail to solve, and it
takes less computation time and consumes less energy. The problem of scheduling parallel
machines is solved. In [6], a new logic-based exact algorithm for Benders decomposition
was proposed to deal with common extra constraints and various min or max objectives to
solve a wide class of parallel machine scheduling problems. A new three-stage algorithm
based on an exact mathematical method has been shown to have a competitive advantage in

Processes 2022, 10, 2676. https://doi.org/10.3390/pr10122676 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10122676
https://doi.org/10.3390/pr10122676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr10122676
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10122676?type=check_update&version=1


Processes 2022, 10, 2676 2 of 17

dealing with unrelated parallel machine scheduling with specific and different resources [7].
To abate the problem of the excessive computation time of exact algorithms, promising
progress has been made through research. Yunusoglu et al. [8] developed a constraint
programming (CP)-based exact solution with the addition of lower bound restrictions and
redundancy constraints to enrich the proposed CP model, thereby achieving a reduction in
computation time.

Considering the solution time spent, more heuristic algorithms for the solution of this
problem can be found in the literature because they are more efficient and stable in finding
feasible scheduling solutions within an acceptable time frame. In [9] A new mixed integer
linear programming (MILP) was proposed for the single-machine scheduling problem
with release time and workpiece sequence conversion time, and developed a beam search
heuristi to solve the problem. Finally, a higher-quality solution was obtained with a lower
computational cost. Laha et al. [10] proposed a cuckoo search algorithm to solve the identi-
cal parallel machine scheduling problem, which is faster and less computationally intensive
than the other algorithms mentioned in this article. Arnaout et al. [11] presented a two-stage
ant colony optimization (ACO) algorithm that solved a non-preemptive non-correlated par-
allel machine scheduling problem with computational results that outperformed the taboo
search (TS) algorithm. New worm optimization algorithms similar to ACO have also been
proposed to solve similar problems [12]. Ying et al. [13] proposed a restricted simulated an-
nealing (RSA) algorithm that incorporates a restricted search strategy to effectively reduce
the search effort required to find the best neighborhood solution by eliminating invalid job
moves. Avalos-Rosales et al. [14] proposed a metaheuristic algorithm based on a multi-start
algorithm and a variable neighborhood descent metaheuristic, which contributes to solving
large-scale UPMTS.

In recent years, larger UPM instances have also been solved. Santos et al. [15] studied
four different stochastic local search (SLS) methods that computed 1000 large benchmark
instances, 901 of which yielded the latest and best solution. Lin et al. [16] proposed
a population-based simulated annealing algorithm that considered the practical need
for a burn-in (B/I) procedure and finally obtained a better solution than the schedule
actually used. Chen et al. [17] used a mixed-taboo search (TS) algorithm to solve the
proposed mixed-integer programming (MIP) model and obtained the maximum number
of processing jobs in practice with an average of 8 s. Huang et al. [18] proposed an
improved firefly algorithm with a summation-learning firefly algorithm with competitive
performance in processing UPMSP with sequence-dependent setup times. Fang et al. [19]
proposed a hybrid metaheuristic based on LA-ALNS and taboo search (LA-ALNS-TS) and
a dynamic perturbation scheme that helps the algorithm get rid of local optimization. The
effectiveness and efficiency of the proposed algorithm were evaluated experimentally. It is
shown that the hybrid algorithm has the advantages of each and is valuable for the study
of large-scale UPM.

Of course, a growing number of scholars consider more than just the proposed new
algorithm and further improve the search strategy. In [20], the divided semi-definite
programming (D-SDP) algorithm and fast divided semi-definite programming (FD-SDP)
algorithm with a tailored local search (LS) strategy were proposed, and solved the parallel
machine scheduling problem independent of the release time. Lei et al. [21] proposed a
multi-subgroup artificial bee colony (MABC) algorithm to solve problems with the objective
of minimizing the makespan and total latency, verifying that the new strategy proposed by
MABC is effective. Moser et al. [22] proposed several variants of the simulated annealing
algorithm for solving large-scale instances that arise in practice, and also investigated an
innovative heuristic move selection strategy for problems with the objective of minimizing
the total tardiness and working time of uncorrelated parallel machine scheduling problems
have some certain meaningful guidance.
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The UPMST problem that has been the concern of scholars in the aforementioned
literature is the problem we are concerned with in this paper. Focusing on this UPMST
problem, which conforms to the modern production model, we have done the following
work. A mathematical model of the UPM problem with setup time is established, which
takes the traditional scheduling optimization objective, that is, minimizing the maximum
completion time, as the objective function. Based on the original line-up competition algo-
rithm (LCA) [23], a new heuristic artifact assignment rule is proposed to expand the search
range of the solution, and the variational strategy is also improved to avoid falling into
the local optimum so that the local search and global search are performed simultaneously
and the algorithm converges quickly to obtain the approximate global optimum. We have
solved the model with the improved line-up competition algorithm (ILCA) and compared
the results calculated by examples with the previous ones. Experimentally, it is proved
that the proposed algorithm outperforms the other algorithms listed in terms of solution
quality and other generalizations, and it is verified that the ILCA’s have good effectiveness
and population diversity for the UPMST problem. The contributions of this study can be
summarized as follows.

