A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants
Abstract
:1. Introduction
2. Global Achievements
2.1. Algal Cultures
2.2. Nutrient Removal Mechanisms
2.3. Technologies for Nutrients Removal
2.3.1. Suspended Growth Systems
- Open reactors
- Enclosed reactors
2.3.2. Algal Bead Systems (Active Immobilization)
2.3.3. Attached Growth Systems (Passive)
- Stationary attached growth reactors
- Rotating attached growth reactors
3. Reliability of the Algae-Based Wastewater Treatment Technologies for N and P Removal from Secondary Treated Effluent
- (1)
- Wastewater quality—a review on how sensitive the technology is in regard to the variable wastewater quality at the inlet of the algae-based reactor;
- (2)
- Operating conditions and process control—a review on how stable the operation is, i.e., whether constant effluent quality could be ensured;
- (3)
- Algae harvesting method—a review on the availability of an appropriate algae harvesting method as well as how reliable the method is;
- (4)
- Produced biomass—a review on how safe for re-use the biomass is.
3.1. Wastewater Quality at the Inlet of the Algae-Based Reactor
3.1.1. Carbon to Nitrogen (C:N) Ratio
3.1.2. Nitrogen to Phosphorus (N:P) Ratio
3.2. Operating Conditions and Process Control
3.2.1. Presence of Invasive Microalgae, Bacteria, Protozoa and Macro Grazers Affecting the Microalgal Growth
3.2.2. Light Utilization, Illuminated Surface to Reactor Volume Ratio (Sf/V) and Algal Biomass Concentration/Algal Biofilm Thickness in the Reactor
3.2.3. Water Flow Velocity, Agitation, and Shear Stress on the Algal Cells/Beads
3.2.4. Temperature Control
3.2.5. pH Variation, Transfer of CO2 and O2 Oversaturation Inhibition
3.2.6. Evaporation Control
3.3. Algae Harvesting Method
- Harvesting for suspended growth systems
- Harvesting for immobilized (algal bead) growth systems
- Harvesting for attached growth systems
3.4. Produced Biomass
3.5. Conclusions on the Reliability
- (1)
- The highest overall reliability rating of all reactor types that are currently discussed in the scientific literature is achieved by the rotating biofilm reactors (RABR and VCBR) and the enclosed immobilized algal bead systems;
- (2)
- The lowest overall reliability rating belongs to the open suspended growth algal ponds and are closely followed by the stationary algal biofilm systems;
- (3)
- Enclosed suspended growth PBRs reach an average overall reliability compared to all the other reactor configurations.
4. Technology Readiness Level of the Main Algae-Based Wastewater Treatment Technologies for Secondary Treated Effluent
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATS | Algae turf scrubber |
C | Carbon |
COD | Chemical oxygen demand |
DAF | Dissolved air flotation |
DO | Dissolved oxygen |
EC | European Commission |
EPS | Extracellular Polymeric Substances |
HRAP | High rate algal ponds |
HRAPW | High rate algal ponds with aeration system |
HRT | Hydraulic Retention Time |
N | Nitrogen |
NASA | National Aeronautics and Space Administration |
p.e. | People Equivalent |
P | Phosphorus |
PSBR | Photo-Sequencing Batch Reactor |
PBR | Photobioreactor |
RABR | Rotating algal biofilm reactor |
RBC | Rotating biological contactors |
RPM | Revolutions per minute |
SABR | Stationary algal biofilm reactor |
SBR | Sequencing Batch Reactor |
Sf/V | Illuminated surface to reactor volume ratio |
TN | Total Nitrogen |
TP | Total Phosphorus |
TRL | Technology readiness level |
TSS | Total Suspended Solids |
VCB | Vertical conveyor belt |
VCBD | Vertical conveyor belt design |
VCBR | Vertical conveyor belt reactor |
WW | Wastewater |
WWT | Wastewater treatment |
WWTP | Wastewater Treatment Plant |
References
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. COM 640 Final. 2019. Available online: https://www.arc2020.eu/wp-content/uploads/2019/12/green-deal-clean.pdf (accessed on 26 January 2022).
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM 98 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:98:FIN&WT.mc_id=Twitter (accessed on 26 January 2022).
