Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor
Abstract
:1. Introduction
2. Experimental Setup
2.1. Coal Samples
2.2. Devolatilization Experiments
3. Results and Discussion
3.1. Direct Observations of the Volatile Releasing Processes
3.2. Apparent Volatile Yields
3.3. Element Releases during the Devolatilization Process
3.4. Heating Value of the Volatiles
4. Conclusions
- (i)
- The presence of CO2 prolonged the burnout time of the volatile (more than 20%) and decreased the size of the volatile envelope flame. The lower diffusion rate of the volatile in the CO2 mixture was considered to be the main reason for these observations. Further, the effect of CO2 was found to be dependent on the rank of the coal.
- (ii)
- The presence of CO2 reduced the release rate of the volatile, and this resulted in the apparent volatile yield (27%) and the heating value of the volatile (2%) of bituminous coal under MO conditions being lower than those under MA conditions. This indicated that the flame stability of bituminous coal under MIO conditions was not as good as that under MA combustion conditions.
- (iii)
- Although the presence of CO2 could affect the volatile flame size of semi-anthracite coal, the effect on volatile burnout time was less clear. The char-CO2 gasification increased the apparent volatile yield and the heating value of the volatile by 47%. The char gasification reaction also led to more char-N by 19% being released into volatile. The higher heating value of the volatile improved the flame stability in the fuel-rich stage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Particle Temperature Calculation
Y = A0 + A1 × Tg + A2× Tg2 + A3 × Tg3 + A4 × Tg4 + A5 × Tg5+ A6 × Tg6 | |||||||
Y | A0 | A1 | A2 | A3 | A4 | A5 | A6 |
Cp | 4.685 | 0.019 | −1.742 × 10-5 | 1.0385 × 10-8 | 3.969 × 10-12 | 8.881 × 10-16 | −8.735 × 10-20 |
kg | −2.752 × 10−6 | 7.475 × 10−8 | 3.180 × 10−10 | −3.642 × 10−13 | 1.703 × 10−16 | −3.606 × 10−20 | 2.802 × 10−24 |
Parameters | DT Bituminous Coal | JC Semi-Anthracite Coal |
---|---|---|
Mδ | 30.0 | 16.0 |
MW | 298.1 | 291.9 |
P0 | 0.591 | 0.814 |
σ + 1 | 5.56 | 4.90 |
C0 | 0 | 0.314 |
Eb | 55.4 kcal/mol |
Ab | 2.6 × 105 s−1 |
σb | 1.8 kcal/mol |
Eg | 69 kcal/mol |
Ag | 3 × 1015 s−1 |
σG | 8.1 kcal/mol |
ρ | 0.9 |
References
- Stanger, R.; Wall, T.; Spörl, R.; Paneru, M.; Grathwohl, S.; Weidmann, M.; Scheffknecht, G.; McDonald, D.; Myöhänen, K.; Ritvanen, J.; et al. Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control 2015, 40, 55–125. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, C.; Sang, H.; Lu, B.; Wu, F.; Li, X.; Zhang, L. Structure and surface insight into a temperature-sensitive CaO-based CO2 sorbent. Chem. Eng. J. 2022, 435, 134960. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, T.; Huang, X.; Luo, W.; Hu, F.; Luo, Z.; Li, P.; Liu, Z. Oxy-Fuel Combustion Characteristics of Pulverized Coal in a 3 MW Pilot-Scale Furnace. Energy Fuels 2018, 32, 10522–10529. [Google Scholar] [CrossRef]
- Hong, D.; Si, T.; Li, X.; Guo, X. Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char. Fuel Process. Technol. 2020, 199, 106305. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Zhu, J. Investigation on Pulverized Coal Char Oxy-Combustion Behavior at Moderate and High Temperatures: Experiments and a Novel Developed Kinetics Modeling. Ind. Eng. Chem. Res. 2018, 57, 12264–12277. [Google Scholar] [CrossRef]
- Hu, F.; Li, P.; Li, W.; Ding, C.; Guo, J.; Liu, Z. Experimental and kinetic study of NO-reburning by syngas under high CO2 concentration in a jet stirred reactor. Fuel 2021, 304, 121403. [Google Scholar] [CrossRef]
