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Abstract: Engine development needs to reduce costs and time. As the current main development
methods, 1D simulation has the limitations of low accuracy, and 3D simulation is a long, time-
consuming task. Therefore, this study aims to verify the applicability of the machine learning
(ML) method in the prediction of engine efficiency and emission performance. The support vector
regression (SVR) algorithm was chosen for this paper. By the selection of kernel functions and
hyperparameters sets, the relationship between the operation parameters of a spark-ignition (SI)
engine and its economic and emissions characteristics was established. The trained SVR algorithm
can predict fuel consumption rate, unburned hydrocarbon (HC), carbon monoxide (CO), and nitrogen
oxide (NOx) emissions. The determination coefficient (R2) of experimental measured data and model
predictions was close to 1, and the root-mean-squared error (RMSE) is close to zero. Additionally, the
SVR model captured the corresponding trend of the engine with the input, though some existed small
errors. In conclusion, these results indicated that the SVR model was suitable for the applications
studied in this research.

Keywords: spark-ignition engine; support vector regression; machine learning; engine performance;
engine emissions

1. Introduction

Emission regulations are the national plans and the guidance for the development
of the automotive industry [1,2]. With the gradual development of emission regulations,
the requirements for thermal efficiency and emissions of automobiles have gradually
increased [3,4], which has led companies to actively research and develop various tech-
nologies. Moreover, a plan called “emission peak before 2030” and “carbon neutrality” has
been proposed to reduce CO and improve the environment further. Additionally, it has
propelled extensive research on powertrains and exhaust systems of vehicles [5,6]. With
the progress of numerical calculation methods [7–10] and the improvement of computer
performance, numerical simulation technology has been widely applied in multiphysi-
cal field coupling simulation [11]. Hence, most car companies have adopted 1D and 3D
simulations and in-depth experiments to investigate the performance and emissions of
spark-ignition engines or calibrate the engine operation [12–16]. However, due to the
quasi-dimensional combustion model used in 1D simulation [17], the interaction between
the combustion chamber and flame is not considered, so the simulation accuracy is limited.
The 3D simulation method takes a long time and requires a grid independence test, so the
cost is high [18]. To accelerate engine development, several attractive statistical methods
called machine learning models have been proposed to assist the investigation of engine
powertrain and exhaust systems. Additionally, they are more robust than 1D simulations
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and cheaper than 3D CFD (Computational Fluid Dynamics) models in terms of time and
resources required [19].

Based on the literature, some researchers have used machine learning models to
forecast the engine-related indicators such as indicated mean effective pressure [20,21],
emissions [22–25], exhaust gas temperature [26,27], fuel composition effects [22,23], pres-
sure [28,29], phase [19,30], etc. Therefore, the objective of this study is to evaluate whether
machine learning models can be used to predict the engine responses and emissions during
steady and transient operation points, which is very promising to reduce the computational
time and costs.

For the selection of machine learning models, the effectiveness of models including
random forest (RF), support vector regression (SVR), and artificial neural networks (ANNs)
in predicting nonlinear relationships is related to the application. In engine research, many
researchers have adopted the SVR model to predict engine-related parameters. For example,
Lee et al. [31] used SVR to predict the load demand. The prediction engine implements
K-step ahead prediction (seven-step ahead prediction with three previous data points).
Additionally, the results showed that the training time of SVR with the linear kernel is faster
than the ANN model based on prediction engines. Masoud et al. [32] applied a support
vector machine (SVM) model to forecast a control-oriented diesel engine NOx emission
and brake mean effective pressure (BMEP). The results indicated that the SVM model
can improve the accuracy of the control-oriented model, compared with a conventional
regression algorithm (trust region). In addition, studies by [33,34] also applied the SVR
model to forecast engine efficiency and emissions. In the field of machine learning models,
SVR has remarkable performance on text classification models and has set off a surge of
statistical learning. Generally speaking, the solution of the SVR model is based on the
convex optimization technique, and the efficiency is dependent on a type of kernel function.
Table 1 shows the predicted performance of some available studies.