(1) An improved queuing competition algorithm is proposed to handle the UPMST problem.
(2) A new heuristic artifact allocation rule is proposed for the research problem.
(3) Different mutation strategies are proposed to execute different mutation strategies by

giving different mutation probabilities for families and parents in different positions.
(4) Its effectiveness and performance are verified by improving the algorithm to improve

its search accuracy and speed.

The remainder of this paper is organized as follows. Section 2 presents the problem
statement and the establishment of the mathematical model. Section 3 describes the pro-
posed solution approach in detail, and Section 4 illustrates the computational experiments,
demonstrating the potential of the approach for the UPMST scheduling problem. Finally,
Section 5 provides the conclusions and presents future research directions.

2. Problem Formulation
2.1. Problem Description

There are N (i = 1, 2, 3, . . . , N) jobs and M (m = 1, 2, 3, . . . , M) machines that must be
processed. Each job goes through S (j = 1, 2, 3, . . . , S) stages. Each processing procedure
has at least one machine, and at least one processing procedure has a parallel machine. The
processing time of each job on each machine is different; that is, the processing capacity
of each machine is different. At each stage, each job must complete a stage, but each
processing procedure for each job can be processed. Processed on any machine in the
corresponding stage. Knowing the processing time (PTi,m) of each job on each machine
and the waiting time (SPTi,j,m) between jobs on different machines in different stages, it is
required to determine the processing sequence of all jobs and the allocation of machines to
minimize certain scheduling indicators, such as the maximum completion time (Cmax). An
illustration of this problem is given in Figure 1. In actual production, a workpiece often
requires multiple processes for processing, and there are unrelated parallel machines for
each process, making this production scheduling problem NP-hard.

In conjunction with the above brief description of the UPMST scheduling problem,
the production machines for each job in each process are selected sequentially according to
their processing order, thereby determining the start time and completion time of the job on
the machine and optimizing the given scheduling objectives. This determines the optimal
job plan for the final stage, including the assignment, sequencing, and timing of jobs. Prior
to modeling, reasonable assumptions are made based on UPMST production realities.
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Figure 1. UPMST illustration.

The assumptions are presented as follows:

(1) All processing parameters are deterministic.
(2) The setup time in a machine is independent of job order and properties.
(3) Machine malfunction will not occur.
(4) Unlimited storage capacity between stages.
(5) There are multiple machines in each stage, and the production capacity of each ma-

chine is different, which means that the actual processing time of each job is different.
(6) The job cannot be interrupted once machining has started.
(7) A machine can handle only one job at a time.
(8) A job can only be processed on one machine at a time.

2.2. Mathematical Model
2.2.1. Objective Function

In this subsection, we provide a mathematical model for the UPMST scheduling prob-
lem. Note that this model is an adapted version from [24]. We first need to define symbols
to simplify the displayed model. Table 1 shows the symbols used in the mathematical
model and explains each symbol.

Table 1. Symbol description.

Nomenclature

Sets
N All jobs
M Set of all machines
S Set of operations that jobs need to be processed

Mi Set of machines that can process i
Ms,i Set of machines that can process i at stage s
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Table 1. Cont.

Nomenclature

Indices
i Jobs
k Machines
j Stages

K′ Machines selected with heuristic job assignment rules

Parameters
MCTk Completion time of the most recently processed job on machine k
MCPk The last processed job number on machine k

PUBTj,i Virtual release time of job i at stage j
ORi Release time of job i
PTi,k Processing time of job i on machine k

SPTi,i′ Relative sequential transition time between jobs i and i′

STPi,k′ Completion time of job i on machine k′

STAi,k′ Start time of job i on machine k′

Cs,i Completion time of workpiece i on stage s

Variables
rs Job allocation rules used in stage s
P Production sequence of job
P′ Production sequence of jobs sorted by completion time

fi,k′
The most suitable machine is obtained by evaluating each

machine of a job according to a job assignment rule

In order to optimize the given scheduling objective, this paper takes minimizing the
maximum completion time of the job as the objective function of the uncorrelated parallel
machine scheduling problem.

min{max(Cs,1, Cs,2, · · · , Cs,i)} (1)

Equation (1) is the objective function, the maximum completion time is the time that
each machine completes the last artifact on the final stage.

