Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Normalization and Idetnficiation of DEGs
3.2. Meta-Analysis of DEG Analysis
3.3. Results of Differential Coexpression Analysis
3.4. Functional Enrichment Analysis of Significant Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Becerra-Diaz, M.; Song, M.; Heller, N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front. Immunol. 2020, 11, 1698. [Google Scholar] [CrossRef] [PubMed]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen Receptor in Breast Cancer-Clinical and Preclinical Research Insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar]
- Nelson, C.C.; Hendy, S.C.; Shukin, R.J.; Cheng, H.; Bruchovsky, N.; Koop, B.F.; Rennie, P.S. Determinants of DNA sequence specificity of the androgen, progesterone, and glucocorticoid receptors: Evidence for differential steroid receptor response elements. Mol. Endocrinol. 1999, 13, 2090–2107. [Google Scholar] [CrossRef]
- Denayer, S.; Helsen, C.; Thorrez, L.; Haelens, A.; Claessens, F. The rules of DNA recognition by the androgen receptor. Mol. Endocrinol. 2010, 24, 898–913. [Google Scholar] [CrossRef] [Green Version]
- Haelens, A.; Verrijdt, G.; Callewaert, L.; Peeters, B.; Rombauts, W.; Claessens, F. Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene. Biochem. J. 2001, 353, 611–620. [Google Scholar] [CrossRef]
- Zhou, Z.; Corden, J.L.; Brown, T.R. Identification and characterization of a novel androgen response element composed of a direct repeat. J. Biol. Chem. 1997, 272, 8227–8235. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.S.; Clegg, N.; Arnold, H.; Ferguson, C.; Bonham, M.; White, J.; Hood, L.; Lin, B. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc. Natl. Acad. Sci. USA 2002, 99, 11890–11895. [Google Scholar] [CrossRef] [Green Version]
- Velasco, A.M.; Gillis, K.A.; Li, Y.; Brown, E.L.; Sadler, T.M.; Achilleos, M.; Greenberger, L.M.; Frost, P.; Bai, W.; Zhang, Y. Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 2004, 145, 3913–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, E.C.; So, A.Y.; Chaivorapol, C.; Haqq, C.M.; Li, H.; Yamamoto, K.R. Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev. 2007, 21, 2005–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jariwala, U.; Prescott, J.; Jia, L.; Barski, A.; Pregizer, S.; Cogan, J.P.; Arasheben, A.; Tilley, W.D.; Scher, H.I.; Gerald, W.L.; et al. Identification of novel androgen receptor target genes in prostate cancer. Mol. Cancer 2007, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Qi, J.; Filipp, F.V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 2016, 6, 32611. [Google Scholar] [CrossRef] [PubMed]
- Launonen, K.M.; Paakinaho, V.; Sigismondo, G.; Malinen, M.; Sironen, R.; Hartikainen, J.M.; Laakso, H.; Visakorpi, T.; Krijgsveld, J.; Niskanen, E.A.; et al. Chromatin-directed proteomics-identified network of endogenous androgen receptor in prostate cancer cells. Oncogene 2021, 40, 4567–4579. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Screening and Management of the Hyperandrogenic Adolescent: ACOG Committee Opinion, Number 789. Obstet. Gynecol. 2019, 134, e106–e114. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. 2016, 1418, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Skov, V.; Glintborg, D.; Knudsen, S.; Tan, Q.; Jensen, T.; Kruse, T.A.; Beck-Nielsen, H.; Hojlund, K. Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome. PLoS ONE 2008, 3, e2466. [Google Scholar] [CrossRef]
