
����������
�������

Citation: Huang, B.; Zou, S. A New

Camera Calibration Technique for

Serious Distortion. Processes 2022, 10,

488. https://doi.org/10.3390/

pr10030488

Academic Editors: Piotr Lichota and

Trojnacki Maciej

Received: 23 December 2021

Accepted: 25 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A New Camera Calibration Technique for Serious Distortion
Biao Huang 1,* and Shiping Zou 2

1 College of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
2 College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;

20170852@git.edu.cn
* Correspondence: hbiao2002@git.edu.cn

Abstract: A new camera calibration technique based on serious distortion is proposed, which only
requires the camera to observe the plane pattern in an arbitrary azimuth. It uses the geometrical
imaging principle and radial distortion model to acquire radial lens distortion coefficient and the
image coordinate (u0, v0), and then solves the linear equation aiming at the other parameters of the
camera. This method has the following characteristics: Firstly, the position of the camera and the
plane is arbitrary, and the technique needs only a single observation for plane pattern. Secondly, it is
suitable for camera calibration with serious distortion. Thirdly, it does not need expensive ancillary
equipment, accurate movement, or lots of photos observed from different orientations. Having been
authenticated by computer emulation and actual experiment, the results of the proposed technique
have proved to be satisfactory. The research has also paved a new way in camera calibration for
further studies.

Keywords: camera calibration; flexible plane-based calibration; image restoration; plane pattern;
2D pattern

1. Introduction

Camera calibration is a necessary step in photogrammetry and computer vision,
which plays an important role in many spheres such as 3D-measurement [1], 3D object
reconstruction [2], robot navigation [3], visual surveillance [4], and industrial inspection [5].
Many studies have been conducted in this respect. And the techniques used can be classified
into three categories: traditional camera calibration, active vision camera calibration, and
camera self-calibration.

Traditional calibration. This kind of method uses information to gain parameters of
the camera from the known landscape structure, which requires a calibration block of high
precision. In 1986, Faugeras and Toscani [6] proposed a camera calibration method using
some known points in the space to solve linear equations. Tsai [7] used the two-stage
calibration technique to achieve the efficient computation of a camera’s external position
and orientation. Further studies on two-stage calibration were carried out by Wen [8] and
Gao [9]. These methods are always accurate for camera calibration; however, they do not
fit in every situation.

Active vision camera calibration. This is completed based on the known information
of the precise movement of a camera. Ma [10] exploited a sequence of specially designed
motions, which were two groups of translational motions, to calibrate the camera. On
this foundation, Yang [11] developed a new active vision calibration technique from four
or five groups of the orthogonal motions. In recent years, active vision calibration has
been developed further [12–14], which can easily solve problems and obtain parameters.
This type of camera calibration method usually requires very sophisticated equipment and
therefore calibration equipment is relatively expensive.

Camera self-calibration. This category only depends on the corresponding relationship
among images, and does not need a calibration target, a known landscape structure,
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or the precise movement of the camera. There are two quadratic nonlinear constraints
between two of the images. These constraints are composed of Kruppa equations and are
used to obtain the intrinsic parameters of the camera [15,16]. Faced with the difficulty of
obtaining nonlinear equations, scholars have proposed various methods for self-calibration
of cameras [17–19]. The biggest advantage of the camera self-calibration technique is its
excellent flexibility. Yet the robustness of it is lower and the nonlinear equations have to
be solved.

Besides this, there are some other calibration methods which are calibrated by double
planar mirrors [20], nonlinear optimization [21], feature Points Motions [22], the plane
at infinity [23], invariance of cross-ratio [24], parallel circles [25], image information of
different orientations from plane [26], coplanar camera calibration [27], planar mirrors from
silhouettes [28], and turntable sequences from silhouettes [29].

Currently, camera calibration techniques are mainly focused on industrial cameras
(they do not have severe camera distortion). However, wide-angle cameras (they have
very bad camera distortion) are widely used in a number of specific fields due to the large
field of view image information that can be obtained. An example is fruit tree branch-
pruning robots [30], which require the acquisition of a complete image of a branch at
close range and the identification of the branch to be cut from the overall branch image.
Using a normal camera to capture images often requires multiple image stitches, which
is not only time-consuming but also has a significant impact on stability and accuracy.
Therefore, the use of a wide-angle camera to capture a complete image of the branch
is a good option. Wide-angle camera lenses usually have severe distortion, and using
traditional camera calibration methods to achieve wide-angle camera calibration usually
requires human guidance and a lot of iterative processing to complete the calibration, which
seriously affects the calibration efficiency and accuracy. To address these issues, this paper
proposes a simple, fast, and intelligent wide-angle camera calibration method. The method
is based on a planar target to complete the calibration of the camera. Compared with other
methods, this method is simple to operate, has low equipment requirements, and only
needs to acquire the target image once (traditional calibration based on a flat target requires
multiple image acquisitions), has a small number of iterations (usually only ten), has a short
computation time, and is suitable for the calibration of cameras with severe distortion.

