Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brankova, S.R.; Todorova, E.I. Ecological management of sludge from wastewater treatment plants—A criterion for sustainable development of settlements. In Proceedings of the XIX International Scientific Conference “Management and Sustainable Development”, Yundola, Bulgaria, 24–26 March 2017; pp. 63–67. [Google Scholar]
- Marcinkowski, T. Decontamination of sewage sludges with quicklime. Waste Manag. Res. 1985, 3, 55–64. [Google Scholar] [CrossRef]
- Dermendzhieva, D.M. Ecological and Agro-ecological Characteristics of Wastewater and Sludges from Treatment Plants. Abstract of dissertation. Ph.D. Thesis, Thracian University, Stara Zagora, Bulgaria, 2017; p. 67. [Google Scholar]
- Gheethi, M.O.; Efaq, A.A.; Bala, J.D.; Norli, I.; Abdel-Monem, M.O.; Kadir, M.O. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl. Water Sci. 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Straub, T.M.; Pepper, I.L.; Gerba, C.P. Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev. Environ. Contam. Toxicol. 1993, 132, 55–91. [Google Scholar] [CrossRef] [PubMed]
- Vesilind, P.A.; Hartman, G.C.; Skene, E.T. Sludge Management and Disposal for the Practicing Engineer; Lewis Publishers, Inc.: Chelsea, MI, USA, 1997. [Google Scholar]
- Arthurson, V. Proper Sanitization of Sewage Sludge: A Critical Issue for a Sustainable Society. Appl. Environ. Microbiol. 2008, 74, 5267–5275. [Google Scholar] [CrossRef] [Green Version]
- Dudley, D.J.; Guentzel, M.N.; Ibarra, M.J.; Moore, B.E.; Sagik, B.P. Enumeration of potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 1980, 39, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Larsen, H.E.; Munch, B. Pathogenic bacteria in extraanimal environments. In Ugeskrift for Jordbrug, Selective Research Reviews; Klampenbourg: Copenhagen, Denmark, 1986; pp. 57–66. [Google Scholar]
- Strauch, D. Survival of pathogenic micro-organisms and parasites in excreta, manure and sewage sludge. Rev. Sci. Technol. 1991, 10, 813–846. [Google Scholar] [CrossRef]
- Kearney, T.E.; Larkin, M.J.; Levett, P.N. Metabolic activity of pathogenic bacteria during semicontinuous anaerobic digestion. Appl. Environ. Microbiol. 1994, 60, 3647–3652. [Google Scholar] [CrossRef] [Green Version]
- Sahlström, L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 2003, 87, 161–166. [Google Scholar] [CrossRef]
- Ordinance on the Procedure and Manner of Utilization of Sludges from Wastewater Treatment through Their Use in Agriculture, Promulgated, SG, iss. 63 of 12.08.2016. Available online: http://eea.government.bg/bg/nsmos/waste/Naredba_utaiki_18_01_19.pdf (accessed on 14 December 2021).
- Amer, A.A. Destruction of sludge pathogenic bacteria using quicklime and cement dust. J. Soil Sci. 1997, 37, 343–354. [Google Scholar]
- Jepsen, S.E.; Krause, M.; Gruttner, H. Reduction of fecal Streptococcus and Salmonella by selected treatment for organic waste. Water Sci. Tech. 1997, 36, 203. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Fang, M. Effects of lime addition on sewage sludge composting process. Water Res. 2000, 34, 3691–3698. [Google Scholar] [CrossRef]
- Marinova, S.; Zlatareva, E.; Petrova, V.; Banov, M. Methodology for treatment of WWTP sludges with lime materials. In Presentation; Institute of Soil Science, Agrotechnologies and Plant Protection “Nikola Poushkarov”: Sofia, Bulgaria, 2016; Available online: http://bwa-bg.com/wp-content/uploads/2016/05/16.-%23U0421%23U0432%23U0435%23U0442%23U043b%23U0430-%23U041c%23U0430%23U0440%23U0438%23U043d%23U043e%23U0432%23U0430.pdf (accessed on 14 December 2021).