2.2.2. Heuristic Order Allocation Rules

In this paper, a series of job allocation rules is proposed to achieve a reasonable
allocation of machines according to the characteristics of actual production so that the
scheduling goal can be achieved better and faster. The specific description is as follows:

(1) Select the machine with the shortest job sequence change over time.
(2) Select the machine with the shortest job processing time.
(3) Select the machine that can process jobs at the earliest.
(4) Select the machine with the largest processing time.
(5) Select the machine with the largest current time.
(6) Select the machine with the smallest sum of job processing time and current time of

the machine.
(7) Select the machine with the maximum sum of job processing time and machine

current time.
(8) Select the machine that has the smallest sum of job sequence transition time and

processing time.
(9) Select the machine that has the smallest sum of job sequence transition time and

current machine time.
(10) Select the machine with the smallest job completion time. In the job allocation process,

if a certain rule is used to obtain multiple machinable machines, any one of them can
be selected to process the current job.
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2.2.3. Job-Machine Allocation Steps for UPMST Scheduling Problems

Based on the above job distribution rules and scheduling objectives, the machines for
each job at each stage are selected. Since each production stage is both independent and
sequentially related, the multi-stage UPMST scheduling problem is reduced to multiple
interconnected single-stage UPMST scheduling problems. We give the processing sequence
and scheduling target of the job in the first stage in advance and get a series of scheduling
results, such as processing machines, start time, and completion time for each job in each
stage, by using the allocation rules. The following Algorithm 1 shows the pseudo-code of
the order-machine assignment process.

Algorithm 1: Job-machine assignment process

MCTk = PRETk, ∀k ∈ M;
MCPk = 0, ∀k ∈ M;
PUBT1,i = ORi, ∀i ∈ N;
for j = 1 : S

for i = 1 : N
switch(rs)

case1 : fPi ,k′ = min
{

SPTMCPk ,Pi

}
, ∀k ∈ Mj,Pi ;

case2 : fPi ,k′ = min
{

PTPi,k

}
, ∀k ∈ Mj,Pi ;

case3 : fPi ,k′ = min{MCTk}, ∀k ∈ Mj,Pi ;
case4 : fPi ,k′ = max

{
PTPi ,k

}
, ∀k ∈ Mj,Pi ;

case5 : fPi ,k′ = max{MCTk}, ∀k ∈ Mj,Pi ;
case6 : fPi ,k′ = min

{
PTPi ,k + MCTk

}
, ∀k ∈ Mj,Pi ;

case7 : fPi ,k′ = max
{

PTPi ,k + MCTk
}

, ∀k ∈ Mj,Pi ;
case8 : fPi ,k′ = min

{
SPTMCPk ,Pi + PTPi ,k

}
, ∀k ∈ Mj,Pi ;

case9 : fPi ,k′ = min
{

SPTMCPk ,Pi + MCTk
}

, ∀k ∈ Mj,Pi ;
case10 : fPi ,k′ = min

{
SPTMCPk ,Pi + PTPi ,k + MCTk

}
, ∀k ∈ Mj,Pi ;

end
STPPi ,k′ = max

(
SPTMCPk ,Pi + MCTk, PUBTj,Pi

)
+ PTPi ,k′ ;

STAPi ,k′ = STPPi ,k′ − PTPi ,k′ ;
MCTk′ = STPPi ,k′ ;
MCPk′ = Pi;
Cj,Pi = STPPi ,k′ ;

end
P′ = sort

(
Cj,1, Cj,2, Cj,3, · · · , Cj,N

)
;

P = P′;
PUBTj+1,i = Cj,i, ∀i ∈ N;

end

The distribution of jobs for production processes with unrelated parallel machines can
be achieved as follows:

(1) At the initial moment, the current available time of each machine is 0, and the job
number of all machines currently completed is set to be 0, and all jobs are in the first
production stage;

(2) The production sequence P of the job is taken, and the job Pi to be processed is
processed in order. According to the selected job allocation rules, the machine set k′

that can be used in the current production stage j of the job is obtained so as to select
the most suitable machine k to process the job;

