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Abstract: The control of robotic manipulators has become increasingly difficult over recent years
due to their high accuracy, performance, speed, and reliability in a variety of applications, such as
industry, medicine, research, etc. These serial manipulator systems are extremely complex because
their dynamic models include perturbations, parametric variations, coupled nonlinear dynamics,
and non-modular dynamics, all of which require robust control for trajectory tracking. This paper
compares two control techniques: computational torque control (CTC) and sliding mode control
(SMC). In this study, the latter was used for a physical robotic arm with six degrees of freedom (DOF)
and online experiments were conducted, which have received little attention in the literature. As a
result, the contribution of this work was based on the real-time application of this controller via a
self-developing interface. The great resilience of sliding mode controllers to disturbances was also
demonstrated in this study.

Keywords: sliding mode control; six degrees of freedom; manipulator; real-time application

1. Introduction

Serial manipulators can perform complex tasks that human beings cannot perform
because they could be harmed or because they do not have the precision or force, or ei-
ther, that are required to perform those tasks. However, to fully fulfill this ability, serial
manipulators require robust control. Thus, the design of manipulators needs to consider
nonlinear dynamical models, parameter uncertainties, perturbations, and non-model dy-
namics. PID and PD controllers are some of the most widely applied control schemes
for robot manipulators due to the simplicity of their implementation. However, these
types of controllers have some drawbacks. A PD controller needs a gravitational term in
the control law for nonplanar manipulators [1]. Meanwhile, a PID controller requires a
tuning procedure to allow good performance [2]. These controllers also lack precision for
non-modeled dynamics, such as friction or unknown external torques. Finally, they can
only be used to track set points [3].

Trajectory tracking and motion control refer to when a manipulator follows a proposed
path, which is usually obtained using inverse kinematics. One of the common solutions is
the CTC (which is a feedback linearization method). This method has the disadvantages of
knowing the dynamical model a priory and being not robust. To counter these problems,
control researchers have combined CTC with other techniques, such as adaptive control [4],
fuzzy logic [5], and neural networks [6]. Although these methods can estimate the dynamics
of the proposed model, they are not robust to perturbations.

SMC is a robust control method that has been extensively studied by control re-
searchers and demonstrates qualities such as parametric in-variance, dynamic collapse,
and asymptotic convergence in the presence of perturbations [7,8]. One way to design an
SMC is to use the equivalent control method (ECM) [9]. This method introduces a known
part of the model system into the control law to reduce the chattering phenomena, which
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are a well-known drawback of SMC systems. By doing this, the SMC only deals with the
nonmodeled dynamics and the estimation errors of the parameters [10–12].

In the field of robotics, the known part of an ECM is the dynamic model of a robotic
arm [13]. These dynamic models are complex due to the coupling of the chain of masses
and inertia and the large number of terms that appear for arms with more than three
DOFs [14]. For this reason, in the literature, various authors have combined different
control techniques and computer algorithms to estimate the known part of the ECM. In [15],
Bailey and Arapostathis used a classical SMC surface with the known part of the ECM in
a 2DOF manipulator. Kumar and Prasad [16–18] compared the use of CTC and SMC to
the known part of the ECM, which showed the advantage of using SMC over the ECM
in a 3DOF manipulator. The paper [19] proposed a novel sliding mode control (NSMC)
that was based on an extended gray wolf optimizer (EGWO). The NSMC employed a PD
surface with an exponential term that was combined with the ECM in a 2DOF manipulator
and surface gains were selected using the EGWO. However, as in CTC, it is necessary to
know the dynamic model in the ECM. In [20], Thuan et al. combined intelligent control
with second-order sliding mode control (SOSMC). A radial basis function network (RBFN)
calculated the dynamic model and nonmodeled dynamics of a 4DOF dual arm (DAM)
(2DOF in each arm). Furthermore, Thuan et al. in [21] used model reference adaptive
control (MRAC) instead of RBFN with SOSMC for the same DAM. An optimal sliding mode
control approach, which was used in [22], combined optimal control with SMC for optimal
robustness properties. In this approach, an observer of the disturbance was in charge of the
adaptive part of the control and applied this control to the 2DOF planar manipulator.

