Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Co-Amorphous Loratadine–Citric Acid System
2.2.2. Characterization of Co-Amorphous Loratadine–Citric Acid System
Differential Scanning Calorimetry (DSC)
Fourier Transform Infrared Spectroscopy (FTIR)
2.2.3. Dissolution Test
2.2.4. Preparation of Orodispersible Drug Formulations
2.2.5. Evaluation of ODx
The Physical Appearance of ODx
Thickness and Diameter
Hardness
Friability
Uniformity of Mass
Disintegration
Dissolution Test
Statistical Analysis
3. Results
3.1. Preparation of Co-Amorphous Loratadine–Citric Acid System
3.2. Characterization of Co-Amorphous Loratadine–Citric Acid System
3.2.1. DSC
3.2.2. FTIR
3.2.3. Dissolution Test
3.3. Evaluation of ODx
3.3.1. The Physical Appearance of ODx
3.3.2. Diameter, Thickness, Hardness, Friability, Mass Uniformity, and Disintegration of ODx (Table 3)
Tablets | Diameter (mm) ± SD | Thickness (mm) ± SD | Hardness (N) ± SD | Friability (%) | Mass Uniformity (mg) ± SD | Disintegration (s) ± SD | |
---|---|---|---|---|---|---|---|
DC | 1:1 | 9.068 ± 0.01 | 2.642 ± 0.01 | 38.14 ± 5.84 | 0.82 | 198.56 ± 3,49 | 34 ± 4.9 |
2:1 | 9.013 ± 0.03 | 2.645 ± 0.02 | 47.86 ± 7.22 | 0.97 | 198.71 ± 2,98 | 36 ± 5.2 | |
3:1 | 9.006 ± 0.02 | 2.646 ± 0.02 | 46.14 ± 7.38 | 0.79 | 199.1 ± 2,44 | 41 ± 5.4 | |
OL | 1:1 | - | 3.448 ± 0.17 | above 50 | 0.69 | 200.51 ± 4.40 | 8 ± 1.1 |
2:1 | - | 3.452 ± 0.11 | above 50 | 0.49 | 203.11 ± 4.64 | 9 ± 1.4 | |
3:1 | - | 3.471 ± 0.12 | above 50 | 0.47 | 204.34 ± 4.75 | 8 ± 1.5 |
3.3.3. Dissolution in Simulated Stomach Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hunto, S.T.; Kim, H.G.; Baek, K.-S.; Jeong, D.; Kim, E.; Kim, J.H.; Cho, J.Y. Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-kB pathway. Biochem. Pharmacol. 2020, 177, 113949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kan, D. Evaluation of efficiency and safety of combined loratadine and budesonide in patients with anaphylactic rhinitis: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e28851. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Aisha, M.; Wu, J.; Wang, H.; Huang, F.; Sun, M. Preparation of loratadine nanocrystal tablets to improve the solubility and dissolution for enhanced oral bioavailability. J. Pharm. Pharmacol. 2021, 73, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Joshi, V.; Mehetre, N.; Sangamwar, A.T. Insights into co-amorphous systems in therapeutic drug delivery. Ther. Deliv. 2021, 12, 245–265. [Google Scholar] [CrossRef]
- Yarlagadda, D.L.; Sai Krishna Anand, V.; Nair, A.R.; Navya Sree, K.S.; Dengale, S.J.; Bhat, K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int. J. Pharm. 2021, 602, 120649. [Google Scholar] [CrossRef]
- Fael, H.; Demirel, A.L. Indomethacin co-amorphous drug-drug systems with improved solubility, supersaturation, dissolution rate and physical stability. Int. J. Pharm. 2021, 600, 120448. [Google Scholar] [CrossRef]
- Löbmann, K.; Grohganz, H.; Laitinen, R.; Strachan, C.; Rades, T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs–Part 1: Preparation, stability and dissolution enhancement. Eur. J. Pharm. Biopharm. 2013, 85, 873–881. [Google Scholar] [CrossRef]
