Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Chemical Constituents of O. sanctum
2.2. Potential Target Screening of Tuberculosis
2.3. Gene Function Annotation
2.4. Network Pharmacology Analysis
2.4.1. Compound-Target Network construction
2.4.2. Prediction of Hub Genes and PPI Network
2.4.3. Target–Compound–Pathway Network Construction
2.5. Molecular Docking
3. Results
3.1. Active Ingredients Screening of O. sanctum
3.2. Analysis of Network Pharmacology
3.2.1. Identifying Potential Targets
3.2.2. Compound-Target Network
3.2.3. Analysis of PPI Network
3.3. KEGG Pathway and Go Analysis
3.4. Target–Pathway–Compound Network Analysis
3.5. Molecular Docking
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, R.R.N.; Rosa, I.M.L. Biodiversity, traditional medicine and public health: Where do they meet? J. Ethnobiol. Ethnomedicine 2007, 3, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzammil, A.; Waqas, M.; Umar, A.; Sufyan, M.; Rehman, A.; Haider, A.; Akram, H.; Khan, S.A.F.; Afzal, M.; Wajid, M.; et al. Anti-aging natural compounds and their role in the regulation of metabolic pathways leading to longevity. Mini Rev. Med. Chem. 2021, 21, 2630–2656. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, T.R.; Akerele, O. Medicinal Plants: Their Role in Health and Biodiversity; University of Pennsylvania Press: Philadelphia, PA, USA, 2015. [Google Scholar]
- Gupta, S.K.; Prakash, J.; Srivastava, S. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J. Exp. Biol. 2002, 40, 765–773. [Google Scholar] [PubMed]
- Panchal, P.; Parvez, N. Phytochemical analysis of medicinal herb (ocimum sanctum). Int. J. Nanomater. Nanotechnol. Nanomed. 2019, 5, 008–011. [Google Scholar] [CrossRef] [Green Version]
- Vinukonda, V.P.; Palakeerti, S.K.; Nalakurthi, B.C.; Palleti, J.D. In Silico Studies Of Usticia Adhatoda, Ocimum Sanctum Plant Compounds As Mycobacterium Tuberculosis Ftsz Inhibitors. Int. J. Bioassays 2012, 1, 22–25. [Google Scholar]
- Khan, N.H.; Xia, K.Z.; Perveen, N. Phytochemical analysis, antibacterial and antioxidant activity determination of Ocimum sanctum. Pharm. Pharmacol. Int. J. 2018, 6, 490–497. [Google Scholar]
- Baluni, P.; Kuriyal, S.K.; Dobriyal, K. Folk Culture of Garhwal Himalaya: Ethnic Food and its medicinal value–A brief analysis. J. Mt. Res. 2021, 16, 251–263. [Google Scholar] [CrossRef]
- Brownhill, E.J. Compromised Metabolic Function and Dysregulated Induction of Type 1 Interferon Promote Susceptibility in a Model for Tuberculosis Infection. Ph.D. Thesis, Boston University, Boston, MA, USA, 2022. [Google Scholar]
- Russell, D.G. Mycobacterium tuberculosis: Here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2001, 2, 569–578. [Google Scholar] [CrossRef]
- Arya, V. A review on anti-tubercular plants. Int. J. Phar. Tech. Res. 2011, 3, 872–880. [Google Scholar]
- Dye, C.; Williams, B.G.; Espinal, M.A.; Raviglione, M.C. Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science 2002, 295, 2042–2046. [Google Scholar] [CrossRef] [Green Version]
- Türktaş, H.; Ünsal, M.; Tülek, N.; Örüç, O. Hepatotoxicity of antituberculosis therapy (rifampicin, isoniazid and pyrazinamide) or viral hepatitis. Tuber. Lung Dis. 1994, 75, 58–60. [Google Scholar] [CrossRef]