There are two main problems with the techniques that were presented in [9–14].
One is that SMC is a simple control law that depends only on the selection of a gain
and a surface, which, in turn, depends on the state of the system [23]. The use of this
technique makes the control law and its application more difficult. Second, they only
simulate the control strategy. For implementation, ref. [24] proposed an SMC with a
sliding perturbation observer (SPO). The SPO estimated the reaction force of a 6DOF DAM
(3DOFs in each arm). Jeong et al. [25] applied a super-twisting algorithm (STA) with an
adaptive law to an industrial 4DOF robot using only 2DOF and an XY planar manipulator.
Paper [26] presented an adaptive sliding mode neural network control (ASMNN). This
control approach coupled the SMC with a radial basis function neural network (RBFNN),
which was implemented in a three-link robot manipulator (3DOF). Similarly, ref. [27] used
the same control strategy for the same manipulator, taking into account the dead zone.

Control techniques for other types of system can also be found in the literature. In [28],
an NN in combination with a fractional order SMC was used to control an active power
filter. The NN was in charge of the estimation of the uncertainties and nonlinearities, while
the fractional order SMC improved the precision and performance of the control. The
controller was implemented in real time and produced excellent results.

Ref. [29] combined a pole placement control, time delay estimation (TDE), and adaptive
sliding mode control. The authors implemented the controller with a 6DOF Mitsubishi robot
that used only 2DOF. To increase robustness in the reaching phase of the SMC, article [30]
proposed an adaptive integral sliding mode control (AISMC) with a TDE, which was
implemented with 3DOF of a 6DOF PUMA robot. The articles [15–20] only implemented
controllers with a few DOFs of the manipulator. Hee et al. in [31] implemented a PID
controller for the gravitational term of a physical 7DOF DAM. An SPO was used to estimate
the evaluation force of the manipulator. However, as mentioned above, the PID controller
could not be used for trajectory tracking.

The literature has proposed a variety of control techniques. Most of them involve
the simulation of the controllers. For the implemented controllers, the majority used
fewer DOFs than were available in the corresponding system. One example was an
implementation of a 7DOF controller, but only for set-point tracking. Another point to
address is the gain selection of the sliding-mode control. For a robot driven by DC motors,
the limit gain is the maximum voltage in the power converter. When the controller needs
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more energy, the robot cannot reach or stay on the surface. The main focus of this paper
was to find the voltage (SMC gain) that is needed for trajectory tracking. The novelty of this
paper was the procedure that was used to validate the SMC gain in an n-DOF manipulator
driven by DC motors. To the authors’ knowledge, there has not yet been a discussion
regarding the verification of the above.

In [32], a suggested strategy was compared to achieve finite-time convergence, flicker-
free control input, superior tracking performance, and resilience of the robotic manipulator.
The difficulty of this type of method is implementation in real time, as in this project,
since the programming of fractional control algorithms is quite complex to carry out in
an embedded way. In [33], an unmanned aerial vehicle (UAV) system with 6 degrees
of freedom (6DOF) and external disturbances that corresponded to sensor failure was
discussed. This form of pure SMC controller is still employed in robotics, and we utilized it
in this paper to control the manipulator robot in a robust trajectory, following our proposed
work. Using Lyapunov’s theory, see Ref. [34] showed that a well-designed control could
ensure that transnational and rotational tracking errors converge at the origin in a finite
amount of time. However, only numerical simulations were carried out to demonstrate
that the developed control scheme had a high level of robustness and a quick convergence
time and demonstrated elimination of entry saturation and suppression of chattering. In
this study, we proposed the use of real-time control through an SMC.

In this paper, a classical SMC dealt with the nonmodeled dynamics for the error
estimation of the parameters and perturbations of a 6DOF manipulator that was driven
by DC motors. The dynamical model was not applied to the control law (the known
part of the ECM), which made the control law of the SMC simpler. When the numerical
simulations were compared to those of CTC and SMC, SMC showed better robustness
with easy implementation. The SMC experiments were performed using self-developed
hardware that sent and received data between MATLAB and the robot. SMC gain was
validated using Lyapunov stability analysis and actuator dynamics.

The paper is organized as follows. The mathematical model of the actuator manip-
ulator is presented in Section 2. Section 3 deals with the CTC and the SMC. Numerical
simulations of the CTC and SMC are presented in Section 4. Section 5 details the experi-
mental results of the obtained SMC gain. Finally, Section 6 discusses the conclusions and
areas for further development.