- Oswald, W.J.; Gotaas, H.B.; Golueke, C.G.; Kellen, W.R.; Gloyna, E.F.; Hermann, E.R. Algae in wastewater treatment. Sew. Ind. Wastes 1957, 29, 437–457. [Google Scholar]
- Ho, L.; Goethals, P.L.M. Municipal wastewater treatment with pond technology: Historical review and future outlook. Ecol. Eng. 2020, 148, 105791. [Google Scholar] [CrossRef]
- Aketo, T.; Hoshikawa, Y.; Nojima, D.; Yabu, Y.; Maeda, Y.; Yoshino, T.; Takano, H.; Tanaka, T. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J. Biosci. Bioeng. 2020, 129, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Hasport, N.; Krahe, D.; Kuchendorf, C.M.; Beier, S.; Theilen, U. The potential impact of an implementation of microalgae-based wastewater treatment on the energy balance of a municipal wastewater treatment plant in Central Europe. Bioresour. Technol. 2022, 347, 126695. [Google Scholar] [CrossRef]
- Kilbane II, J.J. Shining a light on wastewater treatment with microalgae. Arab. J. Sci. Eng. 2022, 47, 46–56. [Google Scholar] [CrossRef]
- Gonçalves, A.L.; Pires, C.M.J.; Simoes, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2016, 24, 403–415. [Google Scholar] [CrossRef]
- Yang, Z.; Pei, H.; Hou, Q.; Jiang, L.; Zhang, L.; Nie, C. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chem. Eng. J. 2018, 332, 277–285. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Cornelius, J.; Henkanatte-Gedera, S.M.; Tchinda, D.; Zhang, Y.; Nirmalakhandan, N. Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria. Algal Res. 2019, 39, 101423. [Google Scholar] [CrossRef]
- Salama, E.-S.; Roh, H.-S.; Dev, S.; Khan, M.A.; Abou-Shanab, R.A.I.; Chang, S.W.; Jeon, B.-H. Algae as a green technology for heavy metals removal from various wastewater. World J. Microbiol. Biotechnol. 2019, 35, 75. [Google Scholar] [CrossRef]
- Das, S.; Das, S.; Ghangrekar, M. Efficacious bioremediation of heavy metals and radionuclides from wastewater. J. Basic Microbiol. 2022. [Google Scholar] [CrossRef]
- Tiron, O.; Bumbac, C.; Manea, E.E.; Steganescu, M.M.; Nita-Lazar, M. Overcoming Microalgae Harvesting Barrier by Activated Algae Granules. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Javed, F.; Aslam, M.; Rashid, N.; Shamair, Z.; Khan, A.L.; Yasin, M.; Fazal, T.; Hafeez, A.; Rehman, F.; Rehman, M.S.U.; et al. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel 2019, 255, 115826. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.; Venkateswarlu, K.; Megharaj, M. Nutrient removal and biomass production: Advances in microalgal biotechnology for wastewater treatment. Crit. Rev. Biotechnol. 2018, 38, 1244–1260. [Google Scholar] [CrossRef]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, A.; Rezvani, F.; Asgharnejad, H.; Nazloo, E.K.; Hajinajaf, N.; Higgins, B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere 2021, 272, 129878. [Google Scholar] [CrossRef]
- Arias, D.M.; Sole-Bundo, M.; Garfi, A.; Ferrer, I.; Garcia, J.; Uggetti, E. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour. Technol. 2017, 247, 513–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, S.; Chowdhury, R.; Tao, W.; Srinivasan, A. Tertiary treatment of municipal wastewater using isolated algal strains: Treatment efficiency and value-added products recovery. Chem. Ecol. 2019, 36, 1–18. [Google Scholar] [CrossRef]
- Ansari, F.A.; Nasr, M.; Rawat, I.; Bux, F. Artificial neural network and techno-economic estimation with algae-based tertiary wastewater treatment. J. Water Process. Eng. 2021, 40, 101761. [Google Scholar] [CrossRef]
- Valchev, D.; Ribarova, I.; Uzunov, B.; Stoyneva-Gartner, M. Photo-sequencing batch reactor with Klebsormidium nitens: A promising microalgal biotechnology for sustainable phosphorus management in WWTP. Water Sci. Technol. 2021, 83, 2463–2476. [Google Scholar] [CrossRef]
- Shamanskyi, S.; Boichenko, S.; Khrutba, V.; Barabash, O.; Shkilnuik, I.; Yakolieva, A.; Topilnyckyi, P.; Pavliukh, L. Improving the photobioreactor operation efficiency in the technological scheme of wastewater treatment. East. Eur. J. Enterp. Technol. 2021, 6, 6–15. [Google Scholar]