- Halsey, N.A.; Coberly, J.S.; Desormeaux, J.; Losikoff, P.; Atkinson, J.; Moulton, L.H.; Contave, M.; Johnson, M.; Davis, H.; Geiter, L.; et al. Randomised trial of isoniazid versus rifampicin and pyrazinamide for prevention of tuberculosis in HIV-1 infection. Lancet 1998, 351, 786–792. [Google Scholar] [CrossRef]
- Borah, R.; Biswas, S. Tulsi (ocimum sanctum), excellent source of phytochemicals. Int. J. Environ. Agric. Biotechnol. 2018, 3, 265258. [Google Scholar]
- Lynch, N.; Berry, D. Differences in perceived risks and benefits of herbal, over-the-counter conventional, and prescribed conventional, medicines, and the implications of this for the safe and effective use of herbal products. Complementary Ther. Med. 2007, 15, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, V.P. Herbal medicine. Curr. Sci. 2000, 78, 35–39. [Google Scholar]
- Zhang, X.; Shen, T.; Zhou, X.; Tang, X.; Gao, R.; Xu, L.; Wang, L.; Zhou, Z.; Lin, J.; Hu, Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci. Rep. 2020, 10, 15730. [Google Scholar] [CrossRef]
- Dong, Y.; Dong, Y.; Hao, L.; Fang, K.; Han, X.-X.; Yu, H.; Zhang, J.-J.; Cai, L.-J.; Fan, T.; Zhang, W.-D.; et al. A network pharmacology perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement. Med. Ther. 2021, 21, 45. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Chandran, U.; Mehendale, N.; Patil, S.; Chaguturu, R.; Patwardhan, B. Network pharmacology. Innov. Approaches Drug Discov. 2016, 2017, 127–164. [Google Scholar]
- Wijaya, S.H.; Tanaka, Y.; Amin, A.U.; Morita, A.H.; Afendi, F.M.; Batubara, I.; Ono, N.; Darusman, L.K.; Kanaya, S. Utilization of KNApSAcK family databases for developing herbal medicine systems. J. Comput. Aided Chem. 2016, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today 2001, 6, 357–366. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Zhao, S.; Guo, Q.; Zhou, J.; Han, W.; Xu, Y. Based on network pharmacology to explore the molecular mechanisms of astragalus membranaceus for treating T2 diabetes mellitus. Ann. Transl. Med. 2019, 7, 633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.-J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Min. 2021, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hung, A.; Yang, A.W.H. Herb-target virtual screening and network pharmacology for prediction of molecular mechanism of Danggui Beimu Kushen Wan for prostate cancer. Sci. Rep. 2021, 11, 6656. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, Y.; Wen, F.; Huang, W.; Chen, X.; Ruan, S.; Gu, S.; Hu, Y.; Teng, Y.; Shu, P. Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF–MS/MS and network pharmacology. Sci. Rep. 2021, 11, 1905. [Google Scholar] [CrossRef]
- Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol. 2013, 145, 1–10. [Google Scholar] [CrossRef]
- Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V.M. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv. 2018, 36, 1657–1698. [Google Scholar] [CrossRef]
- Liang, J.-W.; Wang, M.-Y.; Olounfeh, K.M.; Zhao, N.; Wang, S.; Meng, F.-H. Network pharmacology-based identifcation of potential targets of the flower of Trollius chinensis Bunge acting on anti-inflammatory effectss. Sci. Rep. 2019, 9, 8109. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Iyengar, R. Network analyses in systems pharmacology. Bioinformatics 2009, 25, 2466–2472. [Google Scholar] [CrossRef]
