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Abstract: Oil and gas pipelines are lifelines for a country’s economic survival. As a result, they must
be closely monitored to maximize their performance and avoid product losses in the transportation
of petroleum products. However, they can collapse, resulting in dangerous repercussions, financial
losses, and environmental consequences. Therefore, assessing the pipe condition and quality would
be of great significance. Pipeline safety is ensured using a variety of inspection techniques, despite
being time-consuming and expensive. To address these inefficiencies, this study develops a model
that anticipates sources of failure in oil pipelines based on specific factors related to pipe diameter
and age, service (transported product), facility type, and land use. The model is developed using
a multilayer perceptron (MLP) neural network, radial basis function (RBF) neural network, and
multinomial logistic (MNL) regression based on historical data from pipeline incidents. With an
average validity of 84% for the MLP, 85% for the RBF, and 81% for the MNL, the models can forecast
pipeline failures owing to corrosion and third-party activities. The developed model can help pipeline
operators and decision makers detect different failure sources in pipelines and prioritize the required
maintenance and replacement actions.

Keywords: oil pipelines; failure prediction; multilayer perceptron neural network; radial basis
function neural network; multinomial logit regression

1. Introduction

Pipelines, which are the oil and gas industry’s backbone, convey petroleum products
in a variety of settings (i.e., onshore or offshore) [1,2]. The first oil pipeline, constructed
in Pennsylvania in 1879, was 109 miles long and 6 inches in diameter [3]. Over 2 million
miles of pipeline have been built in 120 countries around the world. The United States
has 65% of the total pipeline length in the globe, followed by Russia at 8% and Canada at
3%. The three countries account for about 75% of the pipeline’s overall length [4]. As of
2020, there are 491 functioning oil pipelines around the world [5]. Over 46% (19,122 miles)
of worldwide oil and gas pipelines lie in Asia-Pacific, while Canada is only projected to
contribute 6% of the pipeline construction [6].

Pipelines are the safest means to carry petroleum products when compared to rail and
roadways. However, pipelines are prone to various failures under diverse circumstances,
leading to catastrophic environmental consequences owing to oil spilling as well as substan-
tial economic losses due to production stoppage [7]. The social and economic prosperity of
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a country is associated with pipeline safety and security. Pipeline failures are caused by
mechanical, corrosion, natural hazards, operational, and third-party sources, according to
the Conservation of Clean Air and Water in Europe (CONCAWE), a European organization
that investigates environmental, health, and safety issues for the oil industry. CONCAWE
was launched in 1963 by a consortium of top oil firms to conduct environmental studies
related to the oil sector [8]. As a result, timely inspections and checks of the pipeline
condition are required to avoid accidents and failures [9].

Inspection techniques have been applied to discover pipeline anomalies and flaws
without shutting down production. In order to overcome the significant cost and time re-
quired by these inspection techniques, numerous studies have been undertaken to examine
the condition, diagnose failure causes, and anticipate the residual lives of pipelines. Some
failure prediction models were founded on subjective assessment, making them susceptible
to different opinions. For instance, Kabir et al. [10] established a safety assessment model
for oil and gas pipelines using a fuzzy Bayesian belief network. The model represented
event dependencies, updated probabilities, and random, vague, and ambiguous knowledge.
According to the results of the sensitivity analysis, the most significant causes of oil and
gas pipeline failures included overload, construction fault, poor installation, mechanical
damage, and worker quality. Li et al. [11] examined the likelihood of third-party failure to
an urban gas pipeline using the analytic hierarchy process (AHP) and fuzzy mathematics.
To identify hazards of third-party damage, a fault tree that identified fundamental events
was developed. The basic event probability was evaluated utilizing the expert judgment
approach and the fuzzy membership function. Using the AHP, the weight of each expert
was determined, the opinions were modified, and the third-party failure probability of the
pipeline was computed. Some other condition assessment models were constrained by the
limited number of historical records on which they were based (e.g., [12,13]). This might
hinder the application of the developed models to other pipelines [14].

