Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Raw Materials
2.2. Preparation and Modification of Biochar
2.3. Characterization of Biochar
2.4. Sequential Batch Adsorption Experiments
2.5. Adsorption Kinetics
- i.
- Quasi-primary kinetic model
- ii.
- Quasi-secondary dynamical model
- iii.
- Elovich model
- iv.
- Weber–Morris model
2.6. Adsorption Isotherm
- i.
- Langmuir model.
- ii.
- Freundlich model.
- iii.
- Temkin model.
2.7. Adsorption Thermodynamics
3. Results and Discussion
3.1. Structural Characterization of ARB
3.2. Analysis of Adsorption Influencing Factors
3.2.1. Effect of Initial pH of the Solution
3.2.2. Effect of Biochar Dosage
3.2.3. Effect of Contact Time
3.2.4. Effect of MB Initial Concentration
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Adsorption Thermodynamics
3.6. BET Analysis before and after Adsorption
3.7. FTIR Comparison before and after Adsorption
3.8. Analysis of Regeneration Performance
3.9. Comparison of Adsorption Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Wang, T.; Han, S.; Bai, Y.; Li, X.Q. Occurrence of areca alkaloids in wastewater of major Chinese cities. Sci. Total Environ. 2021, 783, 146961. [Google Scholar] [CrossRef] [PubMed]
- Subramani, B.; Sheeka, S.S.; Manu, B.; Babunarayan, K.S. Evaluation of pyrolyzed areca husk as a potential adsorbent for the removal of Fe2+ ions from aqueous solutions. J. Environ. Manag. 2019, 246, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Rahali, A.; Riazi, A.; Moussaoui, B.; Boucherdoud, A.; Bekta, N. Decolourisation of methylene blue and congo red dye solutions by adsorption using chitosan. Desalin. Water Treat. 2020, 198, 422–433. [Google Scholar]
- Siciliano, A.; Curcio, G.M.; Limonti, C.; Masi, S.; Greco, M. Methylene blue adsorption on thermo plasma expanded graphite in a multilayer column system. J. Environ. Manag. 2021, 296, 113365. [Google Scholar] [CrossRef] [PubMed]
- Ghodbane, I.Z.; Saida, L.; Rim, K.; Rochdi, K. Development of new modified electrode based on beta-cyclodextrin for methylene blue detection. Sens. Rev. 2020, 40, 477–483. [Google Scholar] [CrossRef]
- Punnakkal, V.S.; Jos, B.; Anila, E.I. Polypyrrole-silver nanocomposite for enhanced photocatalytic degradation of methylene blue under sunlight irradiation. Mater. Lett. 2021, 298, 130014. [Google Scholar] [CrossRef]
- Giraldo, S.; Robles, I.; Godínez, L.; Acelas, N.; Flórez, E. Experimental and theoretical insights on methylene blue removal from wastewater using an adsorbent obtained from the residues of the orange industry. Molecules 2021, 26, 4555. [Google Scholar] [CrossRef]
- Perez-Gonzalez, M.; Tomas, S.A. Surface chemistry of TiO2-ZnO thin films doped with Ag. Its role on the photocatalytic degradation of methylene blue. Catal. Today 2021, 360, 129–137. [Google Scholar] [CrossRef]
- Nwanebu, E.O.; Liu, X.; Pajootan, E.; Yargeau, V.; Omanovic, S. Electrochemical degradation of methylene blue using a Ni-Co-Oxide anode. Catalysts 2021, 11, 793. [Google Scholar] [CrossRef]
- Balushi, K.S.; Devi, G.; Hudaifi, A.; Garibi, A.S.R. Development of chitosan-TiO2 thin film and its application for methylene blue dye degradation. Int. J. Environ. Anal. Chem. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Eren, Z.; O’Shea, K. Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation. J. Envior. Eng. 2019, 145, 04019070. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, L.; Chen, H.; Liu, X.; Hong, C.; Chen, D.; Pan, B. Mechanistically understanding adsorption of methyl orange, indigo carmine, and methylene blue onto ionic/nonionic polystyrene adsorbents. J. Hazard. Mater. 2021, 418, 126300. [Google Scholar] [CrossRef]