- Bandara, G.L.C.L.; Abeysiriwardana-Arachchige, I.S.A.; Xu, X.; Lin, L.; Jiang, W.; Zhang, Y.; Johnson, D.C.; Nirmalakhandan, N.; Xu, P. Impacts of seasonality and operating conditions on water quality of algal versus conventional wastewater treatment: Part 1. J. Environ. Manag. 2022, 304, 114291. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; Abdulquadir, M. Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass—A Review. Water 2021, 13, 27. [Google Scholar] [CrossRef]
- Rani, S.; Gunjyal, N.; Ojha, C.S.P.; ASCE, F.; Singh, R.P. Review of Challenges for Algae-Based Wastewater Treatment: Strain Selection, Wastewater Characteristics, Abiotic, and Biotic Factors. J. Hazard. Toxic Radioact. Waste 2021, 25, 03120004. [Google Scholar] [CrossRef]
- Shandilya, K.; James, S.C. Algae Strain Identification for Wastewater Treatment. Technical Report 2018, Report number: 2016 URC Grant: Project #30330339. Available online: https://www.researchgate.net/publication/329424752_Algae_Strain_Identification_for_Wastewater_Treatment (accessed on 26 January 2022).
- Yadav, G.; Shanmugam, S.; Sivaramakrishnan, R.; Kumar, D.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A.; Rajendran, K. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 2021, 285, 119093. [Google Scholar] [CrossRef]
- Stoyneva-Gartner, M.; Uzunov, B.; Gartner, G.; Radkova, M.; Atanassov, I.; Atanasova, R.; Borisova, C.; Draganova, P.; Stoykova, P. Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria. Biotechnol. Biotechnol. Equip. 2019, 33, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Nagarajan, D.; Lee, D.-J.; Chen, C.-Y.; Chang, J.-S. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresour. Technol. 2020, 302, 122817. [Google Scholar] [CrossRef]
- Mallick, N.; Bagchi, S.; Koley, S.; Singh, A.K. Progress and Challenges in Microalgal Biodiesel Production. Front. Microbiol. 2016, 7, 1019. [Google Scholar] [CrossRef] [Green Version]
- Young, P.; Taylor, M.J.; Fallowfield, H. Mini-review: High rate algal ponds, flexible systems for sustainable wastewater treatment. World J. Microbiol. Biotechnol. 2017, 33, 117. [Google Scholar] [CrossRef]
- Qin, L.; Wang, Z.; Sun, Y.; Shu, Q.; Feng, P.; Zhu, L.; Xu, J.; Qi, W. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ. Sci. Pollut. Res. 2016, 23, 1–9. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Verma, P. Phycoremediation of nitrogen and phosphate from wastewater using Picochlorum sp.: A tenable approach. J. Basic Microbiol. 2021. [Google Scholar] [CrossRef]
- Larsdotter, K. Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate. Ph.D. Thesis, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden, 2006. [Google Scholar]
- Phasey, J.; Vandamme, D.; Fallowfield, H.J. Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime. Algal Res. 2017, 27, 115–120. [Google Scholar] [CrossRef]
- Young, P.; Phasey, J.; Wallis, I.; Vandamme, D.; Fallowfield, H. Autoflocculation of microalgae, via magnesium hydroxide precipitation, in a high rate algal pond treating municipal wastewater in the South Australian Riverland. Algal Res. 2021, 59, 102418. [Google Scholar] [CrossRef]
- Wang, J.-H.; Zhang, T.-Y.; Dao, G.-H.; Xu, X.-Q.; Wang, X.-X.; Hu, H.-Y. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Appl. Microbiol. Biotechnol. 2017, 101, 2659–2675. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tian, Y.; Zhang, J.; Cui, H.; Zuo, W.; Li, J. A novel symbiotic system combining algae and sludge membrane bioreactor technology for wastewater treatment and membrane fouling mitigation: Performance and Mechanism. Chem. Eng. J. 2018, 344, 246–253. [Google Scholar] [CrossRef]
- Ting, H.; Haifeng, L.; Shanshan, M.; Zhang, Y.; Zhidan, L.; Na, D. Progress in microalgae cultivation photobioreactors and application in wastewater treatment: A review. Int. J. Agric. Biol. Eng. 2017, 10, 1–29. [Google Scholar]
- González-Camejo, J.; Ferrer, J.; Seco, A.; Barat, R. Outdoor microalgae-based urban wastewater treatment: Recent advances, applications, and future perspectives. Wiley Interdiscip. Rev. Water 2021, 8, 12. [Google Scholar] [CrossRef]