The last category of models was concerned with examining specific failure causes of
oil and gas pipelines using machine learning approaches. El-Abbasy et al. [15] predicted the
condition of oil and gas pipelines based on historical data from three offshore pipelines in
Qatar. The model accounted for several factors such as age, diameter, metal loss, crossings,
cathodic protection, operating pressure, free spans, anode wastage, and condition of
coating, joint, and support. With regard to pipeline size and type of transported product,
the artificial neural network (ANN) approach was employed to develop five condition
prediction models. The developed models had coefficients of determination (R2) ranging
from 0.9904 to 0.9959. Additionally, they were able to accurately forecast pipeline conditions
with an average validity percent (AVP) of over 97%. Finally, a sensitivity analysis was
performed to analyze the impact of each factor on pipeline condition. Cathodic protection
and metal loss were associated with the highest positive and negative influence on pipeline
condition, respectively. Diameter and crossings, on the other hand, were determined
to have the least positive and negative effects on pipeline condition. Senouci et al. [16]
established regression analysis and ANN models that could forecast the cause of oil pipeline
breakdown based on specific predictors, namely facility, diameter, age, service type, and
land use. With an AVP of 90% for the regression model and 92% for the ANN model,
the two models were able to forecast pipeline failures owing to mechanical, operational,
corrosion, third-party, and natural hazards. The sensitivity analysis showed that facility
and service predictors had the highest contribution to the pipeline failure cause. In this
study, failure source was regarded as a prediction problem rather than a classification
challenge, which may raise concerns about the reliability of results.

Shaik et al. [9] proposed the application of the ANN approach to predict the condition
of a crude oil pipeline based on particular criteria such as pressure flow, metal loss, weld
anomalies, and wall thickness. With an R2 value of 0.9998, the model with 16 hidden
neurons accurately predicted the estimated repair factor. The deterioration profiles of the
elements were constructed to determine the individual impact on pipeline condition. It
was discovered that pressure had a significant negative impact on pipeline quality, whereas
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weld anomaly had a minor negative impact. Zakikhani et al. [17] anticipated failure sources
in oil pipelines based on physical, environmental, and operational factors. With an AVP
of 73.7%, an ANN model was developed for predicting mechanical, corrosion, and third-
party failures. Another ANN model with an AVP of 72.8% was constructed to forecast
corrosion and third-party failures. In addition, a multinomial logit (MNL) regression
model with an AVP of 73.7% was established for predicting mechanical, corrosion, and
third-party failures. It is worth mentioning that the results obtained by ANN and MNL
approaches were identical. However, the MNL model determined the likelihood of each
failure source, assisting decision makers in identifying the most likely and critical failure
sources. Concerning sensitivity analysis, product type and pipeline age had the greatest
and least impact on the failure category, respectively. In another study, Zakikhani et al. [18]
conducted failure prediction models for exterior corrosion in subterranean gas transmission
pipelines, taking into account both environmental/geographical and traditional factors.
Multiple regression analysis was used on the available historical data for gas transmission
pipelines. The constructed models had root mean square error (RMSE) values of 0.04 and
0.07, and R2 values of 0.93 and 0.75, respectively, in the validation testing phase.

The limitations of the previous research studies could be listed as follows [19]: (1) subjec-
tivity and reliance on an expert judgment that necessitated costly experiments/inspections,
hindering the generalized application to all pipelines; (2) simplicity and conservation of
the used approaches, highlighting the gap between research and practice in oil and gas
pipeline failure prediction; (3) restriction to specific failure causes of oil and gas pipelines.
In other words, they lacked impartiality in anticipating the various pipeline failure types;
(4) consideration of failure source as a prediction rather than a classification problem,
which may raise concerns about the reliability of results; and (5) utilization of limited
records based on few in-line inspections, which limited model application to pipelines with
different characteristics.