Table 1. The predicted performance of some available studies.

Ref. Engine Type Method Output Performance

[35] HCCI engine ANN CO emissions R2 = 0.96
[26] Blended fuel SI engine SVR BSFC R2 = 0.92
[36] Marine diesel engine SVR BSFC R2 = 0.97
[37] Natural gas SI engine ANN Maximum pressure rise rate R2 = 0.97
[38] SI gasoline engine ANN CO emissions R2 = 0.98
[39] SI gasoline engine ANN NOx emissions R2 = 0.97
[40] RCCI engine RF Peak pressure R2 = 0.95
[27] Natural gas SI engine SVR Indicated engine power R2 = 0.98

The adjustment of the ANN model requires modification of network structural param-
eters such as the number of layers and neurons [39,41], and hyperparameter adjustment
in SVR is more convenient. However, the SVR model is seldom used to predict the per-
formance of SI gasoline engines. Therefore, in this study, we evaluated the applicability
of the SVR model for the prediction of engine performance and emissions of SI gasoline
engines. The next sections will analyze and discuss the data collection, the structure of the
SVR method, data process, and hyperparameter sets. The applicability of the SVR model
is studied by analyzing the prediction accuracy of HC, CO, and NOx emissions under
different operating conditions.

2. Data Collection and ML Modeling
2.1. Experimental System

A V type 6-cylinder gasoline 3.0 L Dodge Touring car engine was applied to collect the
data used for machine learning. It was a 3.0 L engine with a multipoint injection strategy
and naturally aspirated air intake system. To ensure that wall heat transfer losses were
roughly the same in all tests and to minimize experimental errors, the engine was preheated
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before every test. During the experiment, the load varied from 27 N·m to 217 N·m, and the
speed varied from 1200 RPM (Revolutions Per Minute) to 5000 RPM. Moreover, the intake
condition, coolant temperature, and other important operating parameters were controlled
as constants. After the stable operation, the fuel consumption rate, HC, CO, NOx emissions,
and relevant data were recorded. Reference [39] shows more detailed information; only the
most important information is provided here, the parameters of the engine can be seen in
Table 2.

Table 2. Parameters of the engine.

Engine type V type 6-cylinder, four-stroke
Cooling type water cooling

Ignition sequence 1-4-5-2-3-6
Engine capacity 3.0 L

Maximum power/speed 102 kW/4875 rpm
Maximum torque/speed 217 N·m/4143 rpm

2.2. SVR Algorithm

SVR is a data mining method based on statistical theory, which is an extension of SVM
designed to handle regression analysis problems. Figure 1 shows the structure of SVR.
Similar to the architecture of the ANN model, the connection between the input layer and
output layer is established by setting a hidden layer, which can be calculated automatically
based on the dataset.
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The basic principle of SVR is to map the feature vectors of sample data from low
dimension to high dimension and perform regression analysis on them in high dimension
by the usage of the kernel function, as shown in Figure 2. The function of the support
vector regression machine is expressed as

f (x)= ω × x + b (1)

where ω is the coefficient of the function; x is the input feature vector; b is the bias constant.
To find the most value regression function, a minimization function needs to be established
as follows:

min
1
2

ωTω + C
1
N

N

∑
i=1

L( f (xi), yi) (2)

L(y) =
{

0, | f (xi)− yi| ≤ ε

| f (xi) − yi| − ε, | f (xi)− yi| ≥ ε
(3)
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where C is the penalty factor, N is the number of samples; f (xi) represents the predicted
value of the feature vector of the number i sample; yi represents the true value of the feature
vector of the number i sample; L is the linear insensitive loss function; ε is the maximum
deviation.
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Figure 2. Schematic digamma of the kernel trick.