- Khodabandeh, E.; Moghadasi, H.; Saffari Pour, M.; Ersson, M.; Jönsson, P.G.; Rosen, M.A.; Rahbari, A. CFD study of non-premixed swirling burners: Effect of turbulence models. Chin. J. Chem. Eng. 2020, 28, 1029–1038. [Google Scholar] [CrossRef]
- Kim, R.-G.; Hwang, C.-W.; Jeon, C.-H. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure. Appl. Energy 2014, 129, 299–307. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, B.; Zhao, Z.; Zhang, L.; Chen, Y.; Li, S.; Luo, C.; Zheng, C. CFD modeling on char surface reaction behavior of pulverized coal MILD-oxy combustion: Effects of oxygen and steam. Fuel Process. Technol. 2020, 204, 106405. [Google Scholar] [CrossRef]
- Chen, L.; Yong, S.Z.; Ghoniem, A.F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 2012, 38, 156–214. [Google Scholar] [CrossRef]
- Li, P.; Dally, B.B.; Mi, J.; Wang, F. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combust. Flame 2013, 160, 933–946. [Google Scholar] [CrossRef]
- Hu, F.; Li, P.; Guo, J.; Liu, Z.; Wang, L.; Mi, J.; Dally, B.; Zheng, C. Global reaction mechanisms for MILD oxy-combustion of methane. Energy 2018, 147, 839–857. [Google Scholar] [CrossRef]
- Perpignan, A.A.V.; Gangoli Rao, A.; Roekaerts, D.J.E.M. Flameless combustion and its potential towards gas turbines. Prog. Energy Combust. Sci. 2018, 69, 28–62. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Z.; Zhou, Y. Numerical analysis on the characteristic chemical time scale and combustion regime of natural gas MILD combustion. Fuel 2020, 282, 118811. [Google Scholar] [CrossRef]
- Kuang, Y.; He, B.; Wang, C.; Tong, W.; He, D. Numerical analyses of MILD and conventional combustions with the Eddy Dissipation Concept (EDC). Energy 2021, 237, 121622. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, T.; Zheng, S.; Wu, W.; Zhou, Y. Ignition and combustion characteristics of coal particles under high-temperature and low-oxygen environments mimicking MILD oxy-coal combustion conditions. Fuel 2019, 253, 1104–1113. [Google Scholar] [CrossRef]
- Saffari Pour, M.; Weihong, Y. Performance of Pulverized Coal Combustion under High Temperature Air Diluted by Steam. ISRN Mech. Eng. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Li, P.; Guo, J.; Wang, F.; Wang, K.; Jiang, X.; Liu, Z.; Zheng, C. Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy Fuels 2018, 32, 4478–4492. [Google Scholar] [CrossRef]
- Hu, F.; Li, P.; Zhang, T.; Zu, D.; Cheng, P.; Liu, Y.; Mi, J.; Liu, Z. Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air. Energy 2021. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xu, X.; Mikulčić, H.; Li, Y.; Zhou, Y.; Tan, H. Numerical study of biomass Co-firing under Oxy-MILD mode. Renew. Energy 2020, 146, 2566–2576. [Google Scholar] [CrossRef]
- Kuang, Y.; He, B.; Tong, W.; Wang, C.; Ying, Z. Effects of oxygen concentration and inlet velocity on pulverized coal MILD combustion. Energy 2020, 198, 117376. [Google Scholar] [CrossRef]
- Perrone, D.; Castiglione, T.; Klimanek, A.; Morrone, P.; Amelio, M. Numerical simulations on Oxy-MILD combustion of pulverized coal in an industrial boiler. Fuel Process. Technol. 2018, 181, 361–374. [Google Scholar] [CrossRef]
- Stadler, H.; Christ, D.; Habermehl, M.; Heil, P.; Kellermann, A.; Ohliger, A.; Toporov, D.; Kneer, R. Experimental investigation of NOx emissions in oxycoal combustion. Fuel 2011, 90, 1604–1611. [Google Scholar] [CrossRef]