2. Mathematical Problem and Model

In this section, we introduce the mathematical model that was used to construct the
robust control that was based on sliding modes. We rely on the most popular mathematical
models from the literature, since this type of dynamic modeling is still used for the design
of automatic control technology [11]. Therefore, the classical dynamic model of an n-DOF
manipulator is expressed as follows.

D(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = u(t) (1)

The inertia, Coriolis, and centrifugal matrices and the gravity vector are given by D(q),
C(q, q̇), and g, respectively, and u(t) is the control input of the system. By representing (1) as
a separation of equations for each DOF, it yielded the following.

n

∑
j=1

dkj(q)q̈ +
n

∑
i,j

cijk(q)q̇i q̇j + gk(q) = uk (2)

where k is the DOF of the manipulator.
Much of the previous research has focused on electrical positions, which was helpful

as it allowed us to model more accurately and helped us develop our controller. The control
input of the dynamic Equation (1) was the torque that was produced by the actuators in
each DOF. In this case, the manipulator was driven by DC motors. The system was the
input for the voltage in the motor terminals. For this reason, we could obtain the input of
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the model in voltage terms by combining the dynamical models of the manipulator and
the actuators. The linear model of a DC motor was given by:

va(t) = La
dia(t)

dt
+ Raia(t) + Ke

dθ(t)
dt

Ktia(t) = J
d2θ(t)

dt2 + B
dθ(t)

dt
+ nτ(t)

(3)

where the inductance La, electrical resistance Ra, and electrical constant Ke are the electrical
parameters and the rotor inertia J, viscous friction B, and mechanical constant Kt are the
mechanical parameters. The current and voltage are va = va(t) and ia = ia(t), the motor
shaft angular displacement is θ = θ(t) , n is the transmission ratio, and τ = τ(t) is the
toque load, which is also known as the disturbance.

When we coupled Equations (1) and (3), there were three state variables (angular
position, angular velocity, and current). In the literature, we found that Equation (3) could
be reduced to one state variable. To achieve this, we compared the magnitude of the
electrical time constant (ETC) with the mechanical time constant (MTC) by defining these
constants as:

ETC = La
Ra

MTC = J
B

For the manipulator used in this article, the MTC was 168 times higher than the ETC
in the arm motor and 40 times higher in the wrist motors. Dividing Equation (3) by Ra, i.e.,
La/Ra = 0, and writing Equation (3) according to its components yielded:

Jk θ̈k + (B +
KekKtk

Rak
)θ̇k =

Ktk
Rak

vak − nkτk (4)

By dividing Equation (4) by nk and expressing B = (KekKtk/Rak), we obtained:

Jk
nk

θ̈k +
B
nk

θ̇k =
Ktk

Raknk
vak − τk (5)

where θk is the angular displacement that the motor saw. When we wanted to combine (5)
and (2), θk was necessary in terms of the manipulator. By substituting θk = qk

nk
into

Equation (5), it yielded:
Jk

n2
k

q̈k +
B
n2

k
q̇k =

Ktk
Raknk

vak − τk (6)

When comparing Equation (2) with (6), the control input of (2) was the load torque
of (6). By combining these equations, we obtained a model for the manipulator that was
driven by a DC motor, which was presented as follows:

Jk

n2
k

q̈k +
n

∑
j=1

dkj(q)q̈ +
n

∑
i,j

cijk(q)q̇i q̇j +
B
n2

k
q̇k + gk(q) =

Ktk
Raknk

vak

or as matrices:
(D(q) + J)q̈ + C(q, q̇)q̇ + Bq̇ + g(q) = u (7)

where

D(q), C(q, q̇), B, J ∈ Rnxn

q, q̇, q̈, g, u ∈ Rnx1

where J and B are diagonal matrices with terms Jk/n2
k and Bk/n2

k , respectively. The control
input was given by a vector with terms:

uk =
Kk

Raknk
vak (8)
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As in the analysis that was performed in [1], we could compute the voltage input that
was needed for the control.