- Skov, V.; Glintborg, D.; Knudsen, S.; Jensen, T.; Kruse, T.A.; Tan, Q.; Brusgaard, K.; Beck-Nielsen, H.; Hojlund, K. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes 2007, 56, 2349–2355. [Google Scholar] [CrossRef] [Green Version]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, W.; Gibbs, D.L.; Shmulevich, I.; Bernard, B.; Knijnenburg, T.A. Combining dependent P-values with an empirical adaptation of Brown’s method. Bioinformatics 2016, 32, i430–i436. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, H.A.; Bhattacharyya, D.K.; Kalita, J.K. (Differential) Co-Expression Analysis of Gene Expression: A Survey of Best Practices. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 1154–1173. [Google Scholar] [CrossRef] [PubMed]
- Goeman, J.J.; van de Geer, S.A.; de Kort, F.; van Houwelingen, H.C. A global test for groups of genes: Testing association with a clinical outcome. Bioinformatics 2004, 20, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2020. [Google Scholar]
- Jiang, M.; Ma, Y.; Chen, C.; Fu, X.; Yang, S.; Li, X.; Yu, G.; Mao, Y.; Xie, Y.; Li, Y. Androgen-responsive gene database: Integrated knowledge on androgen-responsive genes. Mol. Endocrinol. 2009, 23, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Atiomo, W.; Daykin, C.A. Metabolomic biomarkers in women with polycystic ovary syndrome: A pilot study. Mol. Hum. Reprod. 2012, 18, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Du, S.; Lin, Y.; Huang, Z.; Li, H.; Chen, G.; Chen, S.; Chen, Q.; Da, L.; Shi, H.; et al. Identification of Three Potential circRNA Biomarkers of Polycystic Ovary Syndrome by Bioinformatics Analysis and Validation. Int. J. Gen. Med. 2021, 14, 5959–5968. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, J.; Sanchez-Alonso, M.G.; Pizarro-Delgado, J.; Ramos-Alvarez, M.D.P. Role of Receptor Protein Tyrosine Phosphatases (RPTPs) in Insulin Signaling and Secretion. Int. J. Mol. Sci. 2021, 22, 5812. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, S.S.; Korashy, H.M.; Zeidan, A.; Agouni, A. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouault, T.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2006, 2, 406–414. [Google Scholar] [CrossRef]
- Santos, M.; Anderson, C.P.; Neschen, S.; Zumbrennen-Bullough, K.B.; Romney, S.J.; Kahle-Stephan, M.; Rathkolb, B.; Gailus-Durner, V.; Fuchs, H.; Wolf, E.; et al. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat. Commun. 2020, 11, 296. [Google Scholar] [CrossRef]
- Malin, S.K.; Kirwan, J.P.; Sia, C.L.; Gonzalez, F. Pancreatic beta-cell dysfunction in polycystic ovary syndrome: Role of hyperglycemia-induced nuclear factor-kappaB activation and systemic inflammation. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E770–E777. [Google Scholar] [CrossRef] [Green Version]
- Carmina, E.; Guastella, E.; Longo, R.A.; Rini, G.B.; Lobo, R.A. Correlates of increased lean muscle mass in women with polycystic ovary syndrome. Eur. J. Endocrinol. 2009, 161, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Mario, F.M.; do Amarante, F.; Toscani, M.K.; Spritzer, P.M. Lean muscle mass in classic or ovulatory PCOS: Association with central obesity and insulin resistance. Exp. Clin. Endocrinol. Diabetes 2012, 120, 511–516. [Google Scholar] [CrossRef]