- Plöhn, M.; Spain, O.; Sirin, S.; Silva, M.; Escudero-Onate, C.; Ferrando-Climent, L.; Allahverdiyeva, Y.; Funk, C. Wastewater treatment by microalgae. Physiol. Plant. 2021, 173, 568–578. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Ralph, P.J.; Craiggs, R.J. Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Res. 2020, 47, 101850. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Heubeck, S.; Ralph, P.J.; Craggs, R.J. Size matters–Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different size. Algal Res. 2020, 45, 101734. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integraing micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Arbib, Z.; Godos, I.; Ruiz, J.; Perales, J.A. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Sci. Total Environ. 2017, 589, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Huang, C.-Y.; Chang, J.-S. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). J. Environ. Manag. 2021, 296, 113193. [Google Scholar] [CrossRef] [PubMed]
- Rayen, F.; Behnam, T.; Dominique, P. Optimization of a raceway pond system for wastewater treatment: A review. Crit. Rev. Biotechnol. 2019, 39, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Craggs, R.J. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Sci. Technol. 2011, 63, 2403–2410. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Hemelin, J.; Bonnafous, A.; Steyer, J.-P. CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. J. CO2 Util. 2018, 28, 292–298. [Google Scholar] [CrossRef]
- Gonzalez-Camejo, J.; Viruela, A.; Ruano, M.V.; Barat, R.; Seco, A.; Ferrer, J. Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. Algal Res. 2019, 40, 101511, 1–11. [Google Scholar] [CrossRef]
- Nguyen, T.-T.-D.; Bui, X.-H.; Nguyen, T.-T.; Ngo, H.H.; Lin, K.Y.A.; Lin, C.; Le, L.-T.; Dang, B.-T.; Bui, M.-H.; Varjani, S. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: Effects of natural and artificial lighting on wastewater treatment. Bioresour. Technol. 2022, 343, 123754. [Google Scholar] [CrossRef]
- Paddock, M.B. Microalgae Wastewater Treatment: A Brief History. Preprints 2019, 2019120377. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Keely, R.; Zalivina, N.; Halfhide, T.; Scott, K.; Zhang, Q.; Steen, P.; Ergas, S.J. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. J. Environ. Manag. 2018, 217, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Kube, M.; Spedding, B.; Gao, L.; Fan, L.; Roddick, F. Nutrient removal by alginate-immobilized Chlorella vulgaris: Response to different wastewater matrices. J. Chem. Technol. Biotechnol. 2020, 95, 1790–1799. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Bashan, Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Zhuang, L.-L.; Xu, X.-Q.; Deantes-Espinosa, V.M.; Wang, X.-X.; Hu, H.-Y. Microalgal attachment and attached systems for biomass production and wastewater treatment. Renew. Sustain. Energy Rev. 2018, 92, 331–342. [Google Scholar] [CrossRef]
- Wollmann, F.; Dietze, S.; Ackermann, J.-U.; Bley, T.; Walther, T.; Steingroewer, J.; Krujatz, F. Microalgae wastewater treatment: Biological and technological approaches. Eng. Life Sci. 2019, 19, 860–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, I.; Herrero, N.; Siles, J.A.; Chica, A.F.; Martin, M.A.; Izquierdo, C.G.; Gomez, J.M. Wastewater nutrient recovery using twin-layer microalgaetechnology for biofertilizer production. Water Sci. Technol. 2020, 82, 1044–1061. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, W.; Pei, Z.J.; Wu, Q.; Mao, E. Microalgae Mass Production Methods. Trans. ASABE Am. Soc. Agric. Biol. Eng. 2009, 52, 1275–1287. [Google Scholar]
- Zhao, X.; Kumar, K.; Gross, M.A.; Kunetz, T.E. Evaluation of Revolving Algae Biofilm Reactors for Nutrients and Metals Removal from Sludge Thickening Supernatant in a Municipal Wastewater Treatment Facility. Water Res. 2018, 143, 467–478. [Google Scholar] [CrossRef]
