Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nutrient Solution and Digestive Solution
2.2. Preparation of Fecal Inoculation Solution
2.3. Components of the SHIME Model
2.4. Operation of the SHIME Model
2.5. Sequencing Analysis of 16S rRNA Gene Amplicon
2.6. Extraction of CDBPs of Drinking Water
2.7. SCFAs Extraction and Concentration Detection
2.8. Exposure of CDBPs In Vitro
2.9. Statistical Analysis
2.10. Data Deposition
3. Results
3.1. Quantitative Analysis of CDBPs in Treated Water
3.2. Health Effects of CDBPs on Intestinal Microbe Diversity in the SHIME Model
3.3. Health Effects of CDBPs on the Structure of Intestinal Bacteria in the SHIME Model
3.4. Health Effects of CDBPs on SCFA Production by Intestinal Flora in the SHIME Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandrou, L.; Meehan, B.J.; Jones, O.A.H. Regulated and emerging disinfection by-products in recycled waters. Sci. Total Environ. 2018, 637–638, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Tak, S.; Kumar, A. Chlorination disinfection by-products and comparative cost analysis of chlorination and UV disinfection in sewage treatment plants: Indian scenario. Environ. Sci. Pollut. Res. Int. 2017, 24, 26269–26278. [Google Scholar] [CrossRef] [PubMed]
- Sirivedhin, T.; Gray, K.A. 2. Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters. Water Res. 2005, 39, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, T.; Ma, J.; Chen, Z. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. J. Hazard Mater. 2009, 162, 140–145. [Google Scholar] [CrossRef]
- Burch, J.B.; Everson, T.M.; Seth, R.K.; Wirth, M.D.; Chatterjee, S. Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006). Sci. Total Environ. 2015, 521–522, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Krasner, S.W. The formation and control of emerging disinfection by-products of health concern. Philos. Trans. A. Math. Phys. Eng. Sci. 2009, 367, 4077–4095. [Google Scholar] [CrossRef] [Green Version]
- Grellier, J.; Bennett, J.; Patelarou, E.; Smith, R.B.; Toledano, M.B.; Rushton, L.; Briggs, D.J.; Nieuwenhuijsen, M.J. Exposure to disinfection by-products, fetal growth, and prematurity: A systematic review and meta-analysis. Epidemiology 2010, 21, 300–313. [Google Scholar] [CrossRef] [Green Version]
- Wellejus, A.; Dalgaard, M.; Loft, S. Oxidative DNA damage in male Wistar rats exposed to di-n-butyl phthalate. J. Toxicol. Environ. Health A 2002, 65, 813–824. [Google Scholar] [CrossRef]
- Rajaguru, P.; Vidya, L.; Baskarasethupathi, B.; Kumar, P.A.; Palanivel, M.; Kalaiselvi, K. Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutat. Res. 2002, 517, 29–37. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, L.; Jiang, L.; Geng, C.; Li, L.; Shao, J.; Zhong, L. Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chem. Biol. Interact. 2011, 189, 186–191. [Google Scholar] [CrossRef]
- Le Roux, J.; Plewa, M.J.; Wagner, E.D.; Nihemaiti, M.; Dad, A.; Croue, J.P. Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. J. Environ. Sci. 2017, 58, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komaki, Y.; Pals, J.; Wagner, E.D.; Marinas, B.J.; Plewa, M.J. Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products. Environ. Sci. Technol. 2009, 43, 8437–8442. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.S.; Guerreiro, C.S.; Cardoso, V.V.; Benoliel, M.J.; Santos, M.M. Toxicological assessment of seven unregulated drinking water Disinfection By-products (DBPs) using the zebrafish embryo bioassay. Sci. Total Environ. 2020, 742, 140522. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Zhou, S.; Zhu, S.; Wu, Y.; Duan, X.; Shi, Z.; Dionysiou, D.D. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation. Water Res. 2018, 146, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, J.; Li, W.; Zhu, X.; Zhang, X.; Jiang, F. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii. Chemosphere 2020, 252, 126611. [Google Scholar] [CrossRef] [PubMed]