The rest of the paper is organized as follows: Sections 2 and 3 present a method of
obtaining the image coordinate (u0, v0) and correcting the image distortion. In Section 4, we
build the camera model, which includes four parameters, and we obtain all parameters of
the camera. In Section 5, the experimental results are given. Finally, the results are analyzed
and discussed in Section 6.

2. Obtaining the Image Coordinate (u0, v0) and Distortion Coefficients k1 and k2

In this paper, the image coordinate (u0, v0) is the key to the camera calibration, which
can be gained exactly according to the following method.

2.1. Geometrical Deduction of Imaging

In a camera coordinate system, we assume there is an arbitrary line that has four
points marked A, B, C, and D. Their imaging points are marked A′, B′, C′, D′ (see Figure 1a).
In plane xcoczc, H1, H2, H3, H4, P1, P2, P3, and P4 are the projection points of A′, B′, C′, D′,
A, B, C, and D (see Figure 1b).
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Figure 1. The imaging principle of straight line is shown in two ways. In (a), it shows the corre-
sponding relationship between the spatial line AB and the imaging line A′B′. In (b), the correspond-
ing relationship in (Figure 1a) is projected onto the plane XcOcZc. The plane α is the imaging plane. 

As the spatial line AB is in the planar target, we can measure the distance between 
any two points in the line AB. Therefore, we can easily obtain the following ratios: 𝐵𝐶𝐴𝐵 = 𝑚ଵ (1)𝐵𝐷𝐴𝐵 = 𝑚ଶ (2)

For the same line, the ratio of any two line segments does not change in the projection 
surface. According to (1) (2), we have: 𝑃ଶ𝑃ଷ𝑃ଵ𝑃ଶ = 𝑚ଵ (3)𝑃ଶ𝑃ସ𝑃ଵ𝑃ଶ = 𝑚ଶ (4)

In Figure 1b, ZPi (i = 1, 2, 3, 4) and ZHi (i = 1, 2, 3, 4) are used to represent abscissa, while 
XPi (i = 1, 2, 3, 4) and XHi (i = 1, 2, 3, 4) are used to represent ordinate. Then we have: 

⎩⎨
⎧𝑍௉ଷ − 𝑍௉ଶ𝑍௉ଶ − 𝑍௉ଵ = 𝑚ଵ𝑍௉ସ − 𝑍௉ଶ𝑍௉ଶ − 𝑍௉ଵ = 𝑚ଶ (5)

The line P1P4 can be expressed as L1: X = kZ + b. Therefore, the coordinate of Pi (i = 1, 
2, 3, 4) is represented as (ZPi, kZPi + b). To line HiPi, we have the equation of the straight 
line: 𝑋 = kZ௉௜+b𝑍௉௜ 𝑍(𝑖 = 1,2,3,4) (6)

The line H1H4 and X-axis are parallel. Therefore, the line H1H4 can be expressed as L2: 
Z = n. According to (6), the ordinate of Hi (i = 1, 2, 3, 4) is (0, Xi). 𝑋௜ = kZ௉௜+b𝑍௉௜ 𝑛(𝑖 = 1,2,3,4) (7)

From (5) (6) (7), we have 
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 (8) 

As can be seen from (8), the length ratio in the image is different from the actual one 
in the Euclidean Space, and it is related to the coordinate of P1, P2. For the same line, the 
projection won’t change the ratio between the segments. So B′C′/A′B′ = H2H3/H1H2, B′D′/A′B′ 
= H2H4/H1H2. 

The following are transform relations of imaging point and image point. 

Figure 1. The imaging principle of straight line is shown in two ways. In (a), it shows the correspond-
ing relationship between the spatial line AB and the imaging line A′B′. In (b), the corresponding
relationship in (Figure 1a) is projected onto the plane xcoczc. The plane α is the imaging plane.