- Fael, H.; Demirel, A.L. Tannic acid as a co-former in co-amorphous systems: Enhancing their physical stability, solubility and dissolution behavior. Int. J. Pharm. 2020, 581, 119284. [Google Scholar] [CrossRef]
- Bi, Y.; Xiao, D.; Ren, S.; Bi, S.; Wang, J.; Li, F. The Binary System of Ibuprofen-Nicotinamide under Nanoscale Confinement: From Cocrystal to Co-amorphous State. J. Pharm. Sci. 2017, 106, 3150–3155. [Google Scholar] [CrossRef]
- Wu, W.; Löbmann, K.; Schnitzkewitz, J.; Knuhtsen, A.; Pedersen, D.S.; Grohganz, H.; Rades, T. Aspartame as a co-former in co-amorphous systems. Int. J. Pharm. 2018, 549, 380–387. [Google Scholar] [CrossRef]
- Qian, S.; Heng, W.; Wei, Y.; Zhang, J.; Gao, Y. Co-amorphous Lurasidone Hydrochloride–Saccharin with Charge-Assisted Hydrogen Bonding Interaction Shows Improved Physical Stability and Enhanced Dissolution with pH-Independent Solubility Behavior. Cryst. Growth Des. 2015, 15, 2920–2928. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef] [PubMed]
- Ghourichay, M.P.; Kiaie, S.H.; Nokhodchi, A.; Javadzadeh, Y. Formulation and Quality Control of Orally Disintegrating Tablets (ODTs): Recent Advances and Perspectives. BioMed Res. Int. 2021, 2021, 6618934. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.-A.; Antonoaea, P.; Todoran, N.; Muntean, D.-L.; Rédai, E.M.; Silași, O.A.; Tătaru, A.; Bîrsan, M.; Imre, S.; Ciurba, A. Pharmacotechnical and analytical preformulation studies for cannabidiol orodispersible tablets. Saudi Pharm. J. 2021, 29, 1029–1042. [Google Scholar] [CrossRef]
- Jassem, N.A. Orodispersible Tablets: A Review on Recent Trends in Drug Delivery. J. Drug Deliv. Technol. 2022, 12, 432–436. [Google Scholar]
- Comoglu, T.; Dilek Ozyilmaz, E. Orally disintegrating tablets and orally disintegrating mini tablets–novel dosage forms for pediatric use. Pharm. Dev. Technol. 2019, 24, 902–914. [Google Scholar] [CrossRef]
- Chinwala, M. Recent formulation advances and therapeutic usefulness of orally disintegrating tablets (ODTs). Pharmacy 2020, 8, 186. [Google Scholar] [CrossRef]
- Pahwa, R.; Piplani, M.; Sharma, P.C.; Kaushik, D.; Nanda, S. Orally disintegrating tablets-Friendly to pediatrics and geriatrics. Arch. Appl. Sci. Res. 2010, 2, 35–48. [Google Scholar]
- Wang, J.; Chang, R.; Zhao, Y.; Zhang, J.; Zhang, T.; Fu, Q.; Chang, C.; Zeng, A. Co-amorphous loratadine-citric acid system with enhanced physical stability and bioavailability. Aaps Pharmscitech 2017, 18, 2541–2550. [Google Scholar] [CrossRef]
- Bandari, S.; Jadav, S.; Eedara, B.B.; Jukanti, R.; Veerareddy, P.R. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique. Korean J. Chem. Eng. 2013, 30, 238–244. [Google Scholar] [CrossRef]
- Frizon, F.; de Oliveira Eloy, J.; Donaduzzi, C.M.; Mitsui, M.L.; Marchetti, J.M. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol. 2013, 235, 532–539. [Google Scholar] [CrossRef]
- Bandari, S.; Jadav, S.; Eedara, B.B.; Dhurke, R.; Jukanti, R. Enhancement of solubility and dissolution rate of Loratadine with Gelucire 50/13. J. Pharm. Innov. 2014, 9, 141–149. [Google Scholar] [CrossRef]