- Strauch, D. Improvements of the quality of sludge. Microbial aspects. In Sewage Sludge Treatment and Use AH; Dirkzawger, P.L., Ed.; Elsevier: London, UK, 1999; pp. 160–169. [Google Scholar]
- Santos, A.F.; Vaz, T.E.; Lopes, D.V.; Cardoso, O.; Quina, M.J. Beneficial use of lime mud from kraft pulp industry for drying and microbiological decontamination of sewage sludge. J. Environ. Manag. 2021, 296, 113255. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Jeon, W.; Lee, J.; Lee, K.; Kim, N. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess. Water Res. 2002, 36, 4177–4184. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Shuaibu, A.; Umaru, I.; Musa, S.; Lawal, I.M.; Abubakar, S. Stabilization of soft soil by incinerated sewage sludge ash from municipal wastewater treatment plant for engineering construction. Sustain. Struct. Mater. 2019, 2, 32–44. [Google Scholar] [CrossRef]
- Almahbashi, N.M.; Kutty, S.R.; Ayoub, M.; Noor, A.; Salihi, I.U.; Al-Nini, A.; Jagaba, A.; Aldhawi, B.N.; Ghaleb, A.A. Optimization of preparation conditions of sewage sludge based activated carbon. Ain Shams Eng. J. 2021, 12, 1175–1182. [Google Scholar] [CrossRef]
- Samaras, P.; Papadimitriou, C.A.; Papastergiadis, E.; Pappa, A.; Gudulas, K. Study of phytotoxic properties of sewage sludge stabilised by alkaline mediums. WIT Trans. Ecol. Environ. 2008, 110, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Bina, B.; Movahedian, H.; Kord, I. The Effect of Lime Stabilization on the Microbiological Quality of Sewage Sludge. Iran. J. Environ. Health Sci. Eng. 2004, 1, 34–38. [Google Scholar]
- Keller, R.F.; Passamani-Franca, R.F.; Cassini, S.T.; Gonçalves, R.F. Disinfection of sludge using lime stabilisation and pasteurisation in a small wastewater treatment plant. Water Sci. Technol. 2004, 50, 13–17. [Google Scholar] [CrossRef]
- Malcheva, B.Z. Influence of microbial fertilizers on microbiological and enzymatic decomposition of carbohydrates in agrogenic soil. Bulg. J. Crop Sci. 2021, 58, 95–103. [Google Scholar]
- Naskova, P.A.; Malcheva, B.Z.; Yankova, P.P.; Plamenov, D.D. Impact of the biological fertilizers on chemical indexes and enzyme activities of soils at cucumbers. Int. Res. J. Nat. Appl. Sci. 2016, 3, 120–131. [Google Scholar]
- Mishustin, F.; Emtsev, N. Microbiology; Kolos: Moskva, Russia, 1986; p. 367. [Google Scholar]
- Nustorova, M.L.; Malcheva, B.Z. Guide for Laboratory Exercises in Microbiology; IK Gea-Print: Varna, Bulgaria, 2020; p. 118. [Google Scholar]
Variants | Microbiological Analysis |
---|---|
1a: In Greenhouse Conditions | Before starting the experiment; 10 h after starting the experiment; 10th day after starting the experiment; 25th day after starting the experiment; 50th day after starting the experiment |
Sludge without quicklime (CaO) | |
Sludge + 10% CaO | |
Sludge + 20% CaO | |
Sludge + microbial fertilizer + 10% CaO | |
Sludge + microbial fertilizer + 20% CaO | |
Sludge + 30% ash | |
Sludge + 50% ash | |
Sludge + microbial fertilizer + 30% ash | |
Sludge + microbial fertilizer + 50% ash | |
Sludge + microbial fertilizer | |
1b: In Laboratory Conditions | Microbiological Analysis |
Sludge, +28 °C (aerobic cultivation) | Before starting the experiment, 24 h |
Sludge, −4 °C (aerobic cultivation) | 24 h |
Sludge, −20 °C (aerobic cultivation) | 3 h, 6 h, 24 h |
Sludge, +70 °C (aerobic cultivation) | 6 h, 12 h |
Sludge, +28 °C (anaerobic cultivation) | 7 days |
Variants | Before Starting | Day 1, 10 h | 10th Day | 25th Day | 50th Day |