As the spatial line AB is in the planar target, we can measure the distance between any
two points in the line AB. Therefore, we can easily obtain the following ratios:

BC
AB

= m1 (1)

BD
AB

= m2 (2)

For the same line, the ratio of any two line segments does not change in the projection
surface. According to (1) and (2), we have:

P2P3

P1P2
= m1 (3)

P2P4

P1P2
= m2 (4)

In Figure 1b, ZPi (i = 1, 2, 3, 4) and ZHi (i = 1, 2, 3, 4) are used to represent abscissa,
while XPi (i = 1, 2, 3, 4) and XHi (i = 1, 2, 3, 4) are used to represent ordinate. Then we have:{

ZP3−ZP2
ZP2−ZP1

= m1
ZP4−ZP2
ZP2−ZP1

= m2
(5)

The line P1P4 can be expressed as L1: X = kZ + b. Therefore, the coordinate of Pi (i = 1, 2,
3, 4) is represented as (ZPi, kZPi + b). To line HiPi, we have the equation of the straight line:

X =
kZPi + b

ZPi
Z(i = 1, 2, 3, 4) (6)

The line H1H4 and X-axis are parallel. Therefore, the line H1H4 can be expressed as L2:
Z = n. According to (6), the ordinate of Hi (i = 1, 2, 3, 4) is (0, Xi).

Xi =
kZPi + b

ZPi
n(i = 1, 2, 3, 4) (7)

From (5)–(7), we have { H2 H3
H1 H2

= ZP1m1
(ZP2−ZP1)m1+ZP2

H2 H4
H1 H2

= ZP1m2
(ZP2−ZP1)m2+ZP2

(8)

As can be seen from (8), the length ratio in the image is different from the actual one
in the Euclidean Space, and it is related to the coordinate of P1, P2. For the same line,
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the projection won’t change the ratio between the segments. So B′C′/A′B′ = H2H3/H1H2,
B′D′/A′B′ = H2H4/H1H2.

The following are transform relations of imaging point and image point.{
u− u0 = αxx
v− v0 = αyy

(9)

From (8) and (9), we can find:{ uC−uB
uB−uA

= vC−vB
vB−vA

= ZP1m1
(ZP2−ZP1)m1+ZP2

uD−uB
uB−uA

= vD−vB
vB−vA

= ZP1m2
(ZP2−ZP1)m2+ZP2

(10)

2.2. Calculation of the Ideal Image Coordinates without Distortion

In this paper, the actual image coordinates have serious distortion. However, the ideal
image coordinates are very close to the actual image coordinates in the vicinity of (u0, v0),
which is located near the center of the image. We try to make these points (A, B, C) near the
center of the image when taking pictures. Point D is far away from point C and closest to
the edge of the image. The image coordinates of A, B, and C are regarded as the ideal image
coordinates without distortion, and are used in calculations. Because of the restriction in
(10), we can find the relationship between ZP1 and ZP2.

ZP2 = λZp1 with λ =
(uC − uA)m1

(uC − uB)(m1 + 1)
(11)

From (10) and (11), we can obtain the provisional value of the ideal and undistorted
image coordinates of point D.  u′D = (uB−uA)m2

(λ−1)m2+λ
+ uB

v′D = (vB−vA)m2
(λ−1)m2+λ

+ vB
(12)

Therefore, by using the above method, we can use some (at least three) line segments
to obtain the ideal and undistorted image coordinates, which are on the edge of the image,
marked (u′i, v′i) (i = 1, 2, 3, . . . ).

2.3. Solving the Coordinate (u0, v0) and Distortion Coefficients k1 and k2

Camera lens aberration is mainly radial aberration. It to the optical axis centre point
image coordinates as a reference point, and with the image point to the distance of the
reference point into a non-linear relationship. Assuming that the camera in the image hori-
zontal and vertical axis direction of the same aberration, the camera lens radial aberration
model is as follows. {

u− u0 = (u′ − u0)(1 + k1r2 + k2r4)
v− v0 = (v′ − v0)(1 + k1r2 + k2r4)

(13)

The (u, v) is an actual image coordinate, the (u0, v0) is the image coordinate of the
central point of the optical axis, and the (u′, v′) is an ideal and undistorted image coordinate.
k1, k2 are the second and fourth order radial distortion coefficients, respectively. Besides,
r2 = (u′ − u0)2 + (v′ − v0)2. Using Equation (13), a number of distortion-free ideal image
coordinates can be found. Substituting any two distortion-free ideal image coordinates
(u′j4, v′j4), (u