- Le, T.G.; Tran, D.-T.; Do, T.C.V.; Nguyen, V.T. Design considerations of microalgal culture ponds and photobioreactors for wastewater treatment and biomass cogeneration. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M.A., Wang, Z., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 535–567. [Google Scholar]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, M.; Lu, Q.; Wu, X.; Ma, Y.; Cheng, Y.; Addy, M.; Liu, Y.; Ruan, R. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters. Bioresour. Technol. 2018, 249, 479–486. [Google Scholar] [CrossRef]
- Ma, C.; Wen, H.; Xing, D.; Pei, X.; Zhu, J.; Ren, N.; Liu, B. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnol. Biofuels 2017, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D.L.; Park, J.; Ralph, P.J.; Craggs, R. Ammonia, pH and dissolved inorganic carbon supply drive whole pond metabolism in full-scale wastewater high rate algal ponds. Algal Res. 2021, 58, 102405. [Google Scholar] [CrossRef]
- Orfanos, A.; Manariotis, I. Algal biofilm ponds for polishing secondary effluent and resource recovery. J. Appl. Phycol. 2019, 31. [Google Scholar] [CrossRef]
- Gross, M.; Jarboe, D.; Wen, Z. Biofilm-based algal cultivation systems. Appl. Microbiol. Biotechnol. 2015, 99, 5781–5789. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.-L.; Yu, D.; Zhang, J.; Liu, F.-F.; Wu, Y.-H.; Zhang, T.-Y.; Dao, G.-H.; Hu, H.-Y. The characteristics and influencing factors of the attached microalgae cultivation: A review. Renew. Sustain. Energy Rev. 2018, 94, 1110–1119. [Google Scholar] [CrossRef]
- Ahmad, S.; Pandey, A.; Kothari, R.; Pathak, V.V.; Tyagi, V. Closed photobioreactors: Construction material and influencing parameters at the commercial scale. In Photobioreactors Advancements, Applications, and Research; Tsang, Y.F., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; p. 149. [Google Scholar]
- Xiaogang, H.; Jalalah, M.; Jingyan, W.; Zheng, Y.; Li, X.; Salama, E.-S. Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Kube, M.; Mohseni, A.; Fan, L.; Roddick, F. Impact of alginate selection for wastewater treatment by immobilised Chlorella vulgaris. Chem. Eng. J. 2018, 358, 1601–1609. [Google Scholar] [CrossRef]
- Hu, X.; Meneses, Y.E.; Hassan, A.A.; Stratton, J.; Huo, S. Application of alginate immobilized microalgae in treating real food industrial wastewater and design of annular photobioreactor: A proof-of-concept study. Algal Res. 2021, 60, 102524. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Alvarez-Diaz, P.; Garrido-Perez, C.; Barragan, J.; Perales, J.A. Photobiotreatment: Influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus. Int. J. Phytoremediation 2013, 15, 774–788. [Google Scholar] [CrossRef]
- Wang, L.; Min, M.; Li, Y.; Chen, P.; Chen, Y.; Liu, Y.; Wang, Y.; Ruan, R. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186. [Google Scholar] [CrossRef]
- Liu, J.; Vyverman, W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour. Technol. 2015, 179, 234–242. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Buma, A.G.J. Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste Biomass Valorization 2019, 10, 2079–2097. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awashti, M.K.; Atabani, A.E.; Kumar, G.; Kim, W. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef] [PubMed]
- Ferro, L. Wastewater treatment and biomass generation by Nordic microalgae. PhD Thesis, Umeå University, Umeå, Sweden, 2019. [Google Scholar]
- Gales, A.; Bonnafous, A.; Carre, C.; Jauzein, V.; Lanouguere, E.; Floc’h, E.L.; Pinoit, J.; Poullain, C.; Roques, C.; Sialve, B.; et al. Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperature climates. Algal Res. 2019, 40, 101508. [Google Scholar] [CrossRef]
- Aly, N.; Balasubramanian, P. Effect of photoinhibition on microalgal growth in open ponds of NIT Rourkela, India. J. Biochem. Technol. 2016, 6, 1034–1039. [Google Scholar]
- Djamal, Z.; Henni, A. Outdoor microalgae cultivation for wastewater treatment. In Application of Microalgae in Wastewater Treatment; Gupta, S., Bux, F., Eds.; Springer Nature: Cham, Switzerland, 2019; Volume 1: Domestic and Industrial Wastewater Treatment; pp. 81–99. [Google Scholar]