- Bhuva, D.D.; Cursons, J.; Smyth, G.K.; Davis, M.J. Differential co-expression-based detection of conditional relationships in transcriptional data: Comparative analysis and application to breast cancer. Genome Biol. 2019, 20, 236. [Google Scholar] [CrossRef]
- Wang, H.; Ye, X.; Xiao, H.; Zhu, N.; Wei, C.; Sun, X.; Wang, L.; Wang, B.; Yu, X.; Lai, X.; et al. PTPN21 Overexpression Promotes Osteogenic and Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells but Inhibits the Immunosuppressive Function. Stem Cells Int. 2019, 2019, 4686132. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xie, F.; Gan, L.; Peng, T.; Xu, X.; Guo, S.; Fu, W.; Wang, Y.; Ouyang, Y.; Yang, J.; et al. Integration of transcriptome and cistrome analysis identifies RUNX1-target genes involved in pancreatic cancer proliferation. Genomics 2020, 112, 5343–5355. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, M.W.; Jin, K.S.; Shin, H.C.; Kim, W.K.; Lee, S.C.; Kim, S.J.; Lee, E.W.; Ku, B. Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18. Mol. Cells 2021, 44, 26–37. [Google Scholar] [CrossRef]
- Tian, C.; Hromatka, B.S.; Kiefer, A.K.; Eriksson, N.; Noble, S.M.; Tung, J.Y.; Hinds, D.A. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 2017, 8, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bononi, G.; Tuccinardi, T.; Rizzolio, F.; Granchi, C. alpha/beta-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J. Med. Chem. 2021, 64, 9759–9785. [Google Scholar] [CrossRef] [PubMed]
- Pradella, D.; Deflorian, G.; Pezzotta, A.; Di Matteo, A.; Belloni, E.; Campolungo, D.; Paradisi, A.; Bugatti, M.; Vermi, W.; Campioni, M.; et al. A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat. Commun. 2021, 12, 4872. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Z.; Miao, M.; Kong, C. The intracellular domain of UNC5B facilities proliferation and metastasis of bladder cancer cells. J. Cell Mol. Med. 2021, 25, 2121–2135. [Google Scholar] [CrossRef]
- Board, P.G. The omega-class glutathione transferases: Structure, function, and genetics. Drug Metab. Rev. 2011, 43, 226–235. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, F.L.; Jia, W. Glutathione Stransferase omega 1 promotes the proliferation, migration and invasion, and inhibits the apoptosis of nonsmall cell lung cancer cells, via the JAK/STAT3 signaling pathway. Mol. Med. Rep. 2021, 23, 71. [Google Scholar] [CrossRef]
- Piaggi, S.; Raggi, C.; Corti, A.; Pitzalis, E.; Mascherpa, M.C.; Saviozzi, M.; Pompella, A.; Casini, A.F. Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis 2010, 31, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Miraghaee, S.S.; Sohrabi, M.; Jalili, C.; Bahrehmand, F. Assessment of GSTO1 (A140D) and GSTO2 (N142D) Gene Polymorphisms in Iranian Women with Polycystic Ovarian Syndrome. Rep. Biochem. Mol. Biol. 2020, 9, 8–13. [Google Scholar] [CrossRef]
- Sakakibara, I.; Yanagihara, Y.; Himori, K.; Yamada, T.; Sakai, H.; Sawada, Y.; Takahashi, H.; Saeki, N.; Hirakawa, H.; Yokoyama, A.; et al. Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4. iScience 2021, 24, 102303. [Google Scholar] [CrossRef] [PubMed]