In an attempt to overcome these shortcomings, the primary objective of this research
study is to develop objective prediction models for identifying different failure categories
in oil and gas pipelines based on previous failure incidents. The models are established
using a multilayer perceptron (MLP) neural network, radial basis function (RBF) neural
network, and multinomial logistic (MNL) regression to classify corrosion and third-party
failures. Findings show that these failure categories accounted for more than 70% of total
oil pipeline accidents. The developed models take into account the significant factors that
influence the condition of pipelines such as pipe diameter and age, service, facility type,
and land use. The robustness of the proposed model has been compared to that of earlier
approaches. This research assists pipeline operators in taking the required precautions and
preventative actions to avoid catastrophic disasters in the oil and gas industry.

The major contributions of this research are identified as follows:

1. Introducing the application of RBF neural network to classify different failure types
for oil and gas pipelines.

2. Conducting a thorough comparison of three different failure prediction models for oil
and gas pipelines.

3. Enhancing the AVP value reported in the literature for the developed MLP, RBF, and
MNL models by 15.4%, 16.8%, and 11.3%, respectively.

2. Failure Sources in Oil and Gas Pipelines

The CONCAWE database has classified oil pipeline failures into five categories [20]:
mechanical, corrosion, operational, third-party, and natural hazards. Figure 1 illustrates
the contribution of these failures based on data reports from CONCAWE [21].
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Mechanical failure is caused by design flaws, material faults (e.g., inappropriate
or low-quality materials, and incorrect material specification), or construction problems
(e.g., poor workmanship, inadequate support, and faulty weld) [22]. These defects can
be deformations in the pipe wall in the form of dents and gouges [23]. Dents are radial
deformations, whereas gouges are deformations along the pipe surface. This failure type
can cause immediate or delayed failure, depending on its severity.

Corrosion is a slow process that results in the loss of metal in the wall, resulting in
pipeline failure [24]. Corrosion is the second most common cause of pipeline collapse,
according to the U.S. department of transportation. It is divided into internal and external
corrosion, as well as stress cracking corrosion. Internal corrosion affects the inner surface
of a pipeline and is usually caused by the material being conveyed. It is influenced by
two key factors, namely product corrodibility and corrosion intervention. On the contrary,
external corrosion occurs as a result of subsurface or atmospheric factors in buried and
above-ground pipelines, respectively [25]. Due to its intricate mechanism, subsurface
corrosion is more destructive than atmospheric corrosion. Cathodic protection and pipeline
coating can help to delay its occurrence [26]. Due to the combined effects of corrosion and
tensile stress, material cracking occurs as a result of stress crack corrosion [27].

Operational failure results from operator errors, operational upsets, and failures or
inadequacies in safeguarding systems [28]. This failure type is uncommon, despite having
disastrous repercussions. In addition to pressure monitoring, the deployment of safety
devices, supervisory control and data acquisition communications, and other methods may
help to prevent operational failures [29].

Third-party failure is caused by events unrelated to the pipeline [30]. Intentional
or accidental third-party operations are the most common failure source in oil pipelines,
despite being the least studied factor in pipeline hazard assessment [31]. Cover depth,
coating, and public education are among the factors that influence third-party damage.

Natural hazards such as volcanic activity, lightning strikes, earthquakes, land displace-
ment, and flooding are uncommon [32]. To avoid this type of failure, geotechnical and
hydrotechnical investigations are conducted before pipeline installation.

3. Materials and Methods
3.1. Multilayer Perceptron Neural Network

The fundamental functions of ANN comprise modeling nonlinear correlations and
complex interactions between inputs and outcomes as well as data clustering and clas-
sification based on historical data [33,34]. The ANN approach simulates human brain
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learning and recall of patterns. Neurons (i.e., processing elements), connection pattern,
environment, activation state vector, activation rule, signal function, activity aggregation
rule, and learning rule are the eight main components of neural networks [35]. The neurons
are connected through transfer functions (weights) in three major layers; input, hidden, and
output [36]. The inputs are fed into the input layer and they are concurrently sent to the
hidden layer(s). The outputs of hidden layers are fed into the output layer, which reports
the network’s output [37]. The layers are linked via weights and biases, which impact the
predictive capability of the model [38–42]. The weights and biases are modified repeatedly
until the appropriate tolerance limit is reached [43].