3. Computed Torque Control and Sliding Mode Control
3.1. CTC

CTC is a feedback linearization technique that uses the dynamic model of a manipula-
tor in the control law. To achieve this, we write Equation (7) as follows:

M(q)q̈ + h(q, q̇) = u (9)

where

M(q) = (D(q) + J)
h(q, q̇) = C(q, q̇)q̇ + Bq̇ + g(q)

As M(q) was full-rank and square, its inverse also existed. Thus, we selected a control
law as follows:

u = M(q)v + h(q, q̇) (10)

where
v = −αq− βq̇ + r(t) (11)

where α and β are diagonal matrices and r(t) is the trajectory of each DOF, which was
defined as:

r(t) = q̈d(t) + αq̇d(t) + βqd(t) (12)

Equation (11) contained the position (qd(t)), velocity (q̇d(t)), and acceleration (q̈d(t)) of
the trajectory that was proposed. Substituting Equation (11) into (10) yielded the following:

v = q̈d(t) + αė(t) + βe(t) (13)

where e(t) = qd(t)− q is the error of the trajectory tracking.
Applying the control (10) to the dynamic model (9), we obtained the following.

ë(t) + αė(t) + βe(t) = 0 (14)

Equation (14) showed a homogeneous second-order linear differential equation. An-
other property exhibited by Equation (14) was that the set of equations did not lump
together. In this sense, we could treat each differential equation separately. With this in
mind, we added a disturbance to Equation (9) and, using the same control law as (10), we
obtained the following:

ë(t) + αė(t) + βe(t) = f(t) (15)

where f(t) ∈ Rnx1

As the equations were not lumped, we could use one equation for the Lyapunov
stability analysis. To do this, we passed the first equation into state-space. By selecting
x1(t) = e1(t) and x2(t) = ẋ1(t) = ė1(t), we wrote the state-space equation as:

ẋ1(t) = x2(t)

ẋ2(t) = −α11x2(t)− β11x1(t) + f1(t)
(16)

Then, using the following Lyapunov candidate function:

V =
1
2

α11x2
1(t) +

1
2

x2
2(t) (17)

taking the time derivative of the Lyapuniov function, it yielded:

V̇ =
[

∂V
∂x1

∂V
∂x2

][x1(t)
x2(t)

]
(18)
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V̇ = −α11x2
2(t) + x2 f1(t) (19)

The function presented in Equation (19) was not definitely negative because we could
not use a static negative sign in the term x2 f1(t). When we did not take the disturbance
into account, Equation (19) became:

V̇ = −α11x2(t)2 (20)

The above derivative was always negative, but only in the state x2(t). To prove total
stability, we used La Salle’s theorem with V̇ = 0:

0 = −α11x2
2(t) (21)

This meant that x2(t) = 0. Thus, its derivative also equaled zero: ẋ2(t) = 0. Substitut-
ing x2(t) and ẋ2(t) into the state-space Equation (16) yielded the following result:

ẋ1(t) = 0

0 = −β11x1(t)
(22)

where x1(t) = 0. In this manner, we show that both states become zero when following the
desired trajectory with no disturbances in the system.

Numerical simulations are addressed in Section 4, which describes the control with
and without disturbances.

3.2. SMC

We have seen that CTC reduced the dynamic model of the manipulator to a set of
homogeneous second-order differential equations that were not lumped. However, to
achieve this, the robot parameters need to be fully known. Sometimes the parameters are
not available or the system has disturbances in one or various DOFs, which affects the
performance of CTC in trajectory tracking.

To deal with the problems mentioned above, SMC is a highly robust control that has been
discussed in the literature. To apply this control scheme, we selected a surface as follows:

s = ė(t) + ce(t) (23)

where vector s contains all of the sliding surfaces in each DOF and c is a diagonal matrix
with the constant ck.

Using the following Lyapunov candidate function:

V =
1
2

sTs (24)

we rewrite Equation (9) as follows, including a distrubance f(t):

q̈ = M(q)−1(u− h(q, q̇) + f(t)) (25)

The time derivative of the Lyapunov function was given by:

V̇ = sT ṡ (26)

Substituting the time derivative of s into (26) yielded:

V̇ = sT ṡ

= sT [q̈d(t)−M(q)−1(u− h(q, q̇) + f(t)) + cė(t)] (27)
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Applying the control u = τosign(s), where τo is a diagonal matrix of gains τok, and
substituting the control into (27) produced:

V̇ = sT ṡ

= sT [q̈d(t) + cė(t) + M(q)−1(h(q, q̇) + f(t))]