By establishing the Lagrange equation and the Karush–Kuhu–Tucker (KKT) condition
to obtain the partial derivatives of the parameters [42], the dual-mode of the SVR model
can be obtained. The final decision function is expressed as

f (x) =
l

∑
i=1

(
α∗i − αi

)
K(xi, x)+b (4)

where l is the number of SVR machines; αi represents the optimal solution; K is the kernel
function in nonlinear regression, K(xi, x) = Φ(xi)× Φ

(
xj
)
. A better kernel function is

chosen, and the result is mapped to a high-dimensional space by calculating in a low-
dimensional space, which effectively avoids the problem of dimensional explosion in a
high-dimensional space.

References [43,44] reflect the applicability of the radial basis function (RBF) kernel
in predicting nonlinear regression of engine response. Therefore, RBF was chosen in this
paper; the RBF has high flexibility by adjusting kernel function coefficient γ, which can be
shown as:

K
(
xi, xj

)
= exp

(
−γ|x i − xj

∣∣2), γ > 0 (5)

Above all, penalty factor C, kernel function coefficient γ, and the maximum deviation
ε will all affect the result of SVR [43]. The parameters can be set in the efficient SVM
regression learning toolbox LibSVM v3.4 [45], written by Professor Lin Chih-Jen.

2.3. The Model Training Process

In machine learning methods [46,47], normalization has widely been used to reduce
the influence of the range of data. Therefore, in this research, a normalization method of
(−1, 1) was chosen, which can be shown as

y = 2 ×
(

x − xmin
xmax −xmin

)
− 1 (6)

where x is the basic data, and y is the normalized data. After the results are obtained, it is
necessary to operate inverse normalization. To evaluate the performance of the SVR method,
the training and test datasets were randomly divided from 135 experimental data, as shown
in Figure 3, and accounted for 80% and 20%, respectively. References [48,49] indicated that
this percentage separation was recommended for the engine model in this research.

To further evaluate the success of the training model, steady-state datasets were
utilized. As shown in Figure 3, 45 of 135 groups were selected, testing the prediction ability
of the SVR model for engine performance under different engine loads with certain speeds
(i.e., 1820, 2965, and 4505 RPM). Moreover, 27 of 135 groups were used to evaluate whether
the engine speed effect on engine performance can be predicted by the prediction model
under certain loads (i.e., 54, 108, and 188 N·m).
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The statistical determination coefficient (R2) and root-mean-squared error (RMSE) can
be used to evaluate the prediction performance. When R2 and RMSE are close to 1 and 0,
respectively, it means the predicted value fits the measured value well, and the predictions
are accurate. R2 and RMSE are defined as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (7)

RMSE =

√
1
n

n
∑

i=1
|yi − ŷi|2 (8)

where ŷi is the predicted data; y is the average value of the measured data; yi is the
experimental data; n is the quantity of data.

The SVR model establishment process is shown in Figure 4. Firstly, preprocessing of
data including loading and normalization was carried out, and then, appropriate hyperpa-
rameters of SVR were selected to make the RMSE as small as possible. Then, the prediction
ability of the SVR model obtained by training was evaluated.
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3. Results and Discussion

This section discusses the precision of the SVR model predictions of the fuel consump-
tion rate, NOx, CO, and HC emissions.

3.1. Discussion of Indicated Specific Fuel Consumption and Emissions Prediction

Figures 5–8 show the comparison between the measured data and SVR predicted
results. It is found that the majority of points were close to the diagonal line of slope = 1,
suggesting a satisfactory prediction performance. Moreover, the hyperparameter sets are
shown in the front of each figure. As the distribution of each data was different, the setting
of hyperparameters was also different. Moreover, ε was selected as 0.01 for each indicator
to improve the prediction accuracy [44].

Hyperparameter set : C = 4.44; γ= 5.40; ε = 0.01

Processes 2022, 10, 312 6 of 16 
 

 

 
Figure 4. Flowchart of SVR model [50]. 

3. Results and Discussion 
This section discusses the precision of the SVR model predictions of the fuel con-

sumption rate, NOx, CO, and HC emissions. 