A multilayer perceptron (MLP) neural network that is trained using a back-propagation
learning algorithm is the most commonly used feed-forward neural network. Figure 2
shows the schematic of a back-propagation neural network. The convergence of this net-
work is slow, but it is frequently reliable and accurate [44]. Feed-forward computation,
back-propagation to the output and hidden layers, and weight update are the four funda-
mental steps of a back-propagation algorithm [45]. These steps are repeated until the error
is reduced to a satisfactory level.
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3.2. Radial Basis Function Neural Network

The RBF network was proposed by Moody and Darken in 1980. It has gained promi-
nence in a variety of applications, including time-series prediction, curve fitting, and
classification problems. The major strengths of this network are that the local minima can
be avoided, the learning process may be substantially accelerated, and any continuous
function can be approximated with arbitrary precision [46]. It has the same structure as
a feed-forward network that comprises input, hidden, and output layers, as shown in
Figure 3. The only distinction is that the input and hidden layers have no connection
weights. The output of hidden nodes is calculated using a set of radial basis functions. The
input nodes transfer the input values to each of the hidden nodes. Based on the radial basis
function, each hidden node generates an activation. Finally, each output node calculates
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a weighted linear combination of the hidden nodes’ activations, as per Equation (1) [47].
More references about the algorithms for RBF neural network can be found in [48].

yi =
N

∑
k=1

ϕk(||x− vk||)wik , i = 1, 2, . . . m (1)

where x = [x1, x2, . . . xn]
T represents the value of an input, n is the number of input nodes,

vk refers to the center of the kth node in the hidden layer, k = 1, 2, . . . N, N is the number
of hidden nodes, ϕk represents the non-linear transfer function of the kth node, ||x− vk||
represents the Euclidean distance between x and vk, wik is the weight value between the ith

output node and kth node, and m refers to the number of output nodes.
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3.3. Multinomial Regression

Multinomial logistic regression is used to predict categorical dependent variables by
employing binomial probability theory. When the dependent variable is dichotomous
rather than continuous, binomial logistic regression is used, whereas multinomial logistic
regression is utilized when the dependent variable is categorical. Equations (2) and (3) are
used to express logistic regression [49,50].

p(y = 1) =
1

1 + e−z (2)

z = ln
(

p(y = 1)
1− p(y = 1)

)
= α + β1x1 + β2x2 + · · ·+ βkxk (3)

where z is the logit formula, y is the dependent variable, α is the intercept, βk are the
coefficients, xk are the independent variables, and k is the number of explanatory factors.

The following are the limitations of logistic regression [51]: (1) linear relationship between
the response and the independent variables, (2) consideration of dichotomous response, (3)
presence of mutually exclusive categories, (4) requirement of large sample sizes, (5) non-
applicability of using independent variables that are interval-valued, and (6) ineffectiveness
of using independent variables that follow the normal or linear distribution.

An MNL model is a logistic regression extension, which sets one of the dependent
variables as a reference category. The membership probability of the other dependent
categories is then compared to that of the reference category. M− 1 equations are required
to illustrate a relationship between the response and the explanatory factors in a dependent
variable with M categories. When a dependent variable has more than two categories, the
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outcome probability is determined using Equation (4). Furthermore, the reference category
probability is computed using Equation (5) [49].

p(yi = m) =
ezmi

1 + ∑M
h=2 ezhi

(4)

p(y = 1) =
1

1 + ∑M
h=2 ezhi

(5)

4. Data Collection

Failure records provided by CONCAWE in 2019 are used to develop the failure
prediction models [21]. The data included 49 years of spillage data dating back to 1971,
as well as 36,000 km of pipelines transporting 620 million m3 of crude oil and petroleum
products per year across Europe. A total of 73 agencies and organizations operating around
35,691 km of oil pipelines provide annual data for the CONCAWE study. In 2019, the total
transported amount of crude oil and processed products was roughly 619 mm3 while the
overall traffic volume was anticipated to be 119 × 109 m3 per km.