(3) Determine the start processing time and completion time of job Pi on machine k;
(4) The completion time of job Pi on machine k is recorded as the current available time

of machine k;
(5) Record the completion time of the current production stage of the job Pi;
(6) Recording the current completed job number on machine k;
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(7) Judging whether Pi is the last job of the production sequence, if so, continue the
following steps to complete the scheduling process, and if not, return to step (2), and
then arrange the production of the next job;

(8) Arrange the completion time of the jobs in the current stage j in ascending order
to obtain the production sequence of the jobs in the next stage, and the completion
time of the job at this stage j is regarded as the release time of the virtual job at the
beginning of the next process;

(9) Determine whether the current production stage j is the last production process; if so,
complete the job allocation, otherwise return to (2), and continue to arrange the job
production in the next stage.

According to the above scheduling method, any given production process and job
allocation rules of each stage can obtain a reasonable scheduling scheme that satisfies
production constraints.

The key to solving the scheduling optimization model proposed in this paper is
to determine the optimal production sequence and set of job assignment rules, which
is essentially a typical combinatorial optimization problem. In this paper, we use the
improved line-up competition algorithm (ILCA) to solve the model.

3. Proposed Improved LCA
3.1. Original LCA

LCA is a stochastic optimization algorithm inspired by biology to simulate the process
of biological evolution [23]. However, it is different from classical population intelligence
optimization algorithms, such as genetic algorithms. Each family evolves independently
and parallelly and generates its offspring through asexual reproduction. In addition, the
competition forms include the survival competition of each generation in the vertical family
and the status competition of each horizontal family. It is widely applied to complex
optimization problems, such as mixed integer nonlinear programming problems and
combinatorial optimization problems. The input to LCA is the solution for the multiple
groups of individuals being evaluated. Once the fitness value of the individual is evaluated,
the parent generation is selected to generate a new generation of offspring through the
mutation strategy. The main feature of the proposed line-up competition algorithm is that
the fine local search and the rough global search are carried out simultaneously so that
the search speed is fast and an optimal or satisfactory solution can be obtained. In the
following section, we describe the proposed ILCA in detail.

For the UPMST scheduling problem, the basic steps of LCA are as follows:

(1) Use random or other methods to generate n groups of mixed sequences consisting of
all job production sequences and jobs using job assignment rules at each stage to form
n initial populations;

(2) Calculate the scheduling objective function corresponding to each mixed sequence,
and arrange each mixed sequence in ascending or descending order according to the
fitness value;

(3) According to the sorting result, separate the production sequence and the job assign-
ment rule set in the mixed sequence to implement the mutation strategy, and obtain
the corresponding m sub-generation mixed sequences;

(4) Comparing the fitness values of the mixed sequences of the descendants of each family
and the mixed sequences of the parents, in turn, and retaining the optimal individual
as the parent to participate in the next round of competition for a platooning position;

(5) Judge whether the evolution reaches the given termination condition; if not, return to
step (2); if it is reached, stop the evolution.

The flow chart of the calculation is shown in Figure 2.
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3.2. Improved LCA

In this paper, the random generation method is used to generate the initial popu-
lation because random generation can expand the scope of the global search and avoid
prematurely falling into the local optimal solution. In the heuristic artifact assignment rules
proposed in the past, assignment rules are generally proposed in the form of minimization.
This rule often has a small search space in practical solutions. Therefore, in order to reduce
the occurrence of the above situation, new rules, such as selecting the machine with the
maximum processing time, are added to the job allocation rules proposed in this paper. In
addition, a suitable mutation strategy can generate excellent individuals to increase the
search rate, thus speeding up the iterative convergence speed and obtaining the production
scheduling plan faster. In previous research work, two jobs in an individual are randomly
selected to exchange their production sequence positions to generate new solutions. How-
ever, the variation scale of this method is relatively small, which is not enough to jump
out of the local optimum range. Furthermore, it may reduce the search range of the origi-
nal suboptimal solution, which is not conducive to a global search. Therefore, this work
proposes a mutation strategy based on these mutation strategies. See Figure 3 for details.

First, two position numbers of the production sequence are randomly selected to
prepare for the population mutation step in the algorithm. We proposed five forms of
variation, which are described as follows. Strategy 1: The two position numbers are
interchanged. Strategy 2: The production sequence between the two position numbers and
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the sequences, including the two position numbers, is arranged in reverse order. Strategy
3: The sequence from the second position number sequence to the end is placed first, the
sequence that includes the first position number before the first position number succeeds,
and the sequence between the two positions is placed last. Strategy 4: Put the two position
numbers taken out at the first position of the original production sequence, and place
the remaining production sequences in turn. Strategy 5: Randomly shuffle the sequence
rearrangement. The new job processing order is obtained by the above variation strategy,
and the corresponding job assignment rules are updated randomly so that the new order of
jobs is processed with the new allocation rules.