- Shawky, E. Prediction of potential cancer-related molecular targets of North African plants constituents using network pharmacology-based analysis. J. Ethnopharmacol. 2019, 238, 111826. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.-F.; Bian, Y.-Q.; Wu, R.; Sun, Y.; Chen, X.-L.; Yang, M.-D.; Zhang, Q.-R.; Hu, Y.; Sun, M.-Y.; Su, S.-B. Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis. Biomed. Pharmacother. 2019, 114, 108863. [Google Scholar] [CrossRef] [PubMed]
- Kamm, M.A. The complexity of drug development for irritable bowel syndrome. Aliment. Pharmacol. Ther. 2002, 16, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Honorio, K.M.; Moda, T.L.; Andricopulo, A.D. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med. Chem. 2013, 9, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Bocci, G.; Carosati, E.; Vayer, P.; Arrault, A.; Lozano, S.; Cruciani, G. ADME-Space: A new tool for medicinal chemists to explore ADME properties. Sci. Rep. 2017, 7, 6359. [Google Scholar] [CrossRef] [PubMed]
- Combrink, M.; du Preez, I. Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin. Toxicol. Lett. 2020, 322, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
- Siva, M.; Shanmugam, K.R.; Shanmugam, B.; Venkata Subbaiah, G.; Ravi, S.; Sathyavelu Reddy, K.; Mallikarjuna, K. Ocimum sanctum: A review on the pharmacological properties. Int. J. Basic Clin. Pharmacol. 2016, 5, 558–565. [Google Scholar]
- Khan, M.Z.; Kaur, P.; Nandicoori, V.K. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. IUBMB Life 2018, 70, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Prisic, S.; Husson, R.N. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Juarrero, M.; Turner, O.C.; Turner, J.; Marietta, P.; Brooks, J.V.; Orme, I.M. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect. Immun. 2001, 69, 1722–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenk, S.F.; Vollmer, M.; Schercher, E.; Kallert, S.; Kubis, J.; Stenger, S. Hypoxia promotes Mycobacterium tuberculosis-specific up-regulation of granulysin in human T cells. Med. Microbiol. Immunol. 2016, 205, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Prosser, G.; Brandenburg, J.; Reiling, N.; Barry, C.E.; Wilkinson, R.J.; Wilkinson, K.A. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect. 2017, 19, 177–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BBehar, S.M.; Martin, C.J.; Booty, M.G.; Nishimura, T.; Zhao, X.; Gan, H.-X.; Divangahi, M.; Remold, H.G. Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 2011, 4, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, T.O.J.P.; Owolabi, O.; Donkor, S.; Kampmann, B.; Hill, P.C.; Ottenhoff, T.H.M.; Haks, M.C.; Kaufmann, S.H.E.; Maertzdorf, J.; Sutherland, J.S. Dysregulation of Apoptosis Is a Risk Factor for Tuberculosis Disease Progression. J. Infect. Dis. 2015, 212, 1469–1479. [Google Scholar] [CrossRef]
- Haufroid, M.; Wouters, J. Targeting the Serine Pathway: A Promising Approach against Tuberculosis? Pharmaceuticals 2019, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Balcewicz-Sablinska, M.K.; Keane, J.; Kornfeld, H.; Remold, H.G. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α. J. Immunol. 1998, 161, 2636–2641. [Google Scholar]
- Magdalena, D.; Magdalena, G. Biological functions and diagnostic implications of microRNAs in Mycobacterium tuberculosis infection. Asian Pac. J. Trop. Biomed. 2022, 12, 1–8. [Google Scholar] [CrossRef]