---|---|---|---|---|---|
In Greenhouse Conditions | Non-Spore-Forming Bacteria | ||||
Sludge without quicklime (CaO) | 2200 | 2100 | 2200 | 2140 | 2120 |
Sludge + 10% CaO | 1700 | 1520 | 1580 | 1640 | |
Sludge + 20% CaO | 1480 | 1000 | 1120 | 1240 | |
Sludge + microbial fertilizer + 10% CaO | 1800 | 1640 | 1700 | 1780 | |
Sludge + microbial fertilizer + 20% CaO | 1550 | 1380 | 1460 | 1500 | |
Sludge + 30% ash | 1800 | 1900 | 1880 | 1860 | |
Sludge + 50% ash | 1600 | 1740 | 1700 | 1680 | |
Sludge + microbial fertilizer + 30% ash | 1900 | 2040 | 2080 | 2080 | |
Sludge + microbial fertilizer + 50% ash | 1850 | 2000 | 2080 | 2140 | |
Sludge + microbial fertilizer | 2240 | 2300 | 2320 | 2340 | |
In Greenhouse Conditions | Bacilli/Lactobacilli | ||||
Sludge without quicklime (CaO) | 320 | 310 | 400 | 360 | 340 |
Sludge + 10% CaO | 170 | 140 | 150 | 160 | |
Sludge + 20% CaO | 110 | 80 | 100 | 100 | |
Sludge + microbial fertilizer + 10% CaO | 200 | 160 | 180 | 180 | |
Sludge + microbial fertilizer + 20% CaO | 170 | 120 | 140 | 160 | |
Sludge + 30% ash | 190 | 260 | 240 | 220 | |
Sludge + 50% ash | 140 | 200 | 180 | 180 | |
Sludge + microbial fertilizer + 30% ash | 220 | 300 | 260 | 280 | |
Sludge + microbial fertilizer + 50% ash | 210 | 280 | 260 | 260 | |
Sludge + microbial fertilizer | 360 | 440 | 460 | 480 | |
In Greenhouse Conditions | Actinomycetes | ||||
Sludge without quicklime (CaO) | 0 | 0 | 0 | 0 | 0 |
Sludge + 10% CaO | 0 | 0 | 0 | 0 | |
Sludge + 20% CaO | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 10% CaO | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 0 | 0 | |
Sludge + 30% ash | 0 | 0 | 0 | 0 | |
Sludge + 50% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 30% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 50% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer | 20 | 20 | 20 | 20 | |
In Greenhouse Conditions | Micromycetes | ||||
Sludge without quicklime (CaO) | 700 | 600 | 700 | 680 | 660 |
Sludge + 10% CaO | 300 | 220 | 240 | 260 | |
Sludge + 20% CaO | 100 | 40 | 60 | 60 | |
Sludge + microbial fertilizer + 10% CaO | 400 | 340 | 360 | 380 | |
Sludge + microbial fertilizer + 20% CaO | 170 | 100 | 140 | 160 | |
Sludge + 30% ash | 400 | 480 | 440 | 440 | |
Sludge + 50% ash | 300 | 360 | 340 | 320 | |
Sludge + microbial fertilizer + 30% ash | 500 | 600 | 580 | 560 | |
Sludge + microbial fertilizer + 50% ash | 440 | 500 | 480 | 480 | |
Sludge + microbial fertilizer | 700 | 800 | 760 | 780 | |
In Greenhouse Conditions | Bacteria, Digesting mineral nitrogen | ||||
Sludge without quicklime (CaO) | 1980 | 1920 | 2140 | 2120 | 2080 |
Sludge + 10% CaO | 1780 | 1620 | 1680 | 1720 | |
Sludge + 20% CaO | 1500 | 1320 | 1360 | 1360 | |
Sludge + microbial fertilizer + 10% CaO | 1850 | 1740 | 1780 | 1800 | |
Sludge + microbial fertilizer + 20% CaO | 1580 | 1440 | 1480 | 1480 | |
Sludge + 30% ash | 1820 | 1920 | 1900 | 1880 | |
Sludge + 50% ash | 1700 | 1800 | 1780 | 1780 | |
Sludge + microbial fertilizer + 30% ash | 1900 | 2000 | 1960 | 1960 | |
Sludge + microbial fertilizer + 50% ash | 1820 | 1900 | 1880 | 1860 | |
Sludge + microbial fertilizer | 2060 | 2140 | 2120 | 2100 |
Variants | Before Starting | Day 1, 10 h | 10th Day | 25th Day | 50th Day |
---|---|---|---|---|---|
In Greenhouse Conditions | Escherichia coli and Coliforms | ||||
Sludge without quicklime (CaO) | 2400 | 2400 | 2380 | 2320 | 2300 |
Sludge + 10% CaO | 1200 | 620 | 800 | 1020 | |
Sludge + 20% CaO | 0 | 0 | 60 | 160 | |
