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Abstract: In this work, polyacrylamide (PAM) was first used in the loading of heteropoly acids, and
then the HPM/PAM-n catalyst was synthesized by simple reaction. The FTIR and SEM measurements
showed that the HPM/PAM-n (n = 10,000, 20,000, 30,000) was successfully synthesized. In addition,
the HPM/PAM-n effect on desulfurization was measured, which showed the optimal desulfurization
efficiency. The optimal process condition for HPM/PAM-10000 desulfurization was optimized by
a single-factor experiment. The optimal condition was as follows: The temperature was 60 ◦C, the
amount of the catalyst was 0.2 g, the oxygen to sulfur ratio was 16, and the reaction time is 100 min.
The catalyst was suitable for recycled use, and the desulfurization efficiency was high after 10 times.
In the end, the oxidative desulfurization mechanism was put forward.

Keywords: PAM; desulfurization; heteropoly acid; recycle use

1. Introduction

In recent years, fossil fuels have played an important role in global industrial pro-
duction. However, the combustion of sulfur-containing compounds in fuels can cause the
air deterioration, health hazards to organisms, etc. Traditional hydrodesulfurization [1,2]
(HDS) is the most effective method of removing mercaptans and thioethers. However, the
HDS process is limited to the extreme process conditions. In order to solve these prob-
lems, non-HDS methods were put forward, such as oxidative desulfurization (ODS) [3,4],
extractive desulfurization (EDS) [5–7] and adsorption desulfurization (ADS) [8–10].

Xu et al. [11] studied the PdO/SiO2@graphene effect on the adsorption desulfurization,
and the graphene oxide effect was observed. The results showed PdO/SiO2@GO had higher
adsorption performance for thiophene than PdO/SiO2. Carla et al. [12] studied the effect
of bio-based chitosan and cellulose ionic liquid gels on fuel desulfurization, and the results
showed that the bio-based polymer had a high desulfurization removal efficiency for thio-
phene and dibenzothiophene. Wang et al. [13] studied the polyoxometalate-based catalyst
[MIMPs]3PMo6W6O40 synthesis and characterization, and the results showed that all diben-
zothiophene in the model oil could be removed at a low O/S ratio. Su et al. [14] studied the
TiO2 quantum dots catalysts effect on enhanced oxidative desulfurization, and the results
showed that the catalysts could achieve 100% desulfurization with 50 mg. Wang et al. [15]
synthesized the W2C@C catalysts from metallophthalocyanine/phosphotungstic acid com-
posites, and the catalyst was used to oxidatively desulfurize. Dibenzothiophene (DBT) was
100% removed by W2C@C within 40 min at 50 ◦C. Zhong [16] et al. studied the Zr-Based
phosphotungstic acid catalyst and explored the oxidative desulfurization efficiency.

Compared to other methods, the ODS is more advantageous. In recent years, many re-
searchers have focused on high desulfurization efficiency catalysts for the ODS process [9,17,18].
The carriers of catalysts were synthesized and utilized, for instance, SiO2 [18], graphene [9],
polyionic liquids [19,20], MnO2 [20] and molecular sponges [21]. Among these carriers of
catalysts, polyacrylamide was an ideal polymer carrier. The synthesis of polyacrylamide
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method is simple, and quantities of amine functional groups help disperse heteropoly-
acids [22,23]. In recent years, many experiments on polyamide desulfurization have been
reported. Yen et al. studied some characteristics of flue gas desulfurization (FGD) in
polyamide membranes [24]. Yu et al. used polyamide compounds to prepare a high-
performance membrane and tested the desulfurization effect [25]. The detailed catalysts
used in the ODS process are shown in Table 1.

Table 1. Different catalysts used in the ODS process.

Catalyst Sulfur Content
(ppm)

Temperature
(◦C)

Time
(min) O/S Sulfur Removal

(%) Reference

Nb2O5/Al2O3 55 110 180 1.5 43.42 [26]
Al2O3-P2W15-C18 1000 60 9 3 100 [27]
Ag-ZSM5/SBA-15 1000 70 120 - 44 [28]

TMU-10 500 60 360 3 74.7 [29]
NH2-TMU-53 500 60 120 3 79.4 [30]

DES 100 25 - 2 79.01 [31]
PAF-30-W 500 60 120 6 60 [32]

0.5-HPMo@UiO-66-D 800 60 60 8 100 [33]
SiO2@V-PIL-70 500 50 90 5 99 [34]

Cu@Al-PMO-TU - 120 25 - 100 [35]

The aim of this research was (i) to synthesize the HPW/PAM-n desulfurization carri-
ers, (ii) to characterize the corresponding desulfurization carriers and (iii) to explore the
oxidative desulfurization effect, mechanism and recycle use.