Six spillage incidents were recorded in 2019, equivalent to 0.18 spillages per 1000 km
of line. This value is much lower than the annual average of 0.44, which has been declining
from a value of 1.1 in the mid-1970s. Two out of the six recorded incidents were caused
by mechanical failures, one by operational issues, three by corrosion, and none by natural
hazards and intentional or accidental third-party activity. There have been no recorded
injuries, deaths, or fires as a result of these spills. The gross spillage volume was 961 m3

(28.3 m3 per 1000 km of pipeline), compared to the long-term average of 62 m3 per 1000 km.
It was reported that 93% of the spillage volume was collected or disposed of securely.

CONCAWE database includes 586 records for the five different failure causes (i.e., me-
chanical, operational, corrosion, natural hazards, and third-party). It is noted that a total of
232 event records are lacking data for certain factors. As a consequence, these incidents are
removed from the database, maintaining 354 incidents with complete data. The utilized
dataset comprises 253 accidents owing to corrosion and third-party activities. Accidents
caused by mechanical, operational, and natural hazards are not recorded in the dataset
due to their low probabilities of occurrences. Table 1 depicts a sample of the database
used for building the model. Each spilled incidence represents a unique instance and
is distinguished by five distinct characteristics in addition to the primary cause/type of
failure. Pipeline diameter, service type, facility type, age, and land use are all considered
explanatory variables. The model excludes the gross and net loss spillage volume, leak
detection method, and facility part variables. This can be attributed to the impossibility of
determining these variables before a failure occurs, yet the established model is designed
to anticipate the failure cause before its occurrence.

Table 1. CONCAWE database sample for the developed models.

Spillage
ID

Diameter
(Inch) Service Facility Age (Years) Land Use Failure Cause

Category

1 16 Fuel oil (hot) Underground pipe 39 Residential low density Corrosion

2 9 Crude oil Underground pipe 46 Residential high
density Corrosion

3 34 Crude oil Underground pipe 17 Industrial/commercial Corrosion
4 10 Crude oil Aboveground pipe 39 Industrial/commercial Corrosion
5 10 Crude oil Aboveground pipe 39 Industrial/commercial Corrosion
6 12 Fuel oil (hot) Underground pipe 12 Industrial/commercial Corrosion
7 20 Crude oil Underground pipe 8 Industrial/commercial Third-party
8 8 White product Underground pipe 2 Residential low density Third-party
9 10 White product Underground pipe 6 Residential low density Third-party
10 11 White product Underground pipe 46 Agricultural Third-party
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5. Model Development

The failure prediction model development is illustrated in Figure 4. The data extracted
from the CONCAWE study is utilized to estimate the condition of oil pipelines. MLP
and RBF neural networks, as well as MNL regression models, are developed to forecast
different failure types using SPSS 28 statistical software [52]. To build the models, the
dataset is randomly divided into 70% and 30% for training and validation, respectively. As
depicted in Table 2, the input factors (i.e., diameter, service, facility, age, and land use) are
the key predictors of the developed models, whereas the main output is the failure type.
The three qualitative factors (service, facility, and land use) have been incorporated into the
model after being converted into numeric values. Furthermore, the other two quantitative
parameters (age and diameter) have varying units of measure. As a result, the values of the
input and output factors must be normalized. As a consequence, the models are designed
to forecast the failure type based on various combinations of input categories.

Table 2. Data gathered for the construction of a model.

Variable Unit Type Category Scale

Diameter Inch Continuous

0–10 1
11–20 2
21–30 3
31–40 4

Service - Nominal

Crude oil 1
White product 2
Fuel oil (hot) 3

Crude product 4
Lubes (hot) 5

Facility - Nominal
Underground pipe 1
Aboveground pipe 2

Pump station 3

Age Year Continuous

0–10 1
11–20 2
21–30 3
31–40 4
41–50 5
51–60 6
61–70 7

Land use - Nominal

Residential high density 1
Residential low density 2

Agricultural 3
Industrial/commercial 4

Forest hills 5
Barren 6

Waterbody 7

Failure type - Nominal

Mechanical 1
Operational 2
Corrosion 3

Natural hazards 4
Third-party 5
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5.1. MLP and RBF Models

The network architecture is influenced by the selected input and output variables.
Each variable is represented by a single artificial neuron. As a result, the network archi-
tecture has five neurons in the input layer and two in the output layer. The appropriate
number of hidden neurons is determined after conducting several iterations. For MLP, the
activation functions in the hidden and output layers are hyperbolic tangent and softmax,
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respectively. Additionally, the stopping rule used is one consecutive step with no error
decrease. By adjusting connection weights, a scaled conjugate gradient optimization algo-
rithm is employed to minimize the objective function (error). Meanwhile, for RBF, softmax
and identity are the activation functions in the hidden and output layers, respectively.