- Farahdiba, A.U.; Cahyonugroho, O.; Nindhita, S.N.; Hidayah, E.N. Photoinhibition of Algal Photobioreactor by Intense Light. J. Phys. Conf. Ser. 2020, 1569, 4. [Google Scholar] [CrossRef]
- Kroumov, A.D.; Gacheva, G.; Iliev, I.; Alecandrov, S. Analysis of Sf/V ratio of photobioreactors linked with algal physiology. Genet. Plant. Physiol. 2013, 3, 55–64. [Google Scholar]
- Sutherland, D.; Burke, J.; Ralph, P. Flow-way water depth affects algal productivity and nutrient uptake in a filamentous algae nutrient scrubber. J. Appl. Phycol. 2020, 32, 4321–4332. [Google Scholar] [CrossRef]
- Bara, O.; Bonnefond, H.; Bernard, O. Model Development and Light Effect on a Rotating Algal Biofilm. IFAC-Pap. 2019, 52, 376–381. [Google Scholar] [CrossRef]
- Morales, M.; Bonnefond, H.; Bernard, O. Rotating algal biofilm versus planktonic cultivation: LCA perspective. J. Clean. Prod. 2020, 257, 120547. [Google Scholar] [CrossRef]
- Munoz, R.; Kollner, C.; Guieysse, B. Biofilm photobioreactors for the treatment of industrial wastewaters. J. Hazard. Mater. 2009, 161, 29–34. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. [Google Scholar] [CrossRef]
- Craggs, R.J.; Lundquist, T.J.; Banemann, J. Wastewater Treatment and Algal Biofuel Production. In Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer Nature: Cham, Switzerland, 2013; pp. 152–163. [Google Scholar]
- Khichi, S.S.; Anis, A.; Ghosh, S. Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes. Biochem. Eng. J. 2018, 134, 44–56. [Google Scholar] [CrossRef]
- Hameed, M.S.A. Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr. J. Biotechnol. 2007, 6, 1185–1191. [Google Scholar]
- El-Sheekh, M.M.; Metwally, M.A.; Allam, N.G.; Hemdan, H.E. Effect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment. Int. J. Environ. Res. 2017, 11, 603–611. [Google Scholar] [CrossRef]
- Jones, G.; Ellis, D.; Zhang, Z.; Zhao, J.; Sims, R. Optimizing algae biofilm growth in wastewater treatment using predictive mathematical models. Undergrad. Honor. Capstone Proj. 2021, 694, 1–21. [Google Scholar]
- Kommareddy, A.; Anderson, G.; Gent, S.; Bari, G.S. The Impact of Air Flow Rate on Photobioreactor Sparger/Diffuser Bubble Size(s) and Distribution. In Proceedings of the 2013 American Society of Agricultural and Biological Engineers Annual International Meeting, Kansas City, MO, USA, 21–24 July 2013; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013. [Google Scholar]
- Gupta, P.L.; Lee, S.-M.; Choi, H.-J. A mini review: Photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015, 31, 1409–1417. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- Craggs, R.J. Wastewater treatment by algal turf scrubbing. Water Sci. Technol. 2001, 44, 11–12, 427–433. [Google Scholar] [CrossRef]
- Gross, M.; Wen, Z. Revolving algal biofilm photobioreactor systems and methods. United Stated Patent Application Publication, 2014; Pub. No.: US 2014/0273174 A1. [Google Scholar]
- di Cicco, M.R.; Iovinella, M.; Palmieri, M.; Lubritto, C.; Ciniglia, C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. Plants 2021, 10, 2343. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Palmieri, M.; Altieri, S.; Ciniglia, C.; Lubritto, C. Cultivation of the Acidophilic Microalgae Galdieria phlegrea with Wastewater: Process Yields. Int. J. Environ. Res. Public Health 2021, 18, 2291. [Google Scholar] [CrossRef]
- di Cicco, M.R.; Masiello, A.; Spagnuolo, A.; Vetromile, C.; Borea, L.; Giannella, G.; Iovinella, M.; Lubritto, C. Real-Time Monitoring and Static Data Analysis to Assess Energetic and Environmental Performances in the Wastewater Sector: A Case Study. Energies 2021, 14, 6948. [Google Scholar] [CrossRef]
- Ranjan, S.; Gupta, P.K.; Gupta, S.K. Comprehensive Evaluation of High-Rate Algal Ponds: Wastewater Treatment and Biomass Production. In Application of Microalgae in Wastewater Treatment; Gupta, S.K., Bux, F., Eds.; Springer Nature: Cham, Switzerland, 2019; Volume 2: Biorefinery Approaches of Wastewater Treatment; pp. 531–546. [Google Scholar]