The initial solution obtained is sorted in ascending order, and the result of the obtained
sort is subjected to the following variation operation. The top 20% of individuals in the
top 20% of the family remained unchanged; strategy 1 was implemented for individuals
ranked 21% to 40%; Strategy 2 was adopted for individuals ranked 41% to 60%; Strategy 3
was applied for individuals ranked 61% to 80%; and Strategy 4 was used for individuals
ranked 81% to 100%. The top 20% of individuals in families ranked 21% to 40% adopted
strategy 1; individuals ranked 21% to 40% implemented Strategy 2; individuals ranked
41% to 60% adopted Strategy 3; individuals ranked 61% to 80% applied Strategy 4; and
individuals ranked 81% to 100% used Strategy 5. Strategy 1 was applied to the top 20% of
individuals in families ranked 41% to 60%; Strategy 2 was implemented for individuals
ranked 21% to 40%; Strategy 3 was applied for individuals ranked 41% to 60%; Strategy 4
was applied for individuals ranked 61% to 80%; and Strategy 5 was used for individuals
ranked 81% to 100%. The top 20% of individuals in families ranked 61% to 80% adopted
Strategy 1; individuals ranked 21% to 40% implemented Strategy 2; individuals ranked
41% to 60% adopted Strategy 3; individuals ranked 61% to 80% applied Strategy 4; and
individuals ranked 81% to 100% used Strategy 5. Strategy 1 was adopted for the top 20% of
individuals in the family ranked 81% to 100%, Strategy 2 was implemented for individuals
ranked 21% to 40%, Strategy 3 was adopted for individuals ranked 81% to 100%, Strategy 4
was applied for individuals ranked 61% to 80%, and Strategy 5 was used for individuals
ranked 81% to 100%.

New families are obtained by the above mutation strategy. Top-ranked families
are searched in a smaller space by implementing smaller variants, thus increasing local
search ability and speeding up convergence. The global search capability is increased by
implementing larger variants for lower-ranked families to perform a larger spatial search.
In this way, the local search and global search of the algorithm are synchronized.
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4. Computational Experiments

In this section, to evaluate the effectiveness and efficiency of the proposed method,
we demonstrate the following two test experiments. The proposed ILCA in the previous
section is implemented in a high-level matrix language and run on a PC equipped with
an Intel Core i5-6300HQ (2.3 GHz) CPU and 12 G RAM. The results obtained using the
proposed ILCA are compared with the results reported in the literature.
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4.1. Single-Stage UPMST Scheduling

The first experiment is a single-stage UPMST scheduling problem that considers the
optimization objective of the traditional scheduling problem, i.e., the objective function is
to minimize the maximum completion time. The performance of ILCA is also compared
with several approaches previously reported in the literature for unrelated parallel machine
problems and the same scheduling objective. For this benchmark test, there are other
researchers who have done the same experiments, and they all proposed optimization
algorithms to solve the UPMST scheduling problem. For example, the taboo search (TS)-
based meta-heuristic algorithm proposed by Helal et al. [25], the randomized priority
search meta-heuristic (Meta-RaPS) method proposed by Rabadi et al. [26], and the ant
colony optimization (ACO) method proposed by Arnaout et al. [27]. Among them, the TS
method applies a two-stage perturbation scheme, that is, an in-machine perturbation to
optimize the work order on the machine and an out-of-machine perturbation to balance the
work-to-machine assignment. The ACO method solves the UPMST problem by applying
machine assignment and then sequencing the process.