− sT M(q)−1τosign(s) (28)

hence:
abs(sT) = sTsign(s) (29)

with:
abs(sT) = [|s1||s2| . . . |sn|]T (30)

and:
abs(f(t)) < L (31)

Equation (29) stated that each fi(t) had an upper bound constant of Li. By combining
Equations (29)–(31) into (28), we obtained the following inequality:

V̇ ≤ abs(sT)[abs(q̈d(t) + cė(t) + M(q)−1(h(q, q̇) + L)

−M(q)−1τ0] < 0 (32)

Equation (32) was definitely negative when the following was always true:

τ0 > abs[M(q)(q̈d(t) + cė(t)) + (h(q, q̇) + L)] (33)

In other words, when all the gains along the diagonal of the matrix τ0 fulfilled the
inequality, the system reached the surface and stayed there for the entire period of time
t. As with CTC, the simulations are addressed in Section 4 to validate the robustness of
the SMC.

4. Numerical Simulations of CTC and SMC

We showed in the previous section that we considered two types of control scheme
(CTC and SMC). We showed via Lyapunov stability analysis that CTC was not robust
against disturbances and that the dynamic model had to be completely known in order to
achieve good performance. Meanwhile, the SMC could handle trajectory tracking without
knowing the dynamic model in the control law. In addition to this, the SMC was robust
against disturbances in the system.

This section presents the numerical simulations of the two control laws to better
understand their behaviour. The actuator parameters are shown in Table 1.

Table 1. Actuator parameters.

Parameters Actuators at the Arm Actuators at the Wrist

Ra(Ω) 5.54 5.3
La(µH) 821 1052
Kt(

Nm
A ) 0.0208 0.00363

Ke(
Vs
rad ) 0.02076 0.00363

J(grcm2) 19.4 0.0621
B(mNmms) 0.875 0.7971

The parameters and a diagram of the manipulator are shown in Table 2 and Figure 1,
respectively. The procedure that was used to obtain the dynamic model of the manipulator
can be seen in [14].
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a1

l1

a2

l3 l4 l6

l7

1

Figure 1. Diagram of the 6DOF manipulator.

Table 2. Manipulator parameters.

First Articulation Second Articulation Third Articulation

a1 = 6 cm l3 = 23 cm a1 = 6 cm
ac1 = 3.036 cm lc3 = 10.513 cm ac1 = 3.036 cm
m1 = 0.11 kg m2 = 0.2125 kg ms = 0.5574 kg

Izz1 = 2.6× 10−6 kgm2 Ixx2 = 9.2× 10−4 kgm2 Ixxs = 2.922× 10−6 kgm2

Iyy2 = 2.0515× 10−3 kgm2 Iyys = 2.922× 10−6 kgm2

Izz2 = 2.9224× 10−3 kgm2 Izzs = 5.615× 10−6 kgm2

l4 = 24 cm
lc4 = 4.310 cm
m3 = 0.215 kg

Ixx3 = 1.9229× 10−5 kgm2

Iyy3 = 2.1720× 10−4 kgm2

Izz3 = 2.3177× 10−4 kgm2

Fourth Articulation Fifth Articulation Sixth Articulation

a2 = 10 cm l6 = 4 cm l7 = 10 cm
ac2 = 5 cm lc6 = 2 cm lc7 = 5 cm

m4 = 0.0803 kg m5 = 0.1412 kg m5 = 0.0712 kg

Ixx4 = 4.7373× 10−5 kgm2 Ixx5 = 2.6153× 10−5 kgm2 Ixx6 = 7.3043× 10−5 kgm2

Iyy4 = 1.8376× 10−5 kgm2 Iyy5 = 3.9774× 10−5 kgm2 Iyy6 = 7.4434× 10−5 kgm2

Izz4 = 4.7373× 10−5 kgm2 Izz5 = 4.1205× 10−5 kgm2 Izz6 = 6.86× 10−6 kgm2

For trajectory tracking, a Linear Segment Parabola Blending (LSPB) was used. This
function was defined as follows:

qd =


q0 +

a
2 t2 0 < t ≤ tb

q f +q0+vt f
2 + vt tb < t ≤ t f − tb

q f −
at2

f t
2 + at f t− a

2 t2 t f − tb < t ≤ t f

(34)

where qd is the trajectory LSPB, q0 and q f are the initial and final values of the trajectory,
tb and t f are the mixing and final times, and v and a are the velocity and acceleration of
the trajectory, respectively. We could compute v and a using the values of q0, q f , t f , and
tb = 1