2. Experimental
2.1. Materials

Dibenzothiophene was analytical grade and from West Asia Chemical Technology Co.,
Ltd., (Linyi, China), Phosphotungstic acid, polyacrylamide and 4,6-dibenzothiophene, 3-methyl-
1-octyl imidazolium tetrafluoroborate were analytical grade and from Aladdin. N-octane,
hydrogen peroxide (30%) and benzenethiophene were analytical grade and from Shanghai
Mike Lin Biochemical Technology, Shanghai, China.

2.2. Synthesis of HPW/PAM-n

First, the PAM and phosphotungstic acid were weighed, and the molar ratio was
n. Then, PAM and phosphotungstic acid were dispersed in deionized water. The phos-
photungstic acid solution was added dropwise to the PAM solution, and then stirred for
1 h [36,37]. After 1 h, the product was filtered, washed and dried to produce HPW/PAM-n.

2.3. Characterization
2.3.1. FTIR Measurement

The HPW/PAM-n FT-IR spectra were recorded at room temperature on a Nexus
470 FT-IR spectrometer. The measured samples were analyzed by the potassium bromide
tablet pressing method, and the scanning wavenumber range was 3800–400 cm−1 [38,39].

2.3.2. SEM Measurement

The morphologies of the HPW/PAM-n were observed by scanning electron mi-
croscopy (JSM-7100F (JEOL, Ltd.)) [40].

2.4. Oxidative Desulfurization Experiment

The thiophene compound and n-octane were mixed to prepare a certain sulfur content
simulated oil. In total, 10 mL of the simulated oil and 0.2 g of the catalyst were placed in the
flask. After the set temperature was stabilized, hydrogen peroxide was added to cause the
reaction. After t min, the oil layer was analyzed by a fluorescence analyzer. Sulfur removal
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(desulfurization efficiency) was calculated by Equation (1), where C0 is the initial sulfur
content, and Ct is the residual sulfur content after the reaction was continued t min.

Sulfur removal(%) =
C0 − Ct

C0
(1)

The reaction flask was charged with 1 mL of 3-methyl-1-octyl imidazolium tetrafluo-
roborate to extract sulfur oxides. The oil layer was in the upper layer, and the ionic liquid
was extracted in the lower layer.

3. Results
3.1. Characterizations of Catalysts
3.1.1. FTIR

Figure 1 presents the FTIR spectra of the HPW/PAM-10000, HPW/PAM-15000 and
HPW/PAM-20000 catalysts. All catalysts showed two different peaks at 1417 cm−1 and
1647 cm−1. Whereas 1647 cm−1 was the bending vibration peak of N-H, 1417 cm−1 was the
absorption peak of the methylene group (amide portion of the polymer). The 1100 cm−1

peak was the stretching vibration of C-H. There was a broad peak (3200 cm−1), which was
a hydrated molecular O-H bond of heteropoly acid. The -NH2 vibration peak was lost
because the hydrated molecule of the heteropoly acid vibration peak obscured the amine
group vibration peak. Figure 1 indicates the polymer catalyst was successfully synthesized.
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3.1.2. SEM

As shown in Figure 2, the catalyst morphology was different under different loading
amounts. Figure 2A indicates that the polymer showed a curtain shape with specific prop-
erties when the loading amount was low. The heteropoly acid was uniformly distributed
on the polymer, and the morphology of the heteropoly acid was complete. When the load
increased (n value increased), the heteropoly acid amount increased, and the distributed
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curtain state was much more uniform. The catalyst stability decreased with high load
amount. Figure 2C indicates that the HPW/PAM-20000 catalyst was in an amorphous state,
and the effective contact area of the catalyst was greatly reduced.
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3.2. Desulfurization Performance of Catalysts