The test problems used in this study are obtained from the Scheduling Research web-
site for the test problem dataset and the solution files obtained from previous studies [28].
Stated differently, the processing and setup times are randomly generated from two uni-
form distributions, U [50,100] and U [125,175]. When the processing and setup times are
balanced (denoted by B), both the processing and setup times are obtained from U [50,100].
When the processing time dominates (denoted by P), they are separately generated from U
[125,175] and U [50,100]. When the setup time is dominant (denoted by S), the processing
time and setup time are obtained from [50,100] and [125,175], respectively. The resulting
test problem dataset was obtained. This work focuses on problems with 6 to 11 artifacts and
2 to 8 machines. A total of 54 problem combinations are obtained with different number of
artifacts, number of machines, and different dominance of processing time and preparation
time. Each machine–job combination generated another 15 problem instances for testing.
Thus, we make 810× (54× 15) instances for the problem set. The choice of parameters may
affect the quality of the computational results. For our proposed ILCA, based on extensive
computational testing, the following parameters are used for the experiments reported in
this paper: an initial population of 200 and a number of iterations of 500. On top of this,
15 independent runs are also performed for each instance. All experiments terminate the
algorithm computation after satisfying the termination condition, which is the number of
iterations. ILCA is compared with four existing algorithms for solving the problem: TS
by Helal et al. [25], Meta-Raps (MR) by Rabadi et al. [26], ACO by Arnaout et al. [27,29],
and ACOII.

The simulation results are shown in Figure 4, where (a) indicates when setup time
and processing time are balanced, (b) indicates when processing time is dominant, and
(c) indicates the solution results of different algorithms when setup time is dominant. The
values in the graph represent the minimum of the results of 15 independent simulations.
The horizontal coordinates indicate the combination of different numbers of machines and
workpieces. 2(6) indicates that there are two parallel machines, and the number of orders
to be processed is 6 pieces. From the figure, it is clear that the optimal values obtained by
ILCA are better than other algorithms.

For the given problem instance, the performance of the proposed algorithm is evalu-
ated in this work by means of the average deviation δ. The average deviation of the existing
algorithm from the ILCA is calculated as follows:

δ =
A− B

B
(2)

where A is the optimal objective value found for a problem instance using other optimiza-
tion methods, and B is the optimal value solved by the ILCA proposed in this work. It is
worth noting that, in essence, the δ metric is similar to the optimality gap usually reported
in optimization software. Table 2 shows the δ values for the test instances of the problem.
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Table 2. Average deviation of the existing algorithm from the ILCA.

M N PTi,k,SPTi,i′ Balanced PTi,k Dominant SPTi,i′ Dominant
MR TS ACO ACOII MR TS ACO ACOII MR TS ACO ACOII

2 6 0.212 0.217 0.212 0.212 0.145 0.149 0.145 0.145 0.306 0.310 0.306 0.306
7 0.165 0.177 0.165 0.165 0.103 0.107 0.103 0.103 0.223 0.230 0.223 0.223
8 0.122 0.131 0.121 0.121 0.106 0.109 0.106 0.106 0.240 0.246 0.240 0.240
9 0.120 0.131 0.120 0.120 0.095 0.100 0.095 0.095 0.186 0.196 0.186 0.186

10 0.108 0.124 0.108 0.108 0.075 0.081 0.075 0.075 0.192 0.199 0.192 0.192
11 0.410 0.449 0.410 0.410 0.069 0.075 0.069 0.069 0.142 0.154 0.142 0.142

4 6 0.386 0.458 0.386 0.386 0.223 0.237 0.223 0.223 0.593 0.633 0.593 0.593
7 0.386 0.458 0.386 0.386 0.222 0.257 0.222 0.222 0.561 0.604 0.561 0.561
8 0.392 0.428 0.392 0.392 0.215 0.226 0.215 0.215 0.558 0.600 0.558 0.558
9 0.292 0.290 0.289 0.289 0.141 0.139 0.141 0.141 0.360 0.361 0.360 0.360

10 0.262 0.270 0.262 0.262 0.149 0.154 0.149 0.149 0.332 0.337 0.332 0.332
11 0.234 0.261 0.234 0.234 0.136 0.164 0.138 0.136 0.324 0.346 0.324 0.324

6 8 0.420 0.467 0.420 0.420 0.224 0.240 0.224 0.224 0.606 0.634 0.606 0.606
9 0.411 0.477 0.411 0.411 0.222 0.252 0.222 0.222 0.593 0.637 0.593 0.593

10 0.383 0.459 0.386 0.383 0.213 0.249 0.213 0.213 0.585 0.650 0.585 0.585
11 0.391 0.521 0.393 0.391 0.209 0.272 0.209 0.209 0.552 0.623 0.552 0.552

8 10 0.394 0.430 0.394 0.394 0.208 0.229 0.209 0.208 0.583 0.601 0.583 0.583
11 0.416 0.435 0.416 0.416 0.215 0.242 0.215 0.215 0.587 0.618 0.587 0.587

Average 0.299 0.338 0.299 0.299 0.162 0.179 0.162 0.162 0.408 0.433 0.408 0.408

For the above test example problem, the average performance of ILCA is significantly
better than other algorithms as can be seen in the results presented in the table. Note that a
positive value of δ indicates that ILCA performs better, and a negative value indicates that
ILCA performs worse than the listed algorithms. For the three different dominant cases, it
can be seen that the performance of ILCA is better than the other two cases when SPTi,i′

is dominant, that is, when the value of the conversion time is greater than the processing
time, the minimum completion time obtained by ILCA is better. Specifically, if the rule is
based on average performance, then for this problem, ILCA ranks first, followed by MR,
ACO, and ACOII, and TS ranks last.