5.2. MNL Model

The likelihood of each output category (i.e., failure type) is computed using multino-
mial regression, which helps to identify the most likely and critical failure sources. The
highest probability is assigned as the anticipated value. Each category is associated with
a baseline in the logit model, and third-party failure is utilized as the baseline in this
research. The model performance is measured using the maximum-likelihood estimate,
which indicates the similarity between the observed and modeled parameter values. It is
commonly equal to 2 log-likelihood (2 LL) [50,53].

Several pseudo-R squares are utilized to evaluate the goodness of fit for the MNL
models, as per Equations (6)–(8) [54–56]. These metrics resemble R-square such that they
range from 0 to 1, with higher values indicating better model fit and vice versa.

R2
McFadden = 1−

lnL
(

M f ull

)
lnL
(

Mintercept
) (6)

R2
Cox and Snell = 1−

 L
(

Mintercept
)

L
(

M f ull

)


2/N

(7)

R2
Nagelkerke =

1−
{

L(Mintercept)
L(M f ull)

}2/N

1− L
(

Mintercept
)2/N

(8)

where Mintercept and M f ull denote models without and with predictors, respectively. Fur-
thermore, L denotes the estimated likelihood, and N denotes the number of data points.

The initial likelihood for the reduced model, which omits the effect of the investi-
gated variable, is estimated to determine each predictor’s importance. This probability is
compared against the reported results when considering all predictors (full model). The
chi-square for each predictor is then determined by subtracting the full model value from
the reduced model value. The predictor is deemed significant when it is associated with
high chi-square and low significance values.

6. Model Validation

The purpose of this step is to validate and test the prediction effectiveness of the
developed models. Equations (9) and (10) are used to calculate the average invalidity
percentage (AIP) and average validity percentage (AVP). The model is sound if the AIP
value is closer to 0, while the prediction capability of the model is not acceptable if the AIP
value is closer to 100 [57].

AIP =

(
n

∑
i=1

∣∣∣∣1−(Ei
Ci

)∣∣∣∣
)

/n (9)

AVP = 1− AIP (10)

where n refers to the number of records and Ei and Ci refer to the estimated and actual
values, respectively.

The second approach for computing the AIP is adopted by dividing the number of
inaccurate predictions (nip) by the overall number of records (n), as per Equation (11).

AIP = nip/n , AVP = 1− AIP (11)
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7. Results and Discussion

MLP and RBF neural networks, as well as MNL regression models, are developed to
forecast corrosion and third-party failures. For MLP and RBF models, the optimum number
of hidden neurons is determined to be three and ten neurons, respectively. As depicted
in Table 3, the findings of the importance factor analysis for MLP reveal that the order of
importance of the predictors is listed in the following order: facility, service, land use, age,
and diameter. On the other hand, for the RBF model, the predictors are arranged in the
following order of importance: service, facility, land use, age, and diameter.

Table 3. Assessment of the importance of inputs in the neural network models.

Input
Parameters

MLP RBF

Importance Normalized
Importance Importance Normalized

Importance

Diameter 0.082 22.8% 0.129 41.1%
Service 0.332 92.0% 0.313 100.0%
Facility 0.361 100.0% 0.210 67.0%

Age 0.093 25.9% 0.146 46.6%
Land use 0.131 36.2% 0.202 64.4%

The receiver operating characteristic (ROC) curve is a diagnostic method for evaluating
classification problems. To evaluate classifier performance in differentiating positive and
negative data, it plots the true positive rate versus the false positive rate. A bigger area
under the ROC curve suggests a better likelihood of classification as a positive rather than a
negative value. Table 4 demonstrates that the area under the ROC curve for each dependent
variable category in the MLP model is often greater than 0.7, indicating good prediction
accuracy. However, for the RBF model, the area under the ROC curve = 0.8, indicating very
good prediction accuracy.