3 t f . The LSPB trajectory with t f = 4, q0 = 0, and q f = π is shown in Figure 2. In both



Processes 2022, 10, 2699 9 of 21

the CTC and STM control simulations, a step perturbation and an LSPB trajectory were
used. The t f of each DOF was 4 s and the final degree of each DOF was:

q f =



π
2
π
3
−π

3
π
4
π
3
−π

6


For CTC, a simulation without perturbations is shown in Figure 3 and a simulation

with perturbations is shown in Figure 4.

0 1 2 3 4 5
t(sec)

0

1

2

3

q d

Position of LSPB

0 1 2 3 4 5
t(sec)

0

0.5

1

v

Velocity of LSPB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(sec)

-1

-0.5

0

0.5

1

a

Acceleration of LSPB

Figure 2. LSPB trajectory.

Figure 3. CTC numerical simulation with no disturbances.
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Figure 4. Numerical simulation of CTC with perturbations.

Each DOF on the manipulator followed the desired trajectory when there were no
perturbations, as shown in Figure 3, but the robot lost the trajectory when we applied a
perturbation in each DOF. As we showed in Section 3, the Lyapunov function could not
have a definite sign when a perturbation was applied to the CTC, so there was no guarantee
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that stability existed. This can be seen in Figure 4. The SMC and its control are shown in
Figures 5 and 6, respectively.

Figure 5. Simulation of the SMC with perturbations using numerical methods.
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Figure 6. Simulation of the signal regulation of the SMC with perturbations using numerical methods.

Three different techniques to measure error (ITAE, IAE and ISE) in trajectory tracking
were used to compare the two controllers with perturbations, which can be seen in Figure 7.
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Figure 7. Error performance indexes: ITAE, IAE, and ISE.

It can be seen in Figure 5 that the manipulator followed the trajectory when we had
enough gain in the SMC control, as demonstrated in Section 3, and that the time derivative
of the Lyapunov function was always negative. However, it can be seen in Figure 6 that
the effect of using a discontinuous controller caused the applied torque to oscillate within
the manipulator.

The comparison between the SMC and CTC with perturbation can be seen in Figure 7.
This comparison demonstrated the robustness of the SMC against perturbations. The
CTC had a visible and high magnitude of error, but the SMC error was not visible. In the
following section, an SMC was applied to a 6DOF manipulator using a self-developed
electronic interface (SDEI) in MATLAB. The advantages and disadvantages of the proposed
control scheme are also discussed.

5. Implementation and Experimental Results

As we showed in Section 4, SMC offered a simpler control law compared to CTC,
which only needs to know the gain of the sign function. The numerical simulations showed
that the SMC achieved asymptotic stability in the presence of perturbations. For these
reasons, SMC was selected for the trajectory tracking of a 6DOF manipulator driven by DC
motors. The manipulator was located at the “Laboratorio de Control de Electromecanismos”
at the “Tecnológico de Chihuahua”. The SDEI manipulator is shown in Figure 8.

To apply the SMC, we had to understand the control law in terms of the software and
hardware that were being used. As the dynamic model of the manipulator with actuators
had a voltage input, the sign function changed the polarity of the voltage in the DC motor. A
H-bridge was in charge of this. Additionally, the voltage in the H bridge (power converter)
was the gain in sliding mode. The H bridge that was selected for this study was an L298
motor drive, which could handle two DC motors simultaneously. Two systems were used
for the experiment: the control system and the power system. The control system had the
following main elements, each with its own communication protocols:
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• SDEI (UART-SPI);
• 4 PIC18F26K20;
• FTDI FT232RL (USB-UART).

Figure 8. The 6DOF manipulator with SDEI.

The control system started in the computer, which contained the control algorithm
within the MATLAB environment. MATLAB sent the information via a virtual serial port
to the FTDI (USB), then the SDEI sent the information to the SEDI via the UART protocol.
SEDI had four PIC18F26K20s, one of which was the master that received the data from
FTDI and sent them to slaves via SPI. The slaves were in charge of generating the PWM that
was needed for the power system and reading the position sensors of the serial manipulator.
The slaves sent the data positions to the master and, using the same sequence as before, the
data reached MATLAB. MATLAB computed the control law with the information obtained
and sent it to the FTDI; then, the process was repeated again. It took 5 mili-seconds for the
SDEI to complete the cycle, which was the sample time of the system. Diagrams of the
experimental setup and the SDEI configuration are shown in Figure 9.
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Figure 9. SDEI diagram.