Additionally, to test for significant differences between algorithm performance, a
paired t-test is performed for all problems to determine the best algorithm with a 95%
confidence interval (see Table 3). The results indicate that the differences in the means of the
mean differences of (TS-ACOII), (MR-ILCA) and (ACO-ILCA) are statistically significant
(small p-value, p < 0.05). On the other hand, it is indicated that the differences in the means
of the mean differences of (ACOII-MR) are not statistically significant (p > 0.05).

Table 3. Paired t-tests with 95% CI.

Paired t
Tests

Mean Difference
(MD) SD t Stat Two-Tailed p 95% CI on MD

PTi,k, SPTi,i′

balanced TS-ACOII 7.448 9.543 12.825 1.060× 10−29 [6.305,8.592]

ACOII-MR −0.067 0.778 −1.408 0.160 [−0.160,0.027]
MR-ILCA 70.463 5.410 214.015 1.81× 10−302 [69.815,71.111]

ACO-ILCA 70.452 5.328 217.295 3.10× 10−304 [69.814,71.090]
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Table 3. Cont.

Paired t
Tests

Mean Difference
(MD) SD t Stat Two-Tailed p 95% CI on MD

PTi,k
dominant TS-ACOII 6.759 9.710 11.438 5.960× 10−25 [5.596,7.923]

ACOII-MR −0.015 0.243 −1.000 0.318 [−0.044,0.014]
MR-ILCA 72.848 6.933 172.662 1.44× 10−277 [72.017,73.679]

ACO-ILCA 72.911 6.899 173.653 3.14× 10−278 [72.084,73.738

SPTi,i′

dominant TS-ACOII 8.063 9.922 13.353 1.510× 10−31 [6.874,9.252]

ACOII-MR −0.015 0.243 −1.000 0.318 [−0.044,0.014]
MR-ILCA 146.993 8.432 286.460 0.000 [145.982,148.003]

ACO-ILCA 146.996 8.436 286.325 0.000 [145.986,148.007]

Tables 2 and 3 adequately demonstrate the average performance of the algorithm,
but these values do not provide a detailed representation of the distribution of the com-
putational results. To visualize the distribution of the results, this study summarizes the
computational results in a box-line plot. Figure 5 box plots for all problem instances (in-
cluding all instances and computed results). 1 to 4 on the horizontal coordinates indicate
the mean deviations of MR, TS, ACO, ACO II, and ILCA when PTi,k and SPTi,i′ are in
equilibrium, respectively, and similarly 5 to 8 indicate the case when PTi,k is dominant,
and similarly 9 to 12 would indicate the dominance of SPTi,i′ . Where δ values greater than
1.5 times the interquartile range are defined as outliers and are indicated by separate data
points, no outliers can be seen in the graph. In the equilibrium case, the upper median of
the mean deviation indicates the average level of this data sample, which is also indicated
by the high value of δ. The trend direction of the variation seems to follow the same trend
as the average performance. In other words, regardless of who is dominant in SPTi,i′ and
PTi,k, the change in the mean deviation values of TS and ILCA is the largest, and the change
in the difference between MR, ACO, ACOII, and ILCA is significantly slower in relative
terms. This can be summarized by saying that the better the average performance, the
lower the variability. This again verifies the validity and stability of the ILCA.