′
k4, v′k4) and the corresponding actual image coordinates (uj4, vj4), (uk4, vk4) into

Equations (4)–(7), where j, k = 1, 2, 3, . . .
uj4 − u0 = (u′j4 − u0)(1 + k1r2

j4 + k2r4
j4)

vj4 − v0 = (v′j4 − v0)(1 + k1r2
j4 + k2r4

j4)

uk4 − u0 = (u′k4 − u0)(1 + k1r2
k4 + k2r4

k4)
vk4 − v0 = (v′k4 − v0) (1 + k1r2

k4 + k2r4
k4

) (14)
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In Equation (14), rj4 =
√
(u′j4 − u0)

2 + (v′j4 − v0)
2, rk4 =

√
(u′k4 − u0)

2 + (v′k4 − v0)
2,

Solving for these yields.

u0 = −
(uj4v′j4−vj4u′j4)(u

′
k4−uk4)−(u′j4−uj4)(uk4v′k4−u′k4vk4)

(vj4−v′j4)(u
′
k4−uk4)−(u′j4−uj4)(vk4−v′k4)

v0 = −
(uj4v′j4−vj4u′j4)(vk4−v′k4)−(vj4−v′j4)(uk4v′k4−u′k4vk4)

(u′j4−uj4)(vk4−v′k4)−(vj4−v′j4)(u
′
k4−uk4)

k1 =

[
(uj4−u′j4)r

2
k4

(u′j4−u0)r2
j4
−

(uk4−u′k4)r
2
j4

(u′k4−u0)r2
k4

]
1

(r2
k4−r2

j4)

k2 =

[
uj4−u′j4

(u′j4−u0)r2
j4
− uk4−u′k4

(u′k4−u0)r2
k4

]
1

(r2
j4−r2

k4)

(15)

These values of the parameters are only preliminary. However, putting them into
(13), we can rectify the ideal and undistorted image coordinates, which is near the center
of the image and considered identical with the actual image coordinates. The ideal and
undistorted image coordinates of the points away from the central are obtained again, and
are used for the calculation of the parameters.

In order to obtain more accurate image coordinates of the optical axis center point
and aberration coefficient, more ideal image points without aberration need to be used, by
combining two and two, and then using Equation (15) to find the parameters respectively. In
order to ensure the stability of the parameters, the parameters can be obtained several times
using different combinations and eventually obtaining the mean value of each parameter.
The mean value of each parameter is obtained as follows.

u0 = 1
n

n
∑

q=1
u0q

v0 = 1
n

n
∑

q=1
v0q

k1 = 1
n

n
∑

q=1
k1q

k2 = 1
n

n
∑

q=1
k2q

(16)

In Equation (16), u0q, v0q, k1q, and k2q denote the value of the parameter for the qth
combination, while u0, v0, k1, and k2 denote the average value of each parameter. Since
there is a difference between the actual image coordinates of the image point in the middle
of the image and the ideal image coordinates without distortion, according to Equation (12),
the actual image coordinates of the image point in the middle of the image need to be
corrected, and the corrected image coordinates are used to find the ideal image coordinates
without distortion away from the image center. Therefore, the actual image coordinates of
u0, v0, k1, k2 and the actual image coordinates of the image point in the middle of the image
(uA, vA), (uB, vB) and (uC, vC) are substituted into Equation (13) to find the distortion-free
ideal image coordinates (u′A, v′A), (u

′
B, v′B), and (u′C, v′C). The above distortion-free ideal

image coordinates are then used to obtain the coordinates of the distortion-free ideal image
points (u′D, v′D) away from the center of the image again. The average parameter values
are obtained again using Equations (15) and (16). In order to obtain the exact parameters,
several cycles are required until the parameters converge.