Sludge + microbial fertilizer + 10% CaO | 1000 | 540 | 600 | 900 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 20 | 40 | |
Sludge + 30% ash | 1500 | 1040 | 1220 | 1380 | |
Sludge + 50% ash | 800 | 600 | 660 | 680 | |
Sludge + microbial fertilizer + 30% ash | 820 | 700 | 740 | 780 | |
Sludge + microbial fertilizer + 50% ash | 500 | 320 | 380 | 400 | |
Sludge + microbial fertilizer | 1050 | 920 | 900 | 840 | |
In Greenhouse Conditions | Enterococcus sp. | ||||
Sludge without quicklime (CaO) | 2100 | 2100 | 2000 | 1960 | 1920 |
Sludge + 10% CaO | 1000 | 540 | 680 | 800 | |
Sludge + 20% CaO | 0 | 0 | 80 | 180 | |
Sludge + microbial fertilizer + 10% CaO | 880 | 480 | 500 | 560 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 40 | 40 | |
Sludge + 30% ash | 1200 | 960 | 980 | 1000 | |
Sludge + 50% ash | 600 | 440 | 480 | 500 | |
Sludge + microbial fertilizer + 30% ash | 700 | 540 | 560 | 580 | |
Sludge + microbial fertilizer + 50% ash | 340 | 200 | 240 | 280 | |
Sludge + microbial fertilizer | 800 | 680 | 660 | 660 | |
In Greenhouse Conditions | Salmonella sp. | ||||
Sludge without quicklime (CaO) | 0 | 0 | 0 | 0 | 0 |
Sludge + 10% CaO | 0 | 0 | 0 | 0 | |
Sludge + 20% CaO | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 10% CaO | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 0 | 0 | |
Sludge + 30% ash | 0 | 0 | 0 | 0 | |
Sludge + 50% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 30% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer + 50% ash | 0 | 0 | 0 | 0 | |
Sludge + microbial fertilizer | 0 | 0 | 0 | 0 | |
In Greenhouse Conditions | Listeria sp. | ||||
Sludge without quicklime (CaO) | 2000 | 2000 | 1960 | 1940 | 1920 |
Sludge + 10% CaO | 0 | 0 | 40 | 40 | |
Sludge + 20% CaO | 0 | 0 | 0 | 40 | |
Sludge + microbial fertilizer + 10% CaO | 0 | 0 | 20 | 20 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 0 | 20 | |
Sludge + 30% ash | 0 | 0 | 40 | 60 | |
Sludge + 50% ash | 0 | 0 | 20 | 40 | |
Sludge + microbial fertilizer + 30% ash | 0 | 0 | 20 | 40 | |
Sludge + microbial fertilizer + 50% ash | 0 | 0 | 20 | 20 | |
Sludge + microbial fertilizer | 900 | 800 | 700 | 620 | |
In Greenhouse Conditions | Clostridium perfringens | ||||
Sludge without quicklime (CaO) | 4000 | 4000 | 4020 | 4060 | 4080 |
Sludge + 10% CaO | 2000 | 1620 | 1700 | 1720 | |
Sludge + 20% CaO | 0 | 0 | 80 | 120 | |
Sludge + microbial fertilizer + 10% CaO | 400 | 300 | 320 | 360 | |
Sludge + microbial fertilizer + 20% CaO | 0 | 0 | 60 | 100 | |
Sludge + 30% ash | 3000 | 2720 | 2760 | 2800 | |
Sludge + 50% ash | 1800 | 1600 | 1640 | 1680 | |
Sludge + microbial fertilizer + 30% ash | 2600 | 1800 | 1900 | 2100 | |
Sludge + microbial fertilizer + 50% ash | 200 | 120 | 140 | 160 | |
Sludge + microbial fertilizer | 4000 | 4000 | 4000 | 4000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malcheva, B.Z.; Petrov, P.G.; Stefanova, V.V. Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant. Processes 2022, 10, 406. https://doi.org/10.3390/pr10020406
Malcheva BZ, Petrov PG, Stefanova VV. Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant. Processes. 2022; 10(2):406. https://doi.org/10.3390/pr10020406
Chicago/Turabian StyleMalcheva, Boyka Z., Petar G. Petrov, and Veneta V. Stefanova. 2022. "Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant" Processes 10, no. 2: 406. https://doi.org/10.3390/pr10020406
APA StyleMalcheva, B. Z., Petrov, P. G., & Stefanova, V. V. (2022). Microbiological Control in Decontamination of Sludge from Wastewater Treatment Plant. Processes, 10(2), 406. https://doi.org/10.3390/pr10020406