4.2. Multi-Stage UPMST Scheduling

The second experiment is about a multi-stage UPMST scheduling problem time. In
this subsection, the green optimization objective of this scheduling problem is considered
for the rational scheduling of the continuous casting and rolling production process in the
aluminum industry [30], with the objective function of minimizing the energy loss and
furnace waiting processing time due to the interruption of continuous casting and rolling.
It is well known that the aluminum industry is the metallurgical process with the highest
integrated energy consumption per unit. The continuous casting and rolling line in the
aluminum production process means that the aluminum liquid coming from the refining
furnace must be cast into aluminum ingots of corresponding shapes and specifications on
the casting machine within a certain period of time according to the order properties, and
then sent to the rolling mill for rolling after a very short heating time. In this production
line, there is more than one aluminum refining furnace, continuous casting machine, and
continuous rolling unit working in parallel, so it is an unrelated parallel machine scheduling
problem. Between the melting and casting process, the aluminum liquid needs preparation
time, which means waiting for processing time. Similarly, the aluminum ingots cast in the
continuous casting machine have a preparation time from the continuous casting machine
to the rolling mill, which is the UPMST scheduling problem studied in this paper. In
addition, improperly sequenced production of workpieces in each process can lead to
manufacturing interruptions, so we try to achieve zero waiting in the production process
to reduce energy losses and thus achieve the goal of green scheduling as much as possible.
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In this study, the scheduling solution obtained by the ILCA solution is compared with the
results of previous studies, and it is proved that the solution obtained by ILCA is better
than the solution in the compared literature.
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This example comes from [31] and the details include a pour with 12 furnaces (jobs)
that undergo 3 processes of refining, continuous casting and rolling to obtain the final
aluminum product. The entire line has 4 refining furnaces, 3 continuous casters, and
2 rolling mills, and each machine has a different processing capacity. The initial population
number is taken to be 200, the maximum number of iterations is 200, the algorithm is run
independently 15 times, and the termination condition is set to the maximum number of
iterations. To verify the efficiency of ILCA method for solving continuous casting and
rolling lines, several tests were conducted. A set of test results is shown in Figure 6, which
shows the iterative convergence process of minimizing the energy loss due to continuous
casting and rolling interruptions and the furnace waiting processing time for solving the
continuous casting and rolling line scheduling problem for aluminum with ILCA. From the
figure, it can be seen that ILCA has a strong ability to overcome premature convergence and
avoid falling into the local optimum. When iterating from 50 generations to 150 generations,
the optimal solution remains unchanged. A new optimal solution was obtained when
iterating to 150 generations, which means that the population diversity of ILCA does not
become worse as the number of iterations gradually goes deeper. And the search accuracy
and search efficiency are significantly enhanced, and the global search ability is better.
Figure 7 shows the final scheduling solution obtained by solving it with ILCA. We can
also know from the diagram that every machine is used reasonably, and the connection
between jobs is also very compact, which meets our actual production requirements. The
rolling process is not interrupted, the continuous casting process is only interrupted by
1 time unit, and all jobs wait for 532 time units during the whole production process, which
maximally meets the objective function of reducing interruptions in the continuous casting
and rolling line. The experimental results show that the structure of the mathematical
model of UPMST is realistic and reasonable, and that the program implemented according
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to the mathematical model can meet the technical requirements. ILCA quickly obtains the
optimal scheduling solution, and the application of the scheduling model for continuous
casting and rolling lines with unrelated parallel machines is practical and competitive.
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5. Conclusions

In this study, we propose a stochastic optimization algorithm also known as an im-
proved queuing competition algorithm to solve the unrelated parallel machine scheduling
problem with setup time. ILCA retains the advantages of LCA with few control parameters,
simple programming, and stable operation, and proposes some new artifact allocation rules
and population variation strategies to alleviate the phenomenal difficulty of getting into
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local extremes to some extent. The new assignment rules and different variation strategies
according to different probabilities are applied to perform local and global simultaneous
searches, which improves search accuracy and rate. In the first benchmark test experiment,
it is shown that the proposed algorithm outperforms the final results of all the algorithms
compared with it, and the average performance is better than the listed algorithms, veri-
fying the effectiveness and stability of ILCA. The second example shows that ILCA can
find a new optimal solution in the later stage of the iteration, thus jumping out of the local
optimum. Moreover, the idle time of the machine is relatively short, which proves that the
algorithm obtains a scheduling scheme that satisfies complex production constraints. Over-
all, ILCA with the new mutation strategy and the new heuristic artifact allocation rule has
a better performance in solving the benchmark case of UPMST. In addition, when solving
complex, actual production cases, a scheduling scheme that satisfies production constraints
is also obtained. In future research, the large-scale UPMTS needs to be further explored
to demonstrate the effectiveness and efficiency of ILCA in solving the large-scale UPMST.
We will apply triangulation to verify the experimental data. Of course, it is necessary to
consider the green optimization objective to help the enterprise reduce carbon emissions in
production, so we will consider both the economic efficiency and carbon emissions for the
aluminum continuous casting and rolling line. Therefore, we will optimize the solution for
the aluminum continuous casting and rolling line, considering both economic efficiency
and carbon emission, and develop a scheduling scheme that can provide some guidance
for production planning.
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