As shown in Figure 3, the desulfurization efficiency of different catalysts (HPW/PAM-
n) was different. The desulfurization efficiency decreased with the increase of the load
(n value) because the higher n value led to the fusion of heterozygosis, and the exposed
contact sites decreased. Therefore, HPW/PAM-10000 was chosen as the catalyst for the
next experiment. The desulfurization efficiency increased with the increase of reaction
time. The desulfurization efficiency reached the highest value when the reaction time was
100 min. The DBT removal rate by HPW/PAM-10000 reached 76.9% after 100 min.
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Figure 3. Desulfurization efficiency for HPM/PAM-n catalysts at different reaction times (initial
sulfur content = 500 ppm; T = 60 ◦C; V (oil) = 10 mL; m (catalyst) = 0.2 g; n (O)/n (S) = 16).

The different oxygen to sulfur ratio, initial sulfur content, temperature and sulfur
compounds effect by HPW/PAM-10000 on desulfurization efficiency is shown in Figure 4.
As shown in Figure 4a, the HPW/PAM-10000 desulfurization efficiency increased with the
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increase of O/S. When the O/S was 16, the desulfurization efficiency remained stable, which
was because liquid sealing hindered the reaction under high water content. As shown in
Figure 4b, the HPW/PAM-10000 desulfurization efficiency increased when the reaction time
increased. When the initial sulfur content increased, the desulfurization efficiency increased
because the contact area between oxygen molecules and sulfur compounds increased at
the high sulfur content. When the initial sulfur content was higher than 250 ppm, the
desulfurization increased slightly. As shown in Figure 4c, when the temperature increased
from 30 ◦C to 60 ◦C, the HPW/PAM-10000 desulfurization efficiency increased from
37.5% to 76.9%, which can be attributed to the increase of the decomposition rate of
hydrogen peroxide with higher temperature, enabling oxygen molecules to effectively
react with sulfur compounds. As shown in Figure 4d, the desulfurization efficiency was
DBT > BT > 4, 6-DMDBT. Different sulfur compounds have different electron clouds
densities and spatial resistances, and the reaction rate between sulfur and oxygen molecules
was different.
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4. Catalyst Recycling

As shown in Figure 5, the HPW/PAM-10000 effect on desulfurization was explored.
The desulfurization efficiency remained high after recycling 10 times. Compared to the first
time, the sulfur removal of the tenth time decreased slightly. The results showed that the
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HPW/PAM-1000 was economically feasible. The slight desulfurization efficiency decrease
was due to the amount of active site loss.
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5. Reaction Mechanism

As shown in Figure 6, phosphotungstic acid was a good catalyst for oxidative desulfu-
rization. Its active center can decompose hydrogen peroxide as water and oxygen. Then,
its active center W can act to transport oxygen molecules, transporting oxygen molecules
to specific locations for reaction. Of course, the W valence state of the event center will also
change [36,41]. When an oxygen molecule was successfully transported and reacted with
the sulfur compound, its valence returned to its original valence state, and the process was
repeated until all oxygen molecules were transported. At this time, the sulfur compound
was also oxidized to a sulfone or sulfoxide. The polarity of the sulfone or sulfoxide was
greatly different from the polarity of the aromatic sulfur compound, and the sulfur oxide
could be easily extracted.
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6. Conclusions

In this study, HPW/PAM-10000 was successfully synthesized and characterized. The
catalyst was effective for oxidative desulfurization, and the optimal process conditions
were optimized. The detailed conclusions were as follows.

1. The FTIR figure showed that HPW/PAM was successfully synthesized because the
characteristic peaks (-OH, -NH-) occurred. SEM results showed that when the load
amount was larger, the amount of heteropoly acid would be larger, and the distributed
curtain state was much more uniform.

2. The catalyst desulfurization optimal process condition was as follows. The tempera-
ture was 60 ◦C, catalyst amount was 0.2 g, the oxygen to sulfur ratio was 16, and the
reaction time is 100 min.

3. The catalyst had high desulfurization efficiency after recycle use 10 times, so the
catalyst stability was suitable for the industrial application.

4. The mechanism for the oxidative desulfurization process was put forward. Hydrogen
peroxide could produce water and oxygen. Then, after a series of reactions, the
desulfurization process occurred.

5. The HPW/PAM-10000 was environmentally friendly and economically feasible.
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