3. Image Distortion Correction

Because of the image distortion, it is difficult to make exact image information analysis.
In view of this, we believe image correction is very necessary. From (13), we know that it is
a dual higher order equation. Therefore, solving the ideal undistorted coordinates (u, v)
directly is very difficult. According to u0, v0, k1, k2, and the image resolution ratio, we can
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estimate the coordinate range of the ideal and undistorted image points. In this range, an
actual point corresponds to one or more ideal points. Thus, (13) is rewritten as follows.{

u = (u′ − u0)(1 + k1r2 + k2r4) + u0
v = (v′ − v0)(1 + k1r2 + k2r4) + v0

(17)

The ideal and undistorted image points in estimated coordinate range are put into
(17) in a certain order. Thus, we can obtain a series of real image coordinates. The ideal
and undistorted image coordinates (1, 1), (1, 2) . . . (m, n) are used to calculate in (17), so
the real image coordinates (u1, v1), (u2, v2) . . . (um, vn) are obtained. In other words, the
corresponding ideal and undistorted image points of the real image coordinates (u1, v1),
(u2, v2) . . . (um, vn) are found. In this way, one or more ideal and undistorted image points
can correspond with a real image point. Therefore, this method is very simple without any
additional processing.

4. Getting Other Parameters of Camera

An image point is denoted by [u, v]T, and the corresponding spatial point in the
camera coordinate system is expressed as [xc, yc, zc]T. Min is the matrix of camera intrinsic
parameters. Then we have

zc

 u
v
1

 = Min

 xc
yc
zc

 with Min =

 kx 0 u0
0 ky v0
0 0 1

 (18)

In the world coordinate system, the 3D point can be expressed as [xw, yw, zw]T. Because
of the planar target, we assume: zw = 0. The cMw is the matrix of camera external parameters.

zc

 u
v
1

 = Min
cMw

 xw
xy
1

 with cMw =

 nx ox px
ny oy py
nz oz pz

 (19)

From (19), the results of calculation are as follows:

zc

 u
v
1

 = M

 xw
xy
1

 with M =

 kxnx + nzu0 kxox + ozu0 kx px + pzu0
kyny + nzv0 kyoy + ozv0 ky py + pzv0

nz oz pz

 (20)

We assume:

M =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 (21)

According to (20) and (21), we can obtain the following equations:
zcu = m11xw + m12yw + m13
zcv = m21xw + m22yw + m23
zc = m31xw + m32yw + m33

(22)

From (22), through the elimination of zc, we have{
m11xw + m12yw + m13 − um31xw − um32yw = um33
m21xw + m22yw + m23 − vm31xw − vm32yw = vm33

(23)
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We can use (xwi, ywi, 0) and (ui, vi) to represent the scene point in the world coordinate
and image coordinate, and each of these points satisfies the Equation (23). Therefore, if there
are n points, we will get the following equations set, which is composed of 2 × n equations:

Am = m33B (24)

In (24), with A =


xw1 yw1 1 0 0 0 −u1xw1 −u1yw1
0 0 0 xw1 yw1 1 −v1xw1 −v1xw1
...

...
...

...
...

...
...

...
xwn ywn 1 0 0 0 −unxwn −unywn

0 0 0 xwn ywn 1 −vnxwn −vnxwn

,

B = [ u1 v1 · · · un vn ]
T , m =

[
m11 m12 m13 m21 m22 m23 m31 m32

]T

When M′ = m/m33, (24) can be changed into (25).

AM′ = B (25)

Using the least square method, we have

M′ = (ATA)
−1

ATB (26)

The aij (i, j = 1, 2, 3) is used to represent the elements in the matrix M′. We have:
aij = mij/m33. Using the relationship between (20) and (21), we can find aij = mij/pz and
obtain the following equations. 

nx
pz

= a11−a31u0
kxny

pz
= a21−a31v0

ky
ox
pz

= a12−a32u0
kxoy

pz
= a22−a32v0

ky

(27)

Because the vectors [nx, ny, nz]T and [ox, oy, oz]T are unit vectors and orthogonal to
each other. We have: 

n2
x + n2

y + n2
z = 1

o2
x + o2

y + o2
z = 1

nxox + nyoy + nzoz = 0
(28)

From (28), we can make an appropriate deformation.
( nx

pz
)2 + (

ny
pz
)

2
+ ( nz

pz
)2 = ( 1

pz
)

2

( ox
pz
)2 + (

oy
pz
)

2
+ ( oz

pz
)2 = ( 1

pz
)

2

( nx
pz
)( ox

pz
) + (

ny
pz
)(

ny
pz
) + ( nz

pz
)( oz

pz
) = 0

(29)

Putting (27) into (29), we have
A1

2x + B1
2y− z + a2

31 = 0
A2

2x + B2
2y− z + a2

32 = 0
A1 A2x + B1B2y + a31a32 = 0

(30)