- Ohe, T.; Watanabe, T.; Wakabayashi, K. Mutagens in surface waters: A review. Mutat. Res. 2004, 567, 109–149. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wang, X.; Wong, M.; Sun, G.; An, T.; Guo, J.; Zhang, G. Evaluation of Genotoxic and Mutagenic Activity of Organic Extracts from Drinking Water Sources. PLoS ONE 2017, 12, e0170454. [Google Scholar] [CrossRef] [Green Version]
- Hung, S.; Mohan, A.; Reckhow, D.A.; Godri Pollitt, K.J. Assessment of the in vitro toxicity of the disinfection byproduct 2,6-dichloro-1,4-benzoquinone and its transformed derivatives. Chemosphere 2019, 234, 902–908. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016, 7, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Li, Y.; Li, P.; Wang, M.; Wang, J.; Tang, Z.; Wang, T.; Luo, L.; Wang, C.; Wang, T.; et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed. Pharmacother. 2019, 117, 109138. [Google Scholar] [CrossRef]
- Yan, X.; Jin, J.; Su, X.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Bu, P.; Wang, M.; Zhang, Y.; et al. Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circ. Res. 2020, 126, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.R.; Kuang, G.Y.; Lu, F.G.; Wang, H.X.; Lu, M.; Zhou, Q. Pathological Relationship between Intestinal Flora and Osteoarthritis and Intervention Mechanism of Chinese Medicine. Chin. J. Integr. Med. 2019, 25, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, J.; Jiang, S.Y.; Zhao, K.D.; Duan, D.F. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS. Anal. Chem. 2017, 89, 13415–13421. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, W.; Hua, J.; Hu, C.; Lok-Shun Lai, N.; Qian, P.Y.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. Environ. Sci. Technol. 2018, 52, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, Y.; Hu, C.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ. Pollut. 2018, 234, 307–317. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Choi, J.J.; Eum, S.Y.; Rampersaud, E.; Daunert, S.; Abreu, M.T.; Toborek, M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 2013, 121, 725–730. [Google Scholar] [CrossRef]
- Zhang, L.; Nichols, R.G.; Correll, J.; Murray, I.A.; Tanaka, N.; Smith, P.B.; Hubbard, T.D.; Sebastian, A.; Albert, I.; Hatzakis, E.; et al. Persistent Organic Pollutants Modify Gut Microbiota-Host Metabolic Homeostasis in Mice through Aryl Hydrocarbon Receptor Activation. Environ. Health Perspect. 2015, 123, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, F.; Deng, Y.; Zhao, Y.; Ren, H. Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice. J. Proteome Res. 2015, 14, 1752–1761. [Google Scholar] [CrossRef]
- Zhu, J.; Kong, Y.; Yu, J.; Shao, S.; Mao, M.; Zhao, M.; Yue, S. Consumption of drinking water N-Nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats. Environ. Pollut. 2019, 248, 388–396. [Google Scholar] [CrossRef]
- Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2019; p. 24. [Google Scholar]
- Giuliani, C.; Marzorati, M.; Daghio, M.; Franzetti, A.; Innocenti, M.; Van de Wiele, T.; Mulinacci, N. Effects of Olive and Pomegranate By-Products on Human Microbiota: A Study Using the SHIME((R)) in Vitro Simulator. Molecules 2019, 24, 3791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly, C.; Gay-Queheillard, J.; Leke, A.; Chardon, K.; Delanaud, S.; Bach, V.; Khorsi-Cauet, H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. Environ. Sci. Pollut. Res. Int. 2013, 20, 2726–2734. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, B.; Zhang, X.X.; Liu, S.; Yu, J.; Cheng, S.; Ren, H.Q.; Ye, L. Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. Environ. Sci. Technol. 2016, 50, 7189–7197. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, C.; Marzorati, M.; Innocenti, M.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Van de Wiele, T.; Mulinacci, N. Dietary supplement based on stilbenes: A focus on gut microbial metabolism by the in vitro simulator M-SHIME(R). Food Funct. 2016, 7, 4564–4575. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Marques, R.; Marques, M.; Benoliel, M.J.; Barreto Crespo, M.T. Free chlorine inactivation of fungi in drinking water sources. Water Res. 2013, 47, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Simoes, L.C.; Simoes, M.; Vieira, M.J. Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection. Appl. Environ. Microbiol. 2010, 76, 6673–6679. [Google Scholar] [CrossRef] [Green Version]