- Li, P.; Wang, F.; Tu, Y.; Mei, Z.; Zhang, J.; Zheng, Y.; Liu, H.; Liu, Z.; Mi, J.; Zheng, C. Moderate or Intense Low-Oxygen Dilution Oxy-combustion Characteristics of Light Oil and Pulverized Coal in a Pilot-Scale Furnace. Energy Fuels 2014, 28, 1524–1535. [Google Scholar] [CrossRef]
- Zhu, S.; Lyu, Q.; Zhu, J.; Wu, H.; Fan, Y. Low NOx Emissions from Pulverized Coal Moderate or Intense Low-Oxygen Dilution Combustion in O2/CO2 Preheated by a Circulating Fluidized Bed. Energy Fuels 2018, 32, 10956–10963. [Google Scholar] [CrossRef]
- Liu, R.; An, E.; Wu, K.; Liu, Z. Numerical simulation of oxy-coal MILD combustion with high-velocity oxygen jets. J. Energy Inst. 2017, 90, 30–43. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Elliott, L.K.; Sheng, C.D.; Gupta, R.P.; Wall, T.F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005, 31, 283–307. [Google Scholar] [CrossRef]
- Liu, M.; He, Q.; Bai, J.; Yu, J.; Kong, L.; Bai, Z.; Li, H.; He, C.; Cao, X.; Ge, Z.; et al. Char reactivity and kinetics based on the dynamic char structure during gasification by CO2. Fuel Process. Technol. 2021, 211, 106583. [Google Scholar] [CrossRef]
- Brix, J.; Jensen, P.A.; Jensen, A.D. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres. Fuel 2010, 89, 3373–3380. [Google Scholar] [CrossRef]
- Rathnam, R.K.; Elliott, L.K.; Wall, T.F.; Liu, Y.; Moghtaderi, B. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process. Technol. 2009, 90, 797–802. [Google Scholar] [CrossRef]
- Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. Coal pyrolysis and char combustion under oxy-fuel conditions. In Proceedings of the 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, USA, 31 May–4 June 2009. [Google Scholar]
- Borrego, A.G.; Alvarez, D. Comparison of Chars Obtained under Oxy-Fuel and Conventional Pulverized Coal Combustion Atmospheres. Energy Fuels 2007, 21, 3171–3179. [Google Scholar] [CrossRef]
- Khatami, R.; Levendis, Y.A.; Delichatsios, M.A. Soot loading, temperature and size of single coal particle envelope flames in conventional- and oxy-combustion conditions (O2/N2 and O2/CO2). Combust. Flame 2015, 162, 2508–2517. [Google Scholar] [CrossRef]
- Riaza, J.; Khatami, R.; Levendis, Y.A.; Álvarez, L.; Gil, M.V.; Pevida, C.; Rubiera, F.; Pis, J.J. Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combust. Flame 2014, 161, 1096–1108. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.G.; Li, D.; Jeon, C.H. Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate. Exp. Therm. Fluid Sci. 2014, 54, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Stivers, C.; Joshi, K.; Levendis, Y.A.; Sarofim, A.F. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combust. Flame 2012, 159, 1253–1271. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Kim, J.-D.; Lee, B.-H.; Song, J.-H.; Chang, Y.-J.; Jeon, C.-H. Experimental Investigation into Combustion Characteristics of Two Sub-bituminous Coals in O2/N2 and O2/CO2 Environments. Energy Fuels 2010, 24, 6034–6040. [Google Scholar] [CrossRef]
- Shaddix, C.R.; Molina, A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc. Combust. Inst. 2009, 32, 2091–2098. [Google Scholar] [CrossRef]
- Glassman, I. Combustion, 3rd ed.; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Seeker, W.R.; Samuelsen, G.S.; Heap, M.P.; Trolinger, J.D. The thermal decomposition of pulverized coal particles. Symp. (Int.) Combust. 1981, 18, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Qin, D.; Li, J.; Liu, Z. A particle-tracking image pyrometer for characterizing ignition of pulverized coal particles. Fuel Process. Technol. 2022, 225, 107065. [Google Scholar] [CrossRef]