- Mittal, J.; Arora, C.; Mittal, A. Application of biochar for the removal of methylene blue from aquatic environments. In Biomass-Derived Materials for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–76. [Google Scholar]
- Viegas, C.; Nobre, C.; Correia, R.; Gouveia, L.; Goncalves, M. Optimization of biochar production by co-torrefaction of microalgae and lignocellulosic biomass using response surface methodology. Energies 2021, 14, 7330. [Google Scholar] [CrossRef]
- Prabakaran, E.; Pillay, K.; Brink, H. Hydrothermal synthesis of magnetic-biochar nanocomposite derived from avocado peel and its performance as an adsorbent for the removal of methylene blue from wastewater. Mater. Today Sustain. 2022, 18, 100123. [Google Scholar] [CrossRef]
- Prajapati, A.K.; Mondal, M.K. Green synthesis of Fe3O4-onion peel biochar nanocomposites for adsorption of Cr(VI), methylene blue and congo red dye from aqueous solutions. J. Mol. Liq. 2022, 349, 118161. [Google Scholar] [CrossRef]
- Zhu, Y.; Yi, B.; Hu, H.; Zong, Z.; Chen, M.; Yuan, Q. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures. J. Environ. Chem. Eng. 2020, 8, 104112. [Google Scholar] [CrossRef]
- Yin, Q.; Nie, Y.; Han, Y.; Wang, R.; Zhao, Z. Properties and the application of sludge-based biochar in the removal of phosphate and methylene blue from water: Effects of acid treating. Langmuir 2022, 38, 1833–1844. [Google Scholar] [CrossRef]
- Ezz, H.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Enhanced removal of methylene blue dye by sustainable biochar derived from rice straw digestate. Key Eng. Mater. 2022, 932, 119–129. [Google Scholar] [CrossRef]
- Chen, J.; Tang, C.; Li, X.; Sun, J.; Liu, Y.; Huang, W.; Wang, A.; Lu, Y. Preparation and modification of rape straw biochar and its adsorption characteristics for methylene blue in water. Water 2022, 14, 3761. [Google Scholar] [CrossRef]
- Sawalha, H.; Bader, A.; Sarsour, J.; Al-Jabari, M.; Rene, E.R. Removal of dye (methylene blue) from wastewater using bio-char derived from agricultural residues in palestine: Performance and isotherm analysis. Processes 2022, 10, 2039. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, O. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Lyu, H.; Zhao, Q.; Lisi, J.; Li, L. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms. J. Clin. Microbiol. 2019, 659, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Islam, M.S.; Wang, S.; Messele, S.A.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 2019, 231, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Li, G. Potassium phosphate/magnesium oxide modified biochars: Interfacial chemical behaviours and Pb binding performance. J. Clin. Microbiol. 2021, 759, 143452. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J. Removal of chlortetracycline from water by immobilized Bacillus subtilis on honeysuckle residue derived biochar. Water Air Soil Pollut. 2021, 232, 236. [Google Scholar] [CrossRef]
- Hussin, M.H.; Chuein, A.L.H.; Idris, N.N.; Hamidon, T.S.; Azani, N.F.S.M.; Abdullah, N.S.; Sharifuddin, S.S.; Ying, A.S. Kinetics and equilibrium studies of methylene blue dye adsorption on oil palm frond adsorbent. Desalin. Water Treat. 2021, 216, 358–371. [Google Scholar]
- Mu, Y.; Ma, H. NaOH-modified mesoporous biochar derived from tea residue for methylene blue and Orange II removal. Chem. Eng. Res. Des. 2021, 167, 129–140. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Ji, L.; Wang, Z.; Cai, L.; Guo, J.; Song, W.; Wang, Y.; Piotrowski, A.M. Facile preparation of alveolate biochar derived from seaweed biomass with potential removal performance for cationic dye. J. Mol. Liq. 2022, 353, 118623. [Google Scholar] [CrossRef]