3.1. Discussion of Indicated Specific Fuel Consumption and Emissions Prediction 
Figures 5–8 show the comparison between the measured data and SVR predicted re-

sults. It is found that the majority of points were close to the diagonal line of slope = 1, 
suggesting a satisfactory prediction performance. Moreover, the hyperparameter sets are 
shown in the front of each figure. As the distribution of each data was different, the setting 
of hyperparameters was also different. Moreover, 𝜀 was selected as 0.01 for each indica-
tor to improve the prediction accuracy [44]. 

Hyperparameter set: C = 4.44; γ = 5.40; 𝜀 = 0.01 

 
Figure 5. Comparison of SVR predicted results with measured data of fuel consumption. (a) Train-
ing dataset; (b) Validation dataset. 

Hyperparameter set: C = 16.71; γ = 11.70; 𝜀 = 0.01 

Figure 5. Comparison of SVR predicted results with measured data of fuel consumption. (a) Training
dataset; (b) Validation dataset.

Hyperparameter set : C = 16.71; γ = 11.70; ε = 0.01

Processes 2022, 10, 312 7 of 16 
 

 

 
Figure 6. Comparison of SVR predicted results with measured data of HC emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 295.71; γ = 3.57; 𝜀 = 0.01 

 
Figure 7. Comparison of SVR predicted results with measured data of CO emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 99.74; γ = 3.58; 𝜀 = 0.01 

 
Figure 8. Comparison of SVR predicted results with measured data of NOx emissions. (a) Training 
dataset; (b) Validation dataset. 

The R2 and RMSE of the fuel consumption for the training dataset were 0.9903, 7.5344, 
and for the validation dataset, these values were 0.9944 and 7.4874. The R2 and RMSE of 

Figure 6. Comparison of SVR predicted results with measured data of HC emissions. (a) Training
dataset; (b) Validation dataset.



Processes 2022, 10, 312 7 of 15

Hyperparameter set : C = 295.71; γ = 3.57; ε = 0.01

Processes 2022, 10, 312 7 of 16 
 

 

 
Figure 6. Comparison of SVR predicted results with measured data of HC emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 295.71; γ = 3.57; 𝜀 = 0.01 

 
Figure 7. Comparison of SVR predicted results with measured data of CO emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 99.74; γ = 3.58; 𝜀 = 0.01 

 
Figure 8. Comparison of SVR predicted results with measured data of NOx emissions. (a) Training 
dataset; (b) Validation dataset. 

The R2 and RMSE of the fuel consumption for the training dataset were 0.9903, 7.5344, 
and for the validation dataset, these values were 0.9944 and 7.4874. The R2 and RMSE of 

Figure 7. Comparison of SVR predicted results with measured data of CO emissions. (a) Training
dataset; (b) Validation dataset.

Hyperparameter set : C = 99.74; γ = 3.58; ε = 0.01

Processes 2022, 10, 312 7 of 16 
 

 

 
Figure 6. Comparison of SVR predicted results with measured data of HC emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 295.71; γ = 3.57; 𝜀 = 0.01 

 
Figure 7. Comparison of SVR predicted results with measured data of CO emissions. (a) Training 
dataset; (b) Validation dataset. 

Hyperparameter set: C = 99.74; γ = 3.58; 𝜀 = 0.01 

 
Figure 8. Comparison of SVR predicted results with measured data of NOx emissions. (a) Training 
dataset; (b) Validation dataset. 

The R2 and RMSE of the fuel consumption for the training dataset were 0.9903, 7.5344, 
and for the validation dataset, these values were 0.9944 and 7.4874. The R2 and RMSE of 

Figure 8. Comparison of SVR predicted results with measured data of NOx emissions. (a) Training
dataset; (b) Validation dataset.