Table 4. Area under the curve for the neural network models.

Failure Category Area (MLP) Area (RBF)

Corrosion 0.7 0.8
Third-party 0.7 0.8

As shown in Table 5, the likelihood function value for the MNL model without
independent variables is 305.642, whereas the value with all independent variables is
293.395. Due to the inclusion of independent variables, a decrease in this value reflects
improved model prediction. The chi-square (12.246) has a significance of 0.032, indicating
a statistically significant association between the explanatory and response variables [53].
Moreover, the pseudo–R square findings are summarized in Table 6.

Table 5. MNL model fitting information.

Model −2 log Likelihood Chi-Square Significance

Intercept only 305.642 N/A N/A
Final 293.395 12.246 0.032

Table 6. Pseudo R-square values for the MNL model.

Pseudo R-Square Value

Cox and Snell 0.047
Nagelkerke 0.067
McFadden 0.039
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Table 7 summarizes the likelihood ratio test analysis findings. It reveals that the most
influential variable is facility type because it is associated with the highest chi-square (5.891)
and lowest significance (0.015) values.

Table 7. Likelihood ratio test for the MNL model.

Effect −2 log-Likelihood of Reduced Model Chi-Square Significance

Intercept 299.895 6.499 0.011
Diameter 294.360 0.965 0.326
Service 293.536 0.141 0.707
Facility 299.286 5.891 0.015

Age 295.795 2.399 0.121
Land use 294.788 1.392 0.238

As previously explained, the MNL regression model is based on calculating the
likelihood of each failure type that is based on computing the logit of each output. In this
context, the variable coefficients of the dependent variables are depicted in Table 8. The
logit for corrosion and third-party failures is calculated using Equations (12) and (13).

Table 8. Parameter estimations for the MNL model.

Variable Coefficient

Intercept −2.368
Diameter 0.024
Service 0.105
Facility 0.971

Age −0.015
Land use 0.159

Z1 = −2.368 + 0.024 Diameter + 0.105 Service + 0.971 Facility
−0.015 Age + 0.159 Land use (12)

Z2 = 0 (re f erence category) (13)

Finally, the likelihood of each failure source is computed using Equations (14) and (15).

P1(corrosion f ailure) =
ez1

ez1 + ez2 (14)

P2(third− party f ailure) =
ez2

ez1 + ez2 (15)

Table 9 summarizes the results of the training and validation phases for the MLP,
RBF, and MNL models. For the first approach, the AVP values for the MLP, RBF, and
MNL models are 0.84, 0.86, and 0.80, respectively, in the training phase. Meanwhile, for
the validation phase, the AVP values are 0.85, 0.83, and 0.82 for the MLP, RBF, and MNL
models, respectively. For the training and validation phases, the MLP, RBF, and MNL
models predict failure causes with AVP values of 0.84, 0.85, and 0.81, respectively. The
average validity percentage in all models is above 0.80, indicating very good classification
accuracy. The findings confirm the robustness of the developed RBF model and its ability to
forecast pipeline failure based on a set of input variables. However, the prediction accuracy
of models could have been compromised due to the non-availability of some important
factors (e.g., thickness, operating pressure, and yield strength) that contribute to oil and
gas pipeline failure. Furthermore, due to confidentiality concerns, access to a significant
number of failure records in the oil and gas industry is often difficult.
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Table 9. Findings of the training and validation phases for the classification models.