- Spira, A.; Carroll, J.D.; Liu, G.; Aziz, Z.; Shah, V.; Kornfeld, H.; Keane, J. Apoptosis genes in human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis: A pivotal role for tumor necrosis factor. Am. J. Respir. Cell Mol. Biol. 2003, 29, 545–551. [Google Scholar] [CrossRef]
- Gupta, R.; Pandey, M.; Pandey, A.K.; Tiwari, P.K.; Amrathlal, R.S. Novel genetic polymorphisms identified in the clinical isolates of Mycobacterium tuberculosis PE_PGRS33 gene modulate cytokines expression and promotes survival in macrophages. J. Infect. Public Health 2022, 15, 245–254. [Google Scholar] [CrossRef]
- Olsen, A.; Chen, Y.; Ji, Q.; Zhu, G.; De Silva, A.D.; Vilchèze, C.; Weisbrod, T.; Li, W.; Xu, J.; Larsen, M.; et al. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Xie, Y.; Cui, Z.; Huang, H.; Yang, C.; Yuan, B.; Shen, P.; Shi, C. Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis. Tuberculosis 2021, 126, 102044. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.; Shukla, S.; Sweet, D.R.; Wearsch, P.; Tsichlis, P.N.; Boom, W.H.; Harding, C.V. Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells. Infect. Immun. 2015, 83, 2242–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemicals | Oral Bioavailability | Drug Likeness | Chemical Structures |
---|---|---|---|
Campesterol | 37.58 | 0.71 | |
Cirsimaritin | 30.35 | 0.3 | |
Triterpenoid glycoside | 34.11 | 0.63 | |
Luteolin | 36.16 | 0.25 | |
ß-sitosterol | 36.91 | 0.75 | |
ß-carotene | 37.18 | 0.58 | |
Stigmasterol | 43.83 | 0.76 | |
Luteolin-7-O-glucuronide | 36.16 | 0.25 |
Compounds | Class Categories | Degree |
---|---|---|
Campesterol | Sterol | 17 |
Cirsimaritin | Flavones | 21 |
Triterpenoid glycoside | Terpenoid | 22 |
Luteolin | Flavones | 21 |
ß-sitosterol | Sterol | 20 |
ß-carotene | Carotenoid | 15 |
Stigmasterol | Sterol | 19 |
Luteolin-7-O-glucuronide | Flavones | 29 |
Compounds | Binding Energy (kcal/mol) | ||||
---|---|---|---|---|---|
AKT1 | MAPK1 | MAPK14 | CASP3 | TNF | |
β-carotene | −5.73 | −7.35 | −2.35 | −10.23 | −8.36 |
β-sitosterol | −3.85 | −5.21 | −6.37 | −7.65 | −9.31 |
Campestrol | −9.80 | −5.66 | −8.24 | −2.57 | −6.57 |
Leutolin | −4.36 | −6.34 | −7.36 | −5.56 | −7.78 |
Luteolin-7-O-glucuronide | −6.31 | −6.88 | −5.67 | −3.69 | −10.31 |
Triterpenoid Glycoside | −10.55 | −9.36 | −9.85 | −4.33 | −7.32 |
Cirismartin | −3.00 | −5.31 | −7.34 | −4.37 | −5.24 |
Stigmasterol | −7.64 | −9.19 | −4.37 | −10.27 | −9.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, S.; Khalid, H.R.; Haq, W.u.; Aslam, S.; Alshammari, A.; Alharbi, M.; Riaz Rajoka, M.S.; Khurshid, M.; Ashfaq, U.A. Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis. Processes 2022, 10, 298. https://doi.org/10.3390/pr10020298
Tabassum S, Khalid HR, Haq Wu, Aslam S, Alshammari A, Alharbi M, Riaz Rajoka MS, Khurshid M, Ashfaq UA. Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis. Processes. 2022; 10(2):298. https://doi.org/10.3390/pr10020298
Chicago/Turabian StyleTabassum, Sana, Hafiz Rameez Khalid, Waqar ul Haq, Sidra Aslam, Abdulrahman Alshammari, Metab Alharbi, Muhammad Shahid Riaz Rajoka, Mohsin Khurshid, and Usman Ali Ashfaq. 2022. "Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis" Processes 10, no. 2: 298. https://doi.org/10.3390/pr10020298
APA StyleTabassum, S., Khalid, H. R., Haq, W. u., Aslam, S., Alshammari, A., Alharbi, M., Riaz Rajoka, M. S., Khurshid, M., & Ashfaq, U. A. (2022). Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis. Processes, 10(2), 298. https://doi.org/10.3390/pr10020298