- Vu, M.T.; Le, T.T.; Chao, H.P.; Trinh, T.V.; Lin, C.C.; Tran, H.N. Removal of ammonium from groundwater using NaOH-treated activated carbon derived from corncob wastes: Batch and column experiments. J. Clean. Prod. 2018, 180, 560–570. [Google Scholar] [CrossRef]
- Boguta, P.; Sokolowska, Z.; Skic, K.; Tomczyk, A. Chemically engineered biochar-Effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel 2019, 256, 115893. [Google Scholar] [CrossRef]
- Lu, F.; Lu, X.; Li, S.; Zhang, H.; Shao, L.; He, P. Dozens-fold improvement of biochar redox properties by KOH activation. Chem. Eng. J. 2022, 429, 132203. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Ma, H.; Zhou, J. Investigation of element migration characteristics and product properties during biomass pyrolysis: A case study of pine cones rich in nitrogen. RSC Adv. 2021, 11, 34795–34805. [Google Scholar] [CrossRef]
- Cai, T.; Du, H.; Liu, X.; Tie, B.; Zeng, Z. Insights into the removal of Cd and Pb from aqueous solutions by NaOH-EtOH-modified biochar. Environ. Technol. Innov. 2021, 24, 102031. [Google Scholar] [CrossRef]
- Huang, M.; Liao, Z.; Li, Z.; Wen, J.; Zhao, L.; Jin, C.; Tian, D.; Shen, F. Effects of pyrolysis temperature on proton and cadmium binding properties onto biochar-derived dissolved organic matter: Roles of fluorophore and chromophore. Chemosphere 2022, 299, 134313. [Google Scholar] [CrossRef]
- Li, X.; Jiang, X.; Song, Y.; Chang, S. Coexistence of polyethylene microplastics and biochar increases ammonium sorption in an aqueous solution. J. Hazard. Mater. 2020, 405, 124260. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, N.; Giri, B.S.; Chaturvedi, P.; Chowdhary, P. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresour. Technol. 2020, 306, 123202. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, M.; Wu, P.; Zhang, X.; Wang, S.; Yu, Z.; Wang, B. Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chem. Eng. J. 2022, 429, 132166. [Google Scholar] [CrossRef]
- Wang, B.; Lian, G.; Lee, X.; Gao, B.; Li, L.; Liu, T.; Zhang, X.; Zheng, Y. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere 2020, 38, 124684. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ye, M.; Zhao, Y.; Baig, S.A.; Huang, N.; Ma, M. Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (VI) in aqueous solutions. J. Environ. Sci. 2022, 115, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Akech, S.R.O.; Harrison, O.; Saha, A. Removal of a potentially hazardous chemical, tetrakis (hydroxymethyl) phosphonium chloride from water using biochar as a medium of adsorption. Environ. Technol. Innov. 2018, 12, 196–210. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Li, C.; Liu, Y.; Wang, Y.; Yang, S.; Zhou, C. Preparation and application of novel rice husk biochar-calcite composites for phosphate removal from aqueous medium. J. Clean. Prod. 2021, 299, 126802. [Google Scholar] [CrossRef]
- Olu-Owolabi, B.I.; Diagboya, P.N.; Mtunzi, F.M.; During, R.A. Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media. J. Environ. Manag. 2021, 279, 111619. [Google Scholar] [CrossRef]
- Saikia, R.; Goswami, R.; Bordoloi, N.; Senapati, K.K.; Pant, K.K.; Kumar, M.; Kataki, R. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. J. Environ. Chem. Eng. 2017, 5, 5528–5539. [Google Scholar] [CrossRef]
- An, Q.; Li, Z.; Zhou, Y.; Meng, F.; Zhao, B.; Miao, Y.; Deng, S. Ammonium removal from groundwater using peanut shell based modified biochar: Mechanism analysis and column experiments. J. Water Process Eng. 2021, 43, 102219. [Google Scholar] [CrossRef]