The R2 and RMSE of the fuel consumption for the training dataset were 0.9903, 7.5344,
and for the validation dataset, these values were 0.9944 and 7.4874. The R2 and RMSE of
the HC emissions training dataset were 0.9991, 0.03, and for the validation dataset, these
values were 0.9818 and 0.1544. The R2 and RMSE of the CO emissions training dataset
were 0.9818, 18.6208, and for the validation dataset, these values were 0.9818 and 19.1565.
The R2 and RMSE of the NOx emissions training dataset were 0.9873, 0.8701, and for
the validation dataset, they were 0.9889 and 0.8661. As shown in Figure 5, for the fuel
consumption, the indicators of the validation dataset were both better than the training
dataset, indicating the generalization ability of the SVR model. As shown in Figure 7, for
the CO emissions prediction, very few points deviated far from the diagonal, caused by the
possible overfitting, but the effect on R2 was very small. There is an order of magnitude
difference in CO concentration between lean and rich combustion. Small changes in the
equivalence ratio of the stoichiometry control would result in large changes in CO emission
levels, making model predictions difficult [51].

The prediction results of the model were highly coincidental with the experimental
data, which was also supported by the clustered points near the diagonal. The performance
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of the SVR training dataset and validation dataset were close, showing that the SVR model
had good generalization ability in engine performance prediction. Generally, the R2 values
were all near to 1, suggesting that the SVR model had successfully learned the relationship
between engine inputs and outputs. Compared with Table 1, the R2 values in this paper
were all higher than 0.95, indicating the high prediction precision for the SVR method.
All these results showed that the SVR prediction model can predict the engine response
under different engine speeds and loads conditions. When trained properly, the error was
acceptable [36].

3.2. Discussion of Steady-State Prediction

In Section 3.1, the accuracy of SVR prediction for each performance indicator was
illustrated by analyzing relevant statistical indicators (i.e., R2 and RMSE). In this section, a
discussion is provided on whether the SVR model developed in this study can accurately
describe the effect of input changes on output responses. In other words, it is crucial to
investigate and monitor the ability to understand the complex relationships in machine
learning training [44,52]. In order to obtain good engine emission performance and low
fuel consumption, the electronic control unit of the gasoline engine changes the combustion
condition in the cylinder by changing the throttle position and ignition advance timing
of the engine, thus changing the load and speed. Due to the engine control strategy, a
close relationship exists between engine input and response. Figures 9 and 10 are used to
evaluate whether the SVR model can predict the performance, emissions characteristics of
the gasoline engine.
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Figure 9 shows the experimental and model prediction of the effects of torque on
fuel consumption, HC, CO, and NOx emissions at 1820, 2965, and 4505 RPM speeds of
the engine, respectively. Figure 9a shows the predicted fuel consumption, and it can be
seen that, at medium and low speeds, the fuel consumption was close, while at high
speed, a significant increase in fuel consumption was observed; as the load increased,
the fuel consumption first decreased and then increased. This trend was similar to HC
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emissions, as shown in Figure 9b, indicating that a high-performance region existed that
allows for better in-cylinder combustion and less emission generation. Figure 9c shows
the prediction of CO emissions, a load value was found, and once the load exceeded this
value, the CO emissions increased significantly. The turning point coincided with the point
of increase in fuel consumption, indicating that, at higher loads, combustion efficiency
of the engine decreased, and the incomplete products increased. Figure 9d shows the
prediction of NOx emissions, which was less at low and medium load conditions, and
more at high load conditions, indicating that the combustion deteriorated, the in-cylinder
temperature reduced, and the NOx emissions generation decreased. Generally, the SVR
model successfully reflected the influence of load on fuel consumption.
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Figure 10 shows the impact of engine speed on fuel consumption and emissions
under 54, 108, and 188 N·m engine loads, respectively. Figure 10a shows the prediction of
fuel consumption rate, which is more sensitive to engine speed. Figure 10b presents the
prediction of HC emissions, which decreased and then increased as the speed increased.
In the most economical operating condition, it is less generated, which indicates high
combustion efficiency. At higher speeds, the combustion efficiency of the engine decreased,
and the amount of HC emissions increased, which was evident at high load, because of
more fuel injected in the cylinder. Figure 10c shows the CO emission prediction, under high
load conditions, due to less reaction time, more fuel injection volume, and uneven air–fuel
mixture, the combustion was not sufficient and incomplete, which made the CO increase
significantly. Figure 10d shows the NOx emissions prediction, at high speed; the NOx
emissions generation was less due to insufficient combustion resulting in low in-cylinder
temperature. As for the evaluation of the ML method prediction precisions, the SVR model
captured the variation trend in these parameters under different speeds and could predict
engine performance under different operating with small errors.
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3.3. Discussion of Engine Performance Map Prediction