- Molina, A.; Shaddix, C.R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc. Combust. Inst. 2007, 31, 1905–1912. [Google Scholar] [CrossRef]
- Kobayashi, H.; Howard, J.B.; Sarofim, A.F. Coal devolatilization at high temperatures. Symp. (Int.) Combust. 1977, 16, 411–425. [Google Scholar] [CrossRef]
- Fryda, L.; Sobrino, C.; Glazer, M.; Bertrand, C.; Cieplik, M. Study of ash deposition during coal combustion under oxyfuel conditions. Fuel 2012, 92, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Toftegaard, M.B.; Brix, J.; Jensen, P.A.; Glarborg, P.; Jensen, A.D. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 2010, 36, 581–625. [Google Scholar] [CrossRef]
- Shaddix, C.R. Correcting Thermocouple Measurements for Radiation Loss: A Critical Review. In Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, NM, USA, 15–17 August 1999. [Google Scholar]
- Lee, H.; Choi, S. An observation of combustion behavior of a single coal particle entrained into hot gas flow. Combust. Flame 2015, 162, 2610–2620. [Google Scholar] [CrossRef]
- Fletcher, T.H. Time-Resolved Temperature-Measurements of Individual Coal Particles during Devolatilization. Combust. Sci. Technol. 1989, 63, 89–105. [Google Scholar] [CrossRef]
- Jian, Z.; Mingchuan, Z.; Juan, Y.; Yongfeng, Q.; Yuyu, L. Moving flame front model for volatile combustion after homogeneous ignition. J. Combust. Sci. Technol. 2009, 15, 6. [Google Scholar]
- Sowa, J.M.; Kolste, K.K.; Fletcher, T.H. Investigation of Nitrogen Release during Coal Pyrolysis in an Oxy-fuel Combustion Process. Energy Fuels 2010, 24, 6411–6416. [Google Scholar] [CrossRef]
- Tomeczek, J.; Palugniok, H. Specific heat capacity and enthalpy of coal pyrolysis at elevated temperatures. Fuel 1996, 75, 1089–1093. [Google Scholar] [CrossRef]
- Genetti, P.; Fletcher, T.H. Available online: http://www.et.byu.edu/~tom/cpd/cpdcodes.html (accessed on 12 February 2022).
- Genetti, D.; Fletcher, T.H.; Pugmire, R.J. Development and Application of a Correlation of 13C NMR Chemical Structural Analyses of Coal Based on Elemental Composition and Volatile Matter Content. Energy Fuels 1998, 13, 60–68. [Google Scholar] [CrossRef]
- Fletcher, T.H.; Kerstein, A.R.; Pugmire, R.J.; Grant, D.M. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy Fuels 1990, 4, 54–60. [Google Scholar] [CrossRef]
DT | JC | |
---|---|---|
Proximate analysis (wt%, dry basis) | ||
Ash | 29.06 | 26.86 |
Volatile | 25.44 | 7.44 |
FC | 45.50 | 65.70 |
Ultimate analysis (wt%, daf basis) | ||
C | 80.83 | 88.54 |
H | 4.08 | 3.48 |
N | 1.34 | 1.09 |
S | 3.28 | 2.02 |
Odiff | 10.47 | 4.87 |
HHV (MJ/kg) | 21.89 | 25.28 |
MA | MO | |
---|---|---|
O2 | 2 | 2 |
H2O | 15 | 16 |
CO2 | 4 | 82 |
N2 | 79 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Hu, F.; Liu, W.; Wang, P.; Sun, H.; Liu, Z. Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor. Processes 2022, 10, 358. https://doi.org/10.3390/pr10020358
Huang X, Hu F, Liu W, Wang P, Sun H, Liu Z. Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor. Processes. 2022; 10(2):358. https://doi.org/10.3390/pr10020358
Chicago/Turabian StyleHuang, Xiaohong, Fan Hu, Weilong Liu, Peng Wang, Heming Sun, and Zhaohui Liu. 2022. "Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor" Processes 10, no. 2: 358. https://doi.org/10.3390/pr10020358
APA StyleHuang, X., Hu, F., Liu, W., Wang, P., Sun, H., & Liu, Z. (2022). Volatile Releasing Characteristics of Pulverized Coals under Moderate or Intense Low-Oxygen Dilution Oxy-Combustion Conditions in a Flat-Flame Assisted Entrained Flow Reactor. Processes, 10(2), 358. https://doi.org/10.3390/pr10020358