- Kaith, B.S.; Shanker, U.; Gupta, B. Synergic effect of Guggul gum based hydrogel nanocomposite: An approach towards adsorption-photocatalysis of Magenta-O. Int. J. Biol. Macromol. 2020, 161, 457–469. [Google Scholar] [CrossRef]
- Qing, Z.; Wang, L.; Liu, X.; Song, Z.; Qian, F.; Song, Y. Simply synthesized sodium alginate/zirconium hydrogel as adsorbent for phosphate adsorption from aqueous solution: Performance and mechanisms. Chemosphere 2022, 291, 133103. [Google Scholar] [CrossRef]
- Qiao, H.; Qiao, Y.; Luo, X.; Zhao, B.; Cai, Q. Qualitative and quantitative adsorption mechanisms of zinc ions from aqueous solutions onto dead carp derived biochar. RSC Adv. 2021, 11, 38273–38282. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, W.; Yao, B.; Shen, L.; Jiang, F.; Zhou, Y.; Nunez-Delgado, A. A novel manganese-rich pokeweed biochar for highly efficient adsorption of heavy metals from wastewater: Performance, mechanisms, and potential risk analysis. Processes 2021, 9, 1209. [Google Scholar] [CrossRef]
- Li, S.B.; Dong, L.J.; Wei, Z.F.; Sheng, G.D.; Du, K.; Hu, B.W. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 2020, 96, 127–137. [Google Scholar] [CrossRef]
- Shen, Y.W.; Jiao, S.Y.; Ma, Z.; Gao, W.S.; Chen, J.Q. Humic acid-modified bentonite composite material enhances urea-nitrogen use efficiency. Chemosphere 2020, 255, 126976. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.F.; Fang, X.; Chen, L.Y.; Tang, B.; Song, F.M.; Li, W.B. Effect of acid-base modified biochar on chlortetracycline adsorption by purple soil. Sustainability 2022, 14, 5892. [Google Scholar] [CrossRef]
- Kaya-Zkiper, K.; Uzun, A.; Soyer-Uzun, S. A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal. J. Hazard. Mater. 2022, 424, 127256. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.X.; Chen, J.; Zhao, L.; Zhou, Z.; Qiu, C.; Li, Q.L. Adsorption of Rhodamine B from aqueous solution by goat manure biochar: Kinetics, isotherms, and thermodynamic studies. Pol. J. Environ. Stud. 2020, 2, 2721–2730. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.H.; Chu, Y.T.; Khan, M.A.; Xia, M.Z.; Shi, M.X.; Zhu, S.D.; Lei, W.; Wang, F.Y. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration. Sci. Total Environ. 2022, 806, 150652. [Google Scholar] [CrossRef]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Li, J.X.; Ly, Q.V.; Nguyen, T.A.H.; Tran, V.S. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater. Bioresour. Technol. 2020, 318, 123886. [Google Scholar] [CrossRef]
- Gao, T.; Shi, W.S.; Zhao, M.X.; Huang, Z.X.; Liu, X.L.; Ruan, W.Q. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. Chemosphere 2022, 296, 133902. [Google Scholar] [CrossRef]
- Li, Y.X.; Shang, H.R.; Cao, Y.N.; Yang, C.H.; Feng, Y.J.; Yu, Y.L. High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar 2022, 1, 151–161. [Google Scholar] [CrossRef]
- Yang, X.D.; Wang, L.L.; Tong, J.; Shao, X.Q.; Chen, R.; Yang, Q.; Li, F.F.; Xue, B.; Li, G.D.; Han, Y.; et al. Synthesis of hickory biochar via one-step acidic ball milling: Characteristics and titan yellow adsorption. J. Clean. Prod. 2022, 338, 130575. [Google Scholar] [CrossRef]
- Wang, T.T.; Zhang, D.; Fang, K.K.; Zhu, W.; Peng, Q.; Xie, Z.G. Enhanced nitrate removal by physical activation and Mg/Al layered double hydroxide modified biochar derived from wood waste: Adsorption characteristics and mechanisms. J. Environ. Chem. Eng. 2021, 9, 105184. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.Y.; Zhang, W.J.; Ai, J.; Liu, Y.Y.; Wang, Q.D.; Wang, D.S. Preparation of ultrahigh-surface-area sludge biopolymers-based carbon using alkali treatment for organic matters recovery coupled to catalytic pyrolysis. J. Environ. Sci. 2021, 106, 83–96. [Google Scholar] [CrossRef]