In (30), x = (1/kx)2, y = (1/ky)2, z = (1/pz)2, A1 = a11 − a31u0, B1 = a21 − a31v0,
A2 = a12 − a32u0, B2 = a22 − a32v0. Because |D| 6= 0, we have: x

y
z

 = −D−1

 a2
31

a2
32

a31a32

 with D =

 A2
1 B2

1 −1
A2

2 B2
2 −1

A1 A2 B1B2 0

 (31)
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As the values of u0, v0 and M′ have been calculated in (15) and (26), putting these
values into (31), we can obtain the values of x, y, and z. According to the camera imaging
characteristics, we know the values of kx, ky, and pz are greater than zero. Therefore, it is
not difficult to obtain the values of kx, ky, and pz by (30).

kx = 1/
√

x
ky = 1/

√
y

pz = 1/
√

z
(32)

From (19) and (20), we can get the following relationship.

Min
cMw = M (33)

The matrix Min and matrix cMw are intrinsic and extrinsic parameter matrixes of the
camera. The matrix Min contains four parameters, which are obtained in (15) and (32).
Because the matrix Min has an inverse matrix, the intrinsic matrix cMw can be expressed
as follows:

cMw = M−1
in M (34)

Based on the above derivation, the method described in this paper focuses on obtaining
the ideal coordinates without distortion by means of the central reference point of the image
and the projection principle, thus obtaining the parameters u0, v0, k1, k2 and ultimately the
other parameters of the camera. This is shown in Figure 2.
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5. Experiments
5.1. Experimental Equipment

The main equipment for the ultra-wide-angle camera calibration experiments consisted
of a Dell Inspion N4030 laptop, an ultra-wide-angle HD camera from Ryota Technology, a
multi-square flat target calibration board, a fill light, a correction board, etc., as shown in
the Figure 3. Figure 3a shows the laptop and the super wide angle camera, which are used
for computer calibration processing and image acquisition, respectively. Figure 3b shows
the multi-square flat target calibration board, which is the flat target for super wide angle
camera calibration. Figure 3c shows the fill light, which is used for fill light processing
when the target image is acquired. Figure 3d shows the aberration correction board, which
is used for aberration correction experiments.
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Figure 3. This is the equipment used for calibration, where (a–d) are the experimental laptop and
wide-angle camera, flat target, fill light, and correction plate, respectively.

5.2. Ultra-Wide-Angle Camera Calibration Process

The ultra-wide-angle camera calibration experiment consisted of the following processes.

(1) Prepare a flat board of targets with equally spaced black squares.
(2) The image of the target is captured at 1280 × 1024 pixels, as shown in Figure 4a.
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(3) The coordinates of the centroid of each black square in the target image were obtained
using computer processing. In addition, a circular area is created with the centre of
the image as the centre and 100 pixel points as the radius, and the coordinates of
the centroids of all black squares within the circular area are obtained, as shown in
Figure 4b.

(4) The computer is used to find the combination of three points that satisfy in the same
line, and to determine all other points on the same line that are far from the center
of the image. Using Equation (12) to find the furthest ideal image coordinate points
from the center without distortion, the image points found are shown in Figure 4b as
A′14, A′24, A′34 and A′44.

(5) Combine the image points A′14, A′24, A′34 and A′44 in two according to Equation (15)
to find the image coordinates (u0, v0) and the distortion coefficients k1 and k2. The
values of u0, v0, k1 and k2 are then obtained according to the obtained parameters
using Equation (16).

(6) Using the average parameter values obtained, the image points on the line involved
in the calculation are corrected according to Equation (17).

(7) Repeat the steps 4, 5, and 6 until the desired parameters converge.
(8) The camera is calibrated by using Equations (32)–(34) to find the other parameters of

the camera based on the image coordinates of the optical axis center point and the
distortion coefficient obtained.

(9) The distorted image is corrected using the camera parameters acquired in step 8.
(10) The camera calibration parameters were verified using the Zhang Zhengyou flat

calibration method [26].

5.3. Results of Experiments

According to Equation (12) we can obtain the distortion-free ideal point image coor-
dinates, and the relevant calculation results are shown in Table 1.We can easily find that
the distortion-free ideal image coordinates of A′14, A′24, A′34 and A′44 gradually smooth out
with the increase of the number of iterations. Using Equations (15) and (16), the u0, v0, k1
and k2 are found, as shown in Figure 5. According to the convergence relationship between
the image coordinates of the distortion-free ideal point at the edge of the image, the image
coordinates of the center point of the optical axis, the distortion coefficient and the number
of iterations, it can be seen that u0, v0, k1 and k2 can be obtained exactly after only five
iterations of calculation, so the whole processing process is very fast.