- Jahan, K.; Sultana, Z.; Karim, S.; Ali, H.; Uddin, J. Enhancement of dissolution properties of poorly water soluble drug loratadineby using different techniques of solid dispersion. World J. Sci. Eng. 2017, 2, 103–108. [Google Scholar]
- Rahman, M.M.; Moniruzzaman, M.; Haque, S.; Azad, M.; Aovi, F.I.; Sultana, N.A. Effect of Poloxamer on release of poorly water soluble drug Loratadine from solid dispersion: Kneading method. In Macedonian Pharmaceutical Bulletin; Macedonian Pharmaceutical Association: Skopje, Macedonia, 2015; p. 45. [Google Scholar]
- Minhaz, M.A.; Chowdhury, M.R. Impact of different excipients on dissolution improvement of loratadine by solid dispersion. Int. J. Pharm. Life Sci. 2022, 3, 1–13. [Google Scholar]
- Uddin, M.Z.; Chowdhury, J.A.; Hasan, I.; Reza, M.S. Enhancement of dissolution profile of poorly water soluble loratadine by solid dispersion technique. Dhaka Univ. J. Pharm. Sci. 2016, 15, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, K.R.; Pandey, A.; Pandey, A.; Patel, V.; Verma, S.; Dewangan, P.; Deshmukh, G. Design and Development of Loratadine Containing Mouth Dissolving Tablets. Res. J. Pharm. Tech. 2011, 4, 1676–1681. [Google Scholar]
- Swamivelmanickam, M.; Venkatesan, P.; Sangeetha, G. Preparation and evaluation of mouth dissolving tablets of Loratadine by direct compression method. Res. J. Pharm. Tech. 2020, 13, 2629–2633. [Google Scholar] [CrossRef]
- Amelian, A.; Szekalska, M.; Wilczewska, A.Z.; Basa, A.; Winnicka, K. Preparation and characterization of orally disintegrating loratadine tablets manufactured with co-processed mixtures. Acta Pol. Pharm. 2016, 73, 453–460. [Google Scholar]
- Kabir, A.K.L.; Rahman, S.M.; Jahan, M.A.; Rouf, A.S.S. Formulation Development and Evaluation of Mouth Dissolving Tablets of Loratadine. Stamford J. Pharm. Sci. 2009, 2, 59–65. [Google Scholar] [CrossRef]
- Patel, H.A.; Patel, J.K.; Patel, K.N. Formulation and in vitro evaluation of rapidly disintegrating tablets of Loratadine. Int. J. Pharm. Sci. Res. 2010, 1, 38–44. [Google Scholar]
- Dhaval, P.R.; Dishan, P.S.; Bhavesh, P.R.; Pankaj, P.A.; Dhara, P.B. Formulation and evaluation of loratadine orally disintegrating tablet by different super disintegrant and camphor as subliming Agent. J. Curr. Pharm. Res. 2013, 3, 871. [Google Scholar]
- Soni, R.; Sagar, G.V. Design and development of quick dissolving tablet containing loratadine by direct compression method. Int. J. Pharm. Chem. Biol. Sci. 2013, 3, 771–800. [Google Scholar]
- Karen, H.; Patel, D.; Jasakiya, A.; Patel, C. Development of oral strip for Loratadine and in vitro evaluation. Int. J. Pharm. Pharmacol. 2013, 2, 125–130. [Google Scholar]
- Raju, P.N.; Kumar, M.S.; Reddy, C.M.; Ravishankar, K. Formulation and evaluation of fast dissolving films of loratidine by solvent casting method. Pharm. Innov. 2013, 2, 31–34. [Google Scholar]