- Chen, W.; Gong, M.; Li, K.X.; Xia, M.W.; Chen, Z.Q.; Xiao, H.Y.; Fang, Y.; Chen, Y.Q.; Yang, H.P.; Chen, H.P. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy 2020, 278, 115730. [Google Scholar] [CrossRef]
- Hu, M.F.; Liu, L.; Hou, N.; Li, X.S.; Zeng, D.Q.; Tan, H.H. Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors. Chemosphere 2021, 274, 129655. [Google Scholar] [CrossRef]
- Binh, Q.A.; Kajitvichyanukul, P. Adsorption mechanism of dichlorvos onto coconut fibre biochar: The significant dependence of H-bonding and the pore-filling mechanism. Water Sci. Technol. 2019, 79, 866–876. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, J.Y.; Huang, R.; Wang, W.; Meng, M.W.; Hu, L.N.; Gan, W.X. Adsorption of malachite green and Pb2+ by KMnO4-modified biochar: Insights and mechanisms. Sustainability 2022, 14, 2040. [Google Scholar] [CrossRef]
- Zheng, Y.W.; Wang, J.D.; Li, D.H.; Liu, C.; Lu, Y.; Lin, X.; Zheng, Z.F. Insight into the KOH/KMnO4 activation mechanism of oxygen-enriched hierarchical porous biochar derived from biomass waste by in-situ pyrolysis for methylene blue enhanced adsorption. J. Anal. Appl. Pyrolysis 2021, 158, 105269. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, S.Y.; Zhong, W.H.; Wei, W. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Mol. Liq. 2018, 268, 658–666. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.L.; Yang, Y.C.; Huang, J.S.; Zimmerman, A.R.; Chen, H.; Hu, X.; Gao, B. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol. 2021, 337, 125432. [Google Scholar] [CrossRef]
- Wang, Y.H.; Srinivasakannan, C.; Wang, H.H.; Xue, G.; Wang, L.; Wang, X.; Duan, X. Preparation of novel biochar containing graphene from waste bamboo with high methylene blue adsorption capacity. Diam. Relat. Mater. 2022, 125, 109034. [Google Scholar] [CrossRef]
- Mu, Y.K.; Du, H.X.; He, W.Y.; Ma, H.Z. Functionalized mesoporous magnetic biochar for methylene blue removal: Performance assessment and mechanism exploration. Diam. Relat. Mater. 2022, 121, 108795. [Google Scholar] [CrossRef]
- Sahu, S.; Pahi, S.; Tripathy, S.; Singh, S.K.; Behera, A.; Sahu, U.K.; Patal, R.K. Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. J. Mol. Liq. 2020, 315, 113743. [Google Scholar] [CrossRef]
- Fernando, J.C.; Peiris, C.; Navarathna, C.M.; Gunatilake, S.R.; Welikala, U.; Wanasinghe, S.T.; Madduri, S.B.; Jayasinghe, S.; Mlsna, T.E.; Hassan, E.; et al. Nitric acid surface pre-modification of novel Lasia spinosa biochar for enhanced methylene blue remediation. Groundw. Sustain. Dev. 2021, 14, 100603. [Google Scholar] [CrossRef]
- Ji, B.; Wang, J.L.; Song, H.J. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J. Environ. Chem. Eng. 2019, 7, 103036. [Google Scholar] [CrossRef]
- Primaz, C.T.; Ribes-Greus, A.; Jacques, R.A. Valorization of cotton residues for production of bio-oil and engineered biochar. Energy 2021, 235, 121363. [Google Scholar] [CrossRef]
- Ribeiro, M.R.; Guimarães, Y.D.; Silva, I.F.; Almeida, C.A.; Silva, M.S.V.; Nascimento, M.A.; da Silva, U.P.; Varejao, E.V.; Renato, N.D.; Teixeira, A.P.D.; et al. Synthesis of value-added materials from the sewage sludge of cosmetics industry effluent treatment plant. J. Environ. Chem. Eng. 2021, 9, 105367. [Google Scholar] [CrossRef]
Biochar | Specific Surface Area (m2/g) | Total Hole Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
ARB | 63 | 0.157 | 5.593 |
M-ARB | 105 | 0.282 | 3.416 |
Model | Parameter | ARB | M-ARB |
---|---|---|---|
Quasi-primary kinetic | qe (mg/g) | 66.90 | 117.22 |
k1 (min−1) | 0.0249 | 0.0329 | |