Table 1. The relationship between coordinate parameters and iterations.

Number of
Iterations

A
′
14 A

′
24 A

′
34 A

′
44

u
′
14 v

′
14 u

′
24 v

′
24 u

′
34 v

′
34 u

′
44 v

′
44

1 53.91 −92.53 1145.24 −35.25 1130.92 1048.54 142.65 1061.38
2 24.83 −123.48 1143.43 −31.78 1116.75 1033.76 135.73 1070.73
3 31.52 −116.36 1144.05 −32.74 1120.17 1037.26 136.99 1068.96
4 30.25 −117.72 1143.98 −32.59 1119.48 1036.58 136.78 1069.24
5 30.48 −117.50 1143.97 −32.60 1119.58 1036.62 136.80 1069.21
6 30.45 −117.51 1143.93 −32.61 1119.58 1036.67 136.80 1069.26
7 30.45 −117.51 1143.93 −32.61 1119.58 1036.67 136.80 1069.26
8 30.45 −117.51 1143.93 −32.61 1119.58 1036.67 136.80 1069.26
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The final camera internal reference matrix Min and external reference matrix cMw were
obtained from the ultra-wide-angle camera calibration experiments as follows.

Min =

 kx 0 u0
0 ky v0
0 0 1

 =

 2279.10 0 647.30
0 2759.30 542.05
0 0 1

 (35)

cMw =

 nx ox px
ny oy py
nz oz pz

 =

 −0.9938 −0.0970 −56.0231
0.0953 −0.9949 −54.2775
−0.0577 0.0277 239.7322

 (36)

In this paper, the image correction is carried out according to the requested aberration
coefficient and the image coordinates of the optical axis center point, and a good correction
effect is obtained, as shown in Figure 6. This shows that the calibration method described
in this paper has certain engineering application value.

A comparison of the camera parameters obtained in this paper with those obtained
using Zhang’s calibration method is shown in Table 2. The comparison shows that the
values obtained are consistent, indicating that the algorithm described in this paper is
able to obtain more accurate camera parameters. Therefore, the calibration method for
ultra-wide-angle cameras proposed in this paper has strong application value and can be
further applied in industry and agriculture.
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Table 2. Comparison of the camera parameters with different algorithms.

Parameters Algorithms in This Paper Zhang’s Algorithm Relative Error

u0 647.30 646.81 0.08%
v0 542.05 540.23 0.34%
k1 −5.9035 × 10−7 −5.9325 × 10−7 0.44%
k2 2.3674 × 10−13 2.3891 × 10−13 0.91%
kx 2279.10 2283.04 0.17%
ky 2759.30 2770.13 0.39%

6. Conclusions

In this paper, we have proposed a new calibration method, which is obviously different
from others. In the experiment, this method has been tested from different observation
angles and distances, and the results were satisfactory. Beginning with a few points in the
center of the image, whose distortion is weaker, more accurate experimental data can be
ensured. Therefore, the position of the planar plane is very important. In the experiment
and simulation, the ratios of length are both D1B1:C1B1:B1A1 = 5.5:1:1 and are considered
reasonable in the experiment. To obtain accurate data, more points are added in the planar
plane, and repeated experiments have been carried out.

This method is suitable for a camera with obvious distortion, and only requires the
camera to take one picture in a certain position. In addition, the algorithm described in this
paper requires only one image acquisition for the entire calibration process, and after the
image is acquired, no manual identification or guidance is required, and the ultra-wide-
angle camera calibration can be automated by a computer program. In addition, only
the aberration parameters and the image coordinates of the optical axis center point are
iteratively calculated during the calculation process, and the number of iterations is low,
making the whole calibration process faster than Zhang’s calibration method. As can be
seen, the specific advantages of the algorithm proposed in this paper include the following.

(1) Only one image acquisition of the target is required.
(2) No expensive ancillary equipment is required and it is highly adaptable.
(3) High calibration progress within 1% relative error.
(4) Rapid calibration.

Therefore, the algorithm proposed in this paper has strong application value and is
suitable for promotion in the field of robot vision in agriculture and industry.
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