The power system was responsible for supplying the voltage to the SDEI, the H bridge,
and the power converters. The elements of the power system were the following:

• Power supply (12 Volts);
• Four H-bridges;
• DC–DC converter (12 Volts − 5 Volts);
• DC–DC converter (12 Volts − 3.3 Volts).
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The DC–DC converters were connected to the power supply of 12 Volts. One of them
reduces the voltage to 3.3 V to power the SDEI. The other reduces the voltage to 5 V to
power the 2 H-bridges. The 2 H bridges with 5 V are connected to wrist motors, while the
2 other H bridges are connected to the power supply (12 V). These H-bridges are in charge
of the power of the arm motors. A diagram of the power system is presented in Figure 10.

Power Supply

H-bridge

DC-DC

SDEI
3.3V

12V

DC-DC

5V

Arm Motors

H
-b
ri
d
g
e

Wrist Motors

Power System

Figure 10. The power system.

With SDEI, communication was achieved between MATLAB and the manipulator.
The control algorithm (SMC) and its reference, the LSPB trajectory in this case, were
programmed in MATLAB. Figure 11 shows the control diagram.

Figure 11. The control diagram.

The physical arm only communicated with the position sensor, which meant that we
could only measure the position error, but we needed both the position and velocity errors
for the sliding surface. Due to this, a backward Euler method was used as a differentiator
to estimate the velocity error. To accomplish this, we use the following.

ė =
de(t)

dt
= lim

∆t→0

e(t)− e(t− ∆t)
∆t

(35)

where ∆t is the sample time and e(t− ∆t) is the previous error value. As the control was
implemented in a digital environment, the limit of (35) could not reach zero and (35) was
approximated in the following way:

ė ≈ e(t)− e(t− ∆t)
∆t

(36)

In other words, when the sample time was shorter, Equation (36) obtained a better
approximation of Equation (35). We needed to know whether the voltage in each DC
motor could follow the desired trajectory. As mentioned above, these voltages were the
sliding mode gains in voltage terms. Using a numerical simulation, we graphed Equation
(33) and the maximum of this graph was the torque required to reach the surface and
stay there for the entire period of time. Since we did not know how much torque was
needed, the simulation started with a gain of 5 nm for the arm motors and 1 nm for the
wrist motors. For the physical experiment, each DOF followed an LSPB. The final times
of the LSPB were t f =

[
10 12 9 6 8 7

]
and the final degrees of the LSPB are q f =[

π
3

π
2

π
4

π
3 π π

2
]
. Figures 12–14 present these results.
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It can be seen in Figure 12 that the manipulator followed the desired trajectory, which
meant that the correct gains were used. To obtain the minimum required gain, we calculated
the maximum of each torque (L1 to L6) using the Lyapunov analysis shown in Figure 14 and
converted it into voltage using Equation (8). With these taken into account, the maximum
torques τ0, the minimum required voltages V0, and the voltage in each motor Vm are shown
in Table 3.

Figure 12. Trajectory tracking simulation of the applied SMC.

Figure 13. Input signal control.
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Figure 14. The signal of the Lyapunov analysis.

Table 3. Comparison between the voltage that was needed to follow the trajectory and the voltage of
the electronic interface.

DOF τ0 (nm) V0 (Volts) Vm (Volts)

1 0.0060 0.2665 12
2 2.2668 11.6858 12
3 0.7644 10.1807 12
4 0.0652 4.1253 5
5 0.0182 1.1529 5
6 3.71 × 10−6 2.35 × 10−3 5