R2 | 0.9220 | 0.8497 | |
Quasi-secondary kinetic | qe (mg/g) | 74.33 | 127.23 |
k2 [g/(mg × min)] | 0.0004 | 0.0005 | |
R2 | 0.9761 | 0.9793 | |
Elovich | a | 35.17 | 74.49 |
k3 [mg/(g × min)] | 6.6396 | 9.1936 | |
R2 | 0.8653 | 0.8761 |
Stage | Parameter | ARB | M-ARB |
---|---|---|---|
I | b1 | 18.65 | 53.33 |
k41 (mg/(g × min0.5)) | 3.9917 | 5.3098 | |
R2 | 0.9979 | 0.9961 | |
II | b2 | 46.84 | 94.77 |
k42 (mg/(g × min0.5)) | 1.4079 | 1.6319 | |
R2 | 0.9981 | 0.9649 | |
III | b3 | 64.19 | 117.77 |
k43 (mg/(g × min0.5)) | 0.2093 | 0.1261 | |
R2 | 0.8924 | 0.8002 |
Biochar | T/K | Langmuir Model | Freundlich Model | Temkin Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qm | KL | R2 | 1/n | KF | R2 | c | KT | R2 | ||
ARB | 298 | 78.18 | 2.4854 | 0.9574 | 0.0522 | 63.0093 | 0.6350 | 62.32 | 3.8667 | 0.6636 |
308 | 80.87 | 3.6369 | 0.9881 | 0.0549 | 65.1281 | 0.7405 | 64.63 | 4.1659 | 0.7695 | |
318 | 86.56 | 4.5384 | 0.9895 | 0.0578 | 69.1859 | 0.7192 | 68.79 | 4.6546 | 0.7525 | |
M-ARB | 298 | 136.81 | 2.9839 | 0.9716 | 0.0503 | 111.4137 | 0.6477 | 110.38 | 6.5314 | 0.6769 |
308 | 142.81 | 4.6229 | 0.9719 | 0.0539 | 115.8897 | 0.7609 | 115.29 | 7.1771 | 0.7871 | |
318 | 152.72 | 6.7535 | 0.9604 | 0.0566 | 123.5513 | 0.7604 | 123.30 | 7.9705 | 0.7904 |
T (K) | ∆Gθ (kJ/mol) | ∆Hθ (kJ/mol) | ∆Sθ [kJ/(mol × K)] | R2 | ||||
---|---|---|---|---|---|---|---|---|
ARB | M-ARB | ARB | M-ARB | ARB | M-ARB | ARB | M-ARB | |
298 | −8.5827 | −10.2628 | 38.9489 | 56.2585 | 0.1592 | 0.2229 | 0.9809 | 0.9937 |
308 | −9.9041 | −12.2349 | ||||||
318 | −11.7668 | −14.6803 |
Stage | Specific Surface Area (m2/g) | Total Hole Volume (cm3/g) | Average Pore Size (nm) | |||
---|---|---|---|---|---|---|
ARB | M-ARB | ARB | M-ARB | ARB | M-ARB | |
Before MB adsorption | 63 | 105 | 0.157 | 0.282 | 5.593 | 3.416 |
After MB adsorption | 20 | 31 | 0.045 | 0.053 | 18.611 | 20.325 |
Raw Materials | Modifying Agent | Pyrolysis Temperature (°C) | Pyrolysis Time (min) | Contact Time (min) | Adsorption Capacity (mg/g) | References |
---|---|---|---|---|---|---|
Tea residue | NaOH | 700 | 240 | 150 | 105.44 | [28] |
Reed | HNO3 | 500 | 120 | 720 | 37.18 | [68] |
Tea residue | KOH+FeCl3 | 700 | 120 | 360 | 394.30 | [71] |
Lychee seed | KOH | 700 | — | 300 | 124.53 | [72] |
Lasia rhizome | None | 300 | 180 | — | 9.58 | [73] |
Lasia rhizome | HNO3 | 300 | 180 | — | 81.35 | [73] |
Fallen leaf | None | 500 | 120 | 1440 | 78.60 | [74] |
Cotton residue | None | 550 | 15 | 720 | 9.56 | [75] |
Cotton residue | NaOH | 550 | 15 | 720 | 23.82 | [75] |
Sewage sludge | None | 600 | 60 | — | 51.10 | [76] |
ARB | None | 600 | 150 | 400 | 86.56 | This study |
M-ARB | NaOH | 600 | 150 | 400 | 152.72 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, Y.; Li, C.; Liu, H.; Liu, H.; Tang, Y.; Tang, C.; Wang, A.; Wang, C. Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar. Processes 2022, 10, 2729. https://doi.org/10.3390/pr10122729
Lu Y, Liu Y, Li C, Liu H, Liu H, Tang Y, Tang C, Wang A, Wang C. Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar. Processes. 2022; 10(12):2729. https://doi.org/10.3390/pr10122729
Chicago/Turabian StyleLu, Yixin, Yujie Liu, Chunlin Li, Haolin Liu, Huan Liu, Yi Tang, Chenghan Tang, Aojie Wang, and Chun Wang. 2022. "Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar" Processes 10, no. 12: 2729. https://doi.org/10.3390/pr10122729
APA StyleLu, Y., Liu, Y., Li, C., Liu, H., Liu, H., Tang, Y., Tang, C., Wang, A., & Wang, C. (2022). Adsorption Characteristics and Mechanism of Methylene Blue in Water by NaOH-Modified Areca Residue Biochar. Processes, 10(12), 2729. https://doi.org/10.3390/pr10122729