Phase Classifier
AIP (%) AVP (%)

First
Approach

Second
Approach

First
Approach

Second
Approach

Training
MLP 15.7 25.6 84.3 74.4
RBF 14.5 22.7 85.5 77.3

MNL 19.8 29.9 80.2 70.1

Validation
MLP 15.1 21.0 84.9 79.0
RBF 17.2 29.9 82.8 70.1

MNL 17.7 27.6 82.3 72.4

For the training phase, the findings of the second approach indicate that the AVP
values are 0.74, 0.77, and 0.70 for the MLP, RBF, and MNL models, respectively. Meanwhile,
for the validation phase, the AVP values are 0.79, 0.70, and 0.72 for the MLP, RBF, and MNL
models, respectively. It should also be noted that the AVP values acquired using the second
approach are lower than those reported using the first approach. The reason is that, in
the second approach, the event is utterly incorrect if the anticipated failure type differs
from the actual one. On the contrary, the first approach adopts estimating the deviation
between the actual and modeled failure types. Despite this, the second approach produces
satisfactory AVP results for the models.

Figure 5 illustrates the residual plots for the actual and modeled failure types using
classification models. The mean of errors is −0.37, −0.26, and −0.45 for the MLP, RBF,
and MNL models, respectively. Meanwhile, the standard deviation of the measured errors
ranges between 0.91 and 1.05 for the classification models. This figure shows that the
predicted values of the three models are within acceptable bounds and are distributed
around the actual values. The MLP and RBF models outperform the MNL regression model
in terms of accuracy because they take into account the nonlinear relationship between the
dependent and independent variables, as well as the correlation between the parameters
that determine the pipeline failure cause.

The outcomes of the established models are compared to the results reported in the
literature. Zakikhani et al. [17] presented an ANN model that was associated with an
AVP of 0.728 for forecasting corrosion and third-party failures in oil pipelines based on
physical, environmental, and operational factors. In this research, the developed MLP,
RBF, and MNL models are associated with AVP values of 0.84, 0.85, and 0.81, respectively.
This implies that the proposed MLP, RBF, and MNL models enhanced the AVP value
reported in the literature by 15.4%, 16.8%, and 11.3%, respectively. Therefore, the proposed
RBF model outperforms previously published models, emphasizing its robustness and
accuracy capabilities.
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8. Conclusions

This research study developed three models for predicting corrosion and third-party
failures in oil pipelines, taking into account several predictors such as age, diameter, facility,
service, and land use. Findings showed that these failure categories accounted for more than
70% of total oil pipeline accidents. The models were developed using multilayer perceptron
(MLP) neural network, radial basis function (RBF) neural network, and multinomial logistic
(MNL) regression. The importance factor analysis for MLP revealed that the order of
importance of the predictors was as follows: facility, service, land use, age, and diameter.
On the other hand, for the RBF model, the predictors were arranged in the following order
of importance: service, facility, land use, age, and diameter. For MNL, the likelihood ratio
test analysis revealed that the most influential variable was facility type because it was
associated with the highest chi-square and lowest significance values. Moreover, the model
calculated the likelihood of each failure source, assisting decision makers in determining the
most likely and critical failure sources. For MLP and RBF neural networks, the area under
the receiver operating characteristic (ROC) curve for each dependent variable category was
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about 0.7 and 0.8, respectively, indicating good prediction accuracy. The MLP, RBF, and
MNL models predicted failure causes with AVP values of 0.84, 0.85, and 0.81, respectively.
The developed models were tested for robustness against other previous models based
on AVP value. It was found that the proposed MLP, RBF, and MNL models enhanced the
AVP value reported in the literature by 15.4%, 16.8%, and 11.3%, respectively. Therefore,
the proposed RBF model outperformed previously published models, emphasizing its
robustness and accuracy capabilities. This can be attributed to the fact that the RBF model
accounted for the nonlinear relationship between the dependent and independent variables,
as well as the correlation between the parameters that determined the pipeline failure
cause. The established models provide decision makers with a clear picture of the failure
sources that endanger a pipeline, allowing them to mitigate risks and ensure pipe safety.
These models can assist oil pipeline operators and decision makers in planning pipeline
safety by forecasting how pipelines will break based on specific physical, operational, and
environmental features. It is recommended in the future to examine the performance of
the developed models for predicting other failure types (e.g., mechanical, operational, and
natural hazards) in oil and gas pipelines.
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