- Luh, J.; Marinas, B.J. Inactivation of Mycobacterium avium with free chlorine. Environ. Sci. Technol. 2007, 41, 5096–5102. [Google Scholar] [CrossRef]
- Henao, L.D.; Turolla, A.; Antonelli, M. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere 2018, 213, 25–40. [Google Scholar] [CrossRef]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; De Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef] [Green Version]
- Marteau, P. The clinical importance of intestinal microbiota. Gastroenterol. Clin. Biol. 2010, 34 (Suppl. 1), S93–S97. [Google Scholar] [CrossRef]
- Oyeka, M.; Antony, S. Citrobacter braakii Bacteremia: Case Report and Review of the Literature. Infect. Disord. Drug Targets 2017, 17, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Medina, N.; Barrios-Camacho, H.; Duran-Bedolla, J.; Garza-Ramos, U. Klebsiella variicola: An emerging pathogen in humans. Emerg. Microbes Infect. 2019, 8, 973–988. [Google Scholar] [CrossRef] [Green Version]
- Herridge, W.P.; Shibu, P.; O’Shea, J.; Brook, T.C.; Hoyles, L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J. Med. Microbiol. 2020, 69, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tang, W.; Zhu, S.; Du, M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep. Biochem. Biotechnol. 2018, 48, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 2016, 164, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Li, C.; Wang, S.; Zhao, C.; Dai, K.; Li, W.; Xi, Z.; Wang, J.; Qiu, Z.; Shen, Z. Effects of 2,2-dichloroacetamide (DCAcAm), an emerging disinfection by-product in drinking water, on the intestinal microbiota of adult zebrafish. J. Water Health 2019, 17, 683–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, B.; Dai, K.; Zhang, X.; Wang, S.; Li, C.; Zhao, C.; Yang, X.; Xi, Z.; Qiu, Z.; Shen, Z.; et al. Low-concentration of dichloroacetonitrile (DCAN) in drinking water perturbs the health-associated gut microbiome and metabolic profile in rats. Chemosphere 2020, 258, 127067. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Firrman, J.; Tanes, C.; Bittinger, K.; Thomas-Gahring, A.; Wu, G.D.; Van den Abbeele, P.; Tomasula, P.M. Establishing a mucosal gut microbial community in vitro using an artificial simulator. PLoS ONE 2018, 13, e0197692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, L.; Zeng, Q.; Zhang, S.H.; Xie, H.; Liu, A.L.; Lu, W.Q. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay. Mutat. Res. 2012, 741, 89–94. [Google Scholar] [CrossRef] [PubMed]
Analysis Projects | Water Sample | Detection Result (mg/L) | Detection Limit (mg/L) | Detection Method |
---|---|---|---|---|
Chloroform | XT | 3.4 × 10−3 | 2.5 × 10−3 | HJ620-2011 |
XC | 3.2 × 10−3 | |||
NZ | 3.6 × 10−3 | |||
Distilled water | 3.3 × 10−3 | |||
Dibutyl phthalate | XT | ND | 1 × 10−4 | HJ/T 72-2001 |
XC | ND | |||
NZ | ND | |||
Distilled water | ND | |||
N-nitroso dimethylamine | XT | ND | 6 × 10−4 | HJ 809-2016 |
XC | ND | |||
NZ | ND | |||
Distilled water | ND | |||
N-nitroso diethylamine | XT | 7.7 × 10−3 | 5 × 10−4 | HJ 809-2016 |
XC | 2.8 × 10−3 | |||
NZ | 7.0 × 10−3 | |||
Distilled water | 7.7 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Jiang, Y.; Wu, D.; Li, S.; Wu, Z.; Zhong, Y.; Zhang, L.; Guo, C.; Li, X.; Sun, L.; et al. Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes 2022, 10, 438. https://doi.org/10.3390/pr10030438
Wang D, Jiang Y, Wu D, Li S, Wu Z, Zhong Y, Zhang L, Guo C, Li X, Sun L, et al. Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes. 2022; 10(3):438. https://doi.org/10.3390/pr10030438
Chicago/Turabian StyleWang, Dedong, Yanting Jiang, Di Wu, Shuxue Li, Zhendong Wu, Yi Zhong, Lin Zhang, Chongshan Guo, Xiaotong Li, Lili Sun, and et al. 2022. "Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System" Processes 10, no. 3: 438. https://doi.org/10.3390/pr10030438
APA StyleWang, D., Jiang, Y., Wu, D., Li, S., Wu, Z., Zhong, Y., Zhang, L., Guo, C., Li, X., Sun, L., Li, Q., Zhou, J., & He, W. (2022). Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes, 10(3), 438. https://doi.org/10.3390/pr10030438