Probe ID | Gene Symbol | GSE8173 | GSE6798 | Stat | Meta. p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Normal | PCOS | p-Value | Normal | PCOS | p-Value | ||||
218982_s_at | MRPS17 | 8.50 | 8.24 | 4.77 × 10−7 | 8.39 | 8.20 | 2.30 × 10−4 | 45.87 | 2.62 × 10−9 |
1569478_s_at | LOC101927151 | 7.03 | 7.22 | 8.65 × 10−6 | 6.80 | 6.98 | 9.08 × 10−5 | 41.93 | 1.73 × 10−8 |
228775_at | EMC3 | 8.29 | 7.91 | 3.21 × 10−5 | 8.27 | 7.93 | 2.77 × 10−5 | 41.68 | 1.94 × 10−8 |
37022_at | PRELP | 7.16 | 7.36 | 3.90 × 10−7 | 7.02 | 7.13 | 2.94 × 10−3 | 41.17 | 2.47 × 10−8 |
223417_at | RAD18 | 4.75 | 4.57 | 5.55 × 10−6 | 4.60 | 4.47 | 2.52 × 10−4 | 40.77 | 2.99 × 10−8 |
201343_at | UBE2D2 | 9.11 | 9.27 | 5.11 × 10−5 | 9.09 | 9.25 | 4.25 × 10−5 | 39.90 | 4.55 × 10−8 |
240493_at | NA | 5.47 | 5.80 | 5.63 × 10−6 | 5.15 | 5.38 | 7.42 × 10−4 | 38.59 | 8.49 × 10−8 |
220950_s_at | KANSL3 | 5.93 | 6.19 | 4.71 × 10−6 | 5.88 | 6.03 | 2.01 × 10−3 | 36.95 | 1.84 × 10−7 |
204361_s_at | SKAP2 | 4.43 | 4.17 | 5.94 × 10−4 | 4.25 | 3.98 | 1.84 × 10−5 | 36.67 | 2.11 × 10−7 |
239623_at | C5orf63 | 5.68 | 5.45 | 5.71 × 10−5 | 5.60 | 5.41 | 2.20 × 10−4 | 36.38 | 2.41 × 10−7 |
Probe A | Gene A | Probe B | Gene B | GSE8157 | GSE6798 | META-Analysis | |||
---|---|---|---|---|---|---|---|---|---|
NC | PCOS | NC | PCOS | Stat | p-Value | ||||
200059_s_at | RHOA | 227765_at | OTUD6B-AS1 | −0.95 | 0.25 | −0.96 | 0.63 | 66.61 | 1.18 × 10−13 |
201144_s_at | EIF2S1 | 1556082_a_at | NA | 0.87 | −0.67 | 0.95 | −0.60 | 63.10 | 6.45 × 10−13 |
210990_s_at | LAMA4 | 209807_s_at | NFIX | −0.83 | 0.69 | −0.83 | 0.75 | 50.77 | 2.49 × 10−10 |
210990_s_at | LAMA4 | 237981_at | CMYA5 | −0.83 | 0.69 | −0.91 | 0.57 | 50.72 | 2.55 × 10−10 |
202309_at | MTHFD1 | 227329_at | ZBTB46 | −0.83 | 0.71 | −0.89 | 0.52 | 47.18 | 1.40 × 10−9 |
202154_x_at | TUBB3 | 241497_at | NA | −0.88 | 0.63 | −0.81 | 0.68 | 47.02 | 1.51 × 10−9 |
210990_s_at | LAMA4 | 1557994_at | TTN | −0.83 | 0.57 | −0.87 | 0.67 | 46.62 | 1.83 × 10−9 |
40524_at | PTPN21 | 212804_s_at | GAPVD1 | −0.81 | 0.86 | −0.87 | 0.31 | 46.52 | 1.92 × 10−9 |
40524_at | PTPN21 | 219980_at | ABHD18 | −0.78 | 0.92 | −0.78 | 0.24 | 45.45 | 3.21 × 10−9 |
210990_s_at | LAMA4 | 1555567_s_at | LMOD3 | −0.85 | 0.44 | −0.82 | 0.75 | 44.71 | 4.28 × 10−9 |
Pathway Name | N | GSE8173.pval | GSE6783.pval | Meta.stat | Meta.pval |
---|---|---|---|---|---|
Propanoate metabolism | 119 | 1.77 × 10−4 | 7.04 × 10−5 | 36.40 | 2.39 × 10−7 |
Pyruvate metabolism | 119 | 1.05 × 10−3 | 6.64 × 10−5 | 32.96 | 1.22 × 10−6 |
Cysteine and methionine metabolism | 130 | 8.51 × 10−4 | 1.04 × 10−4 | 32.48 | 1.52 × 10−6 |
Valine, leucine and isoleucine degradation | 82 | 3.20 × 10−4 | 2.10 × 10−3 | 28.42 | 1.02 × 10−5 |
Glycolysis/Gluconeogenesis | 93 | 1.08 × 10−3 | 8.21 × 10−4 | 27.87 | 1.33 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-B. Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes 2022, 10, 387. https://doi.org/10.3390/pr10020387
Cho S-B. Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes. 2022; 10(2):387. https://doi.org/10.3390/pr10020387
Chicago/Turabian StyleCho, Seong-Beom. 2022. "Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients" Processes 10, no. 2: 387. https://doi.org/10.3390/pr10020387
APA StyleCho, S. -B. (2022). Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes, 10(2), 387. https://doi.org/10.3390/pr10020387