- Hoh, D.; Watson, S.; Kan, E. Algal Biofilm Reactors for Integrated Wastewater Treatment and Biofuel Production: A review. Chem. Eng. J. 2016, 287, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Moondra, N.; Jariwala, N.; Christian, R. Sustainable treatment of domestic wastewater through microalgae. Int. J. Phytoremediation 2020, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Egbo, M.K.; Okoani, A.O.; Okoh, I.E. Photobioreactors for microalgae cultivation–An overview. Int. J. Sci. Eng. Res. 2018, 9, 65–74. [Google Scholar]
- Kube, M.; Jefferson, B.; Fan, L.; Roddick, F. The impact of wastewater characteristics, algal species selection and immobilization on simultaneous nitrogen and phosphorus removal. Algal Res. 2018, 31, 478–488. [Google Scholar] [CrossRef] [Green Version]
- Schultze, L.K.P.; Simon, M.-V.; Li, T.; Langenbach, D.; Podola, B.; Melkonian, M. High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res. 2015, 8, 37–44. [Google Scholar] [CrossRef]
- Sforza, E.; Pastore, M.; Franke, S.M.; Barbera, E. Modeling the oxygen inhibition in microalgae: An experimental approach based on photorespirometry. New Biotechnol. 2020, 59, 26–32. [Google Scholar] [CrossRef]
- Barros, A.; Goncalves, A.; Simoes, M.; Pires, J. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 14, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of Microalgae by Flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Microalgae autoflocculation: An alternative to high-energy consuming harvesting methods. J. Appl. Phycol. 2012, 25, 4. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Church, J.; Lee, S.-J.; Park, J.; Lee, W.H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 2016, 33, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hu, Q.; Sommerfeld, M.; Puruhito, E.; Chen, Y. Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour. Technol. 2010, 101, 5297–5304. [Google Scholar] [CrossRef]
- Bilad, M.R.; Vandamme, D.; Foubert, I.; Muylaert, K.; Vankelecom, F.J. Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour. Technol. 2012, 111, 343–352. [Google Scholar] [CrossRef]
- Whitton, R.; Santinelli, M.; Pidou, M.; Ometto, F. Tertiary nutrient removal from wastewater by immobilised microalgae: Impact of wastewater nutrient characteristics and hydraulic retention time (HRT). H2Open J. 2018, 1, 12–25. [Google Scholar] [CrossRef]
- Miranda, A.F.; Ramkumar, N.; Andriotis, C.; Holtkemeier, T.; Yasmin, A.; Rochfort, S.; Wlodkowic, D.; Morrison, P.; Roddick, F.; Spangenberg, G.; et al. Apllications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. Biofuels 2017, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Sindelar, H.R.; Yap, J.N.; Boyer, T.H.; Brown, M.T. Algae scrubbers for phosphorus removal in impaired waters. Ecol. Eng. 2015, 85, 144–158. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae–A review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- Udaiyappan, A.F.M.; Hasan, H.A.; Tkriff, M.S.; Abdullah, S.R.S. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J. Water Process. Eng. 2017, 20, 8–21. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.-D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Lage, S.; Gojkovic, Z.; Funk, C.; Gentili, F.G. Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. Energies 2018, 11, 664. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, F.G.A.; Gomez-Serrano, C.; Fernandez-Sevilla, J.M. Recovery of Nutrients from Wastewaters Using Microalgae. Front. Sustain. Food Syst. 2018, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Technology readiness levels (TRL). Horizon 2020–Work Programme 2016–2017, General Annexes; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Straub, J. In search of technology readiness level (TRL) 10. Aerosp. Sci. Technol. 2015, 46, 312–320. [Google Scholar] [CrossRef]
- Naumann, T.; Çebi, Z.; Podola, B.; Melkonian, M. Growing microalgae as aquaculture feeds on twin-layers: A novel solid-state photobioreactor. J. Appl. Phycol. 2013, 25, 1413–1420. [Google Scholar] [CrossRef]
Aspects Considered in the Reliability Analysis | Subsections |
---|---|
3.1. Wastewater quality at the inlet of the algae-based reactor | 3.1.1. Carbon to Nitrogen (C:N) ratio |