- Yang, D.; Li, R.; Zhang, F.; Qin, L.; Peng, F.; Jiang, S.; He, H.; Lu, X.; Zhang, P. A simple and low-energy method to prepare loratadine nanosuspensions for oral bioavailability improvement: Preparation, characterization, and in vivo evaluation. Drug Deliv. Trans. Res. 2020, 10, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Iurian, S.; Bogdan, C.; Suciu, Ș.; Muntean, D.-M.; Rus, L.; Berindeie, M.; Bodi, S.; Ambrus, R.; Tomuță, I. Milk Oral Lyophilizates with Loratadine: Screening for New Excipients for Pediatric Use. Pharmaceutics 2022, 14, 1342. [Google Scholar] [CrossRef]
- Lin, H.-L.; Hsu, P.-C.; Lin, S.-Y. Theophylline–citric acid co-crystals easily induced by DSC–FTIR microspectroscopy or different storage conditions. Asian J. Pharm. Sci. 2013, 8, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Szabó, Z.-I.; Gál, R.; Gáll, Z.; Vancea, S.; Rédai, E.; Fülöp, I.; Sipos, E.; Donáth-Nagy, G.; Noszál, B.; Tóth, G. Cyclodextrin complexation improves aqueous solubility of the antiepileptic drug, rufinamide: Solution and solid state characterization of compound-cyclodextrin binary systems. J. Incl. Phenom. Macrocycl. Chem. 2017, 88, 43–52. [Google Scholar] [CrossRef]
- Abd Elbary, A.; Ali, A.A.; Aboud, H.M. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods. Bull. Fac. Pharm. Cairo Univ. 2012, 50, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Djagny, K.B.; Wang, Z.; Xu, S. Gelatin: A valuable protein for food and pharmaceutical industries. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [Google Scholar] [CrossRef]
- Gupta, S.P.; Bashyal, P.; Shrestha, L. Formulation and Evaluation of Oral Dispersible Tablets of Loratadine by Direct Compression Method. World J. Pharm. Pharm. Sci. 2019, 8, 1352–1370. [Google Scholar]
Components (mg) | DC1:1 * | DC2:1 * | DC3:1 * |
---|---|---|---|
Loratadine–citric acid | 15.01 ** | 12.50 ** | 11.67 ** |
Kollidon® VA64 | 6 | 6 | 6 |
Kollidon® CL | 10 | 10 | 10 |
Sorbitol | 5 | 5 | 5 |
Lactose | 160 | 162.5 | 163.34 |
Aerosil | 2 | 2 | 2 |
Magnesium-stearate | 2 | 2 | 2 |
Components (mg) | OL1:1 * | OL2:1 * | OL3:1 * |
---|---|---|---|
Loratadine–citric acid | 15.01 ** | 12.50 ** | 11.67 ** |
Gelatin | 6 | 6 | 6 |
Sodium-croscarmellose | 5 | 5 | 5 |
Microcrystalline cellulose | 5 | 5 | 5 |
Sorbitol | 64.37 | 65.62 | 66.04 |
Mannitol | 52.31 | 52.94 | 53.145 |
Lactose | 52.31 | 52.94 | 53.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rédai, E.M.; Sipos, E.; Vlad, R.A.; Antonoaea, P.; Todoran, N.; Ciurba, A. Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations. Processes 2022, 10, 2722. https://doi.org/10.3390/pr10122722
Rédai EM, Sipos E, Vlad RA, Antonoaea P, Todoran N, Ciurba A. Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations. Processes. 2022; 10(12):2722. https://doi.org/10.3390/pr10122722
Chicago/Turabian StyleRédai, Emőke Margit, Emese Sipos, Robert Alexandru Vlad, Paula Antonoaea, Nicoleta Todoran, and Adriana Ciurba. 2022. "Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations" Processes 10, no. 12: 2722. https://doi.org/10.3390/pr10122722
APA StyleRédai, E. M., Sipos, E., Vlad, R. A., Antonoaea, P., Todoran, N., & Ciurba, A. (2022). Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations. Processes, 10(12), 2722. https://doi.org/10.3390/pr10122722