Based on Section 3.2, the prediction ability of the SVR model proved to be acceptable,
and the ML model can describe the relationship between the engine input. To better
investigate the applicability of SVR to performance prediction, the experimental values,
predicted values, and errors of fuel consumption rate, HC, CO, and NOx emissions were
obtained as different responses in Figures 11–14, with the engine speeds and loads as
independent variables.
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It can be seen in Figure 11 that, at lower loads and higher speeds, the fuel consump-
tion rate increased, which was due to less power demanded but more fuel injection. As
the load increased, the power required increased, and then, the fuel consumption was
more adequate. As shown in Figure 12, HC emissions were generated less as engine
speed increased [53], due to the faster air-fuel mixture flowing, the mixture uniformity
was improved, and more HC was oxidized. CO emissions were generated more in high
speed and high loading conditions, as shown in Figure 13, because the ECU (Electronic
Control Unit) allowed the engine to work on a slightly oxygen-enriched mixture, convert-
ing CO into CO2. It can be seen in Figure 14 that NOx emissions were generated most
at medium load and speed because the combustion was best at this condition, and the
oxidation process was sufficient, caused by the high in-cylinder temperature. As shown in
Figures 11c, 12, 13c and 14c, the absolute prediction error of the SVR model for the results
is small, which indicates that SVR can be used as a reference for setting conditions.

As for the relative error analyses, the relative error of fuel consumption rate prediction
was the smallest. The errors of HC emissions were relatively large under high speed with
low loading conditions, due to noise in the test data, leading to a decrease in the prediction
accuracy of the ML method. The errors of CO and NOx emissions were larger under high
speed with high loading conditions. NOx emissions were generated in a small amount
(close to 0) under these working conditions, and the relative errors were relatively large.
In comparison, the error in CO emissions might be due to the difficulty in controlling the
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equivalent ratio under these operations, which needed more engine power, and the sudden
increase in injected oil made the data collected vary greatly.
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4. Conclusions

The purpose of this paper was to assess the ability of SVR methods to predict the
performance of the fuel consumption rate and emissions of a calibrated spark-ignition
engine at the required engine speed and load. The results indicated that SVR algorithms
can achieve this goal with acceptable errors. The main findings were as follows:

(1) Our previous research found that artificial neural networks can help predict engine
performance and emissions, at least for the gasoline engine discussed in this study.
However, it required heavy tuning of the hyperparameters, such as the net structure.
In contrast, the SVR algorithm employed in this study had a more convenient tuning
process during the supervised learning process. Moreover, model performance regard-
ing the training and validation datasets was improved. As a result, the SVR algorithm
was suitable to be used for engine combustion-related parameters forecasting. In
addition, the SVR model can help establish the engine mapping because the algorithm
well correlated the engine control variables and engine responses, which can help
reduce the effort during engine development.

(2) As for the engine response prediction performance, fuel consumption rate and NOx
emissions were predicted with good accuracy, while HC and CO emissions were pre-
dicted with a little less accuracy, compared with the first two. The underlying reason
was the nature of the engine response. Specifically, HC emissions were unevenly
distributed because HC concentration mainly depended on the trapped mass inside
the crevice. With respect to CO emissions, variation in the equivalence ratio would
dramatically change the CO concentration. This was because there is an order of
magnitude difference in CO concentration between lean and rich combustion. Small
changes in the equivalence ratio of the stoichiometry control would result in large
changes in CO emission levels, making model predictions difficult. As a result, the
combination of machine learning and carbon balance has the potential to further
improve the performance of incomplete combustion production concentration predic-
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tions if carbon dioxide can be well forecasted, which will be the future direction of
this study.
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