When we compared the voltage in each motor Vm to the minimum required voltage
(sliding-mode gain in voltage terms) V0, V0 < Vm. Therefore, the voltage in each motor was
sufficient to track the LSPB trajectory. In this manner, the verification of the sliding mode
was completed, and a physical application was performed. Figures 15 and 16 show the
results of the physical implementation. As expected, the gain of the SMC was responsible
for all tracking of the trajectories because the dynamic model of the manipulator (the
known part of the ECM) was not in the control law. The consequence was a high magnitude
discontinuous control law, as shown in Figure 16, which caused each DOF of the robot arm
to vibrate (chatter) (see Figure 15). As can be seen in Figure 15, the physical arm followed
the proposed trajectory of each DOF, as in the simulation. Thus, the voltage in each motor
was sufficient. According to this result, we could validate the sliding mode gain using
the Lyapunov stability analysis. This solved the problem of using iterative methods in the
design of the sliding gain. A verification of this gain before this application has not been
shown before in the literature. In this sense, the gain could be selected without increasing
the gain in the experiments or simulations. The following advantages of the control strategy
proposed in this paper were:

• The desired trajectory was perfectly followed without knowing the parameters of
the manipulator;

• The SMC was a simple control strategy compared to CTC. The CTC had the dynamic
model of the manipulator in its control law, which made it a complex law due to
the 6DOF of the robot. For the SMC, we only had to know the sign of the surface,
which did not depend on any parameter or perturbation of the manipulator. In
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this way, the SMC programming was less complicated and performed better in the
software environment;

• The gain validation of the SMC developed in this paper could be used as a straightfor-
ward tuning procedure. As mentioned above, the main drawback of the well-known
PID controller is the tuning process. This made the SMC a better option in terms of
selecting the gains of the controllers;

• There was no need to obtain the gain of the sliding mode using iterative methods in
simulations or experiments.

However, even though the classic SMC had some great advantages, the following
disadvantages were seen in the controller strategy when it was implemented:

• As mentioned in the literature, the chattering problem was present in the movement
of the manipulator due to the discontinuous law. This could create fatigue in the
actuators and the mechanical parts of the robot;

• A discontinuous law was implemented, which used all the gain in power of the
electronic interface and developed an inefficient use of energy in the control law.

The most significant result of this paper was the gain validation of the SMC for its
application in the experimental results. Furthermore, Lyapunov analysis was used as a
simple tuning method for the gain of the SMC, which was a great advantage for this type of
controller. However, the chattering phenomenon was present in robotic trajectory tracking.
One of the reasons for the chattering in the manipulator was the numerical differentiator. In
all of the simulations, little chattering was present because the velocity was taken directly
from the model. However, in the implementation, the sample time of the SDEI induced
numerical errors in the sliding surface. For better performance and a reduction in chattering,
enhanced sliding mode controllers or hybrid sliding mode controllers need to be used.
Similarly, when the classical SMC was applied with the numerical differentiator used in
this paper, electronic interfaces with lower sample times had to be used. The approach for
advanced differentiators could also reduce the chattering phenomenon.

Figure 15. Tracking of the physical robot.
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Figure 16. Signal of control applied to the physical manipulator.

6. Conclusions

In this article, the calculation of the SMC gain was performed using Lyapunov analysis
and validated in a real application using a DC motor driven serial manipulator. The
experimental results showed great performance in trajectory tracking with the selected
gain. As we showed in Section 3, the SMC was a simple strategy compared to CTC, for
which the dynamic model needed to be known a priori, and a 6DOF robot was too complex.
Furthermore, in the numerical simulations, the CTC was not robust against perturbations
and lost the trajectory. However, the discontinuous control law in the SMC generated
chattering in the manipulator, which could cause damage to the actuators and mechanical
parts. For this reason, in the future advanced SMC strategies that deal with the chattering
problem must be taken into account.
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Abbreviations
The following abbreviations are used in this manuscript:

CTC Computed torque control
SMC Sliding mode control
DOF Degrees of freedom
ECM Equivalent control method
NSMC Novel sliding control method
EGWO Extended gray wolf optimizer
SOSMC Second-order sliding mode control
RBFN Radial basis function network
DAM Dual arm
MRAC Model reference adaptive control
SPO Sliding perturbation observer
STA Super-twisting algorithm
ASMNN Adaptive sliding mode neural network control
RBFNN Radial basis function neural network
TDE Time delay estimation
AISMC Adaptive integral sliding mode control
6DOF 6 degrees of freedom
UAV Unmanned aerial vehicle
ETC Electrical time constant
MTC Mechanical time constant
LSPB Linear segment parabola blending
SDEI Self-developed electronic interface
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