3.1.2. Nitrogen to Phosphorus (N:P) ratio | |
3.2. Operating conditions and process control | 3.2.1. Presence of invasive microalgae, bacteria, protozoa and macro grazers affecting the microalgal growth |
3.2.2. Light utilization, illuminated surface to reactor volume ratio (Sf/V) and algal bio-mass concentration/algal biofilm thickness in the reactor | |
3.2.3. Water flow velocity, agitation and shear stress on the algal cells/beads | |
3.2.4. Temperature control | |
3.2.5. pH variation, transfer of CO2 and O2 oversaturation inhibition | |
3.2.6. Evaporation control | |
3.3. Algae harvesting method | - |
3.4. Produced biomass | - |
Reactor Type | Sf/V Range | Sources |
---|---|---|
Open suspended growth reactors | 5 to 10 m−1 (standard of 6.7) | [83] |
Enclosed suspended growth reactors | 20 to 400 m−1 (standard of 86.7) | [83] |
Enclosed algal beads reactors | - | - |
Stationary attached growth reactors | 1.55 to 6.06 cm−1 | [87] |
Rotating attached growth reactors | approx. 23 m−1 a | [88] |
Reactor Type | Maximum Biomass Concentration/Biofilm Thickness | Sources |
---|---|---|
Open suspended growth reactors | 0.1 to 1.8 g L−1 (standard under 1.5 g L−1) | [47,89] |
Enclosed suspended growth reactors | 0.6 to 1.8 g L−1 (standard over 1.5 g L−1) | [39,90] |
Enclosed algal beads reactors | 0.1 to 3 g L−1 | [39,55,91,92] |
Stationary attached growth reactors | - | - |
Rotating attached growth reactors | 0.00025 m to 0.002 m | [93] |
Method Type | Short Description | Dry Solids in the Harvested Algae | Effectiveness of Biomass Separation | Source |
---|---|---|---|---|
Chemical | ||||
Metal coagulant addition | Al2(SO4)3 or FeCl3 are generally used for neutralization of the negative algal cell charge and floc formation. | 3–8% | above 90% | [110,111,112,113] |
Organic biopolymer addition (flocculant) | Use of organic polysaccharides such as chitosan, acting as a flocculant. | 3–8% | above 90% | [110] |
Mechanical | ||||
Centrifuge | Most reliable and commonly used method. It uses centrifugal forces to separate the biomass from water. | 5–20% | around 90% | [113] |
Tangential membrane filtration | Also very commonly used. Usually, ultrafiltration membranes are used with pore size of <2 µm. | 5–25% | 70–90% | [111,113,114,115] |
Free sedimentation | Unreliable, depending solely on the gravitational sedimentation. | 0.5–3% | 10–50% | [111] |
Dissolved air flotation (DAF) | Usually applied in combination with coagulant addition in enclosed systems where the aeration induces the dissolved air flotation (DAF). | 3–6% | 50–90% | [111,113] |
Physical | ||||
Electrophoresis | Rarely used in fresh waters. Algal cell’s negative charge forces a biomass concentration around an anode. | 10–20% | 90% | [110] |
Ultrasound | Rarely used. The ultrasound either concentrates algae (MHz wavelengths) or tears the cells directly (KHz wavelengths). | - | - | [110] |
Biological | ||||
Autoflocculation | Extremely unreliable. Flocculation occurs either due to pH increase and Ca2+ and Mg2+ salts formation, or either through extracellular polymeric substances (EPS) accumulation. | 1–6% | can reach up to 90% | [110] |
Bioflocculation (microbial flocculation) | Rarely used. Through addition of floc forming organisms such as fungi, bacteria or protozoa. Usually requires addition of acetate, glucose, etc. for the faster occurring heterotrophic processes. | 3–8% | above 90% | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valchev, D.; Ribarova, I. A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes 2022, 10, 399. https://doi.org/10.3390/pr10020399
Valchev D, Ribarova I. A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes. 2022; 10(2):399. https://doi.org/10.3390/pr10020399
Chicago/Turabian StyleValchev, Dobril, and Irina Ribarova. 2022. "A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants" Processes 10, no. 2: 399. https://doi.org/10.3390/pr10020399
APA StyleValchev, D., & Ribarova, I. (2022). A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes, 10(2), 399. https://doi.org/10.3390/pr10020399