Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Shrinking the Red and Blue -LEDs and the Mobility Distribution of the Blue -LEDs
3.2. Influences of Random Alloy Potential Fluctuations, Piezoelectric Field, and p–n Layer Mobility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.; Sher, C.W.; Lin, Y.; Lee, C.F.; Liang, S.; Lu, Y.; Huang Chen, S.W.; Guo, W.; Kuo, H.C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hsiang, E.L.; Deng, M.Y.; Wu, S.T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light. Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Virey, E.H.; Baron, N. 45-1: Status and Prospects of microLED Displays. In Proceedings of the SID Symposium Digest of Technical Papers, Los Angeles, CA, USA, 20–25 May 2018; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 49, pp. 593–596. [Google Scholar]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Boussadi, Y.; Rochat, N.; Barnes, J.P.; Bakir, B.B.; Ferrandis, P.; Masenelli, B.; Licitra, C. Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application. J. Lumin. 2021, 234, 117937. [Google Scholar] [CrossRef]
- Zhmakin, A.I. Enhancement of light extraction from light emitting diodes. Phys. Rep. 2011, 498, 189–241. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Huang, K.; Liu, G.; Zhou, Y.; Cai, D.; Zhang, R.; Kang, J. Designs of InGaN Micro-LED Structure for Improving Quantum Efficiency at Low Current Density. Nanoscale Res. Lett. 2021, 16, 99. [Google Scholar] [CrossRef]
- Wong, M.S.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. High efficiency of III-nitride and AlGaInP micro-light-emitting diodes using atomic layer deposition. In Proceedings of the Light-Emitting Devices, Materials, and Applications XXV; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11706, p. 117060B. [Google Scholar]
- Zhou, S.; Cao, B.; Liu, S. Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED. Appl. Phys. A 2011, 105, 369–377. [Google Scholar] [CrossRef]
- Horng, R.H.; Chien, H.Y.; Chen, K.Y.; Tseng, W.Y.; Tsai, Y.T.; Tarntair, F.G. Development and fabrication of AlGaInP-based flip-chip micro-LEDs. IEEE J. Electron Devices Soc. 2018, 6, 475–479. [Google Scholar] [CrossRef]
- Sinha, S.; Tarntair, F.G.; Ho, C.H.; Wu, Y.R.; Horng, R.H. Investigation of Electrical and Optical Properties of AlGaInP Red Vertical Micro-Light-Emitting Diodes With Cu/Invar/Cu Metal Substrates. IEEE Trans. Electron Devices 2021, 68, 2818–2822. [Google Scholar] [CrossRef]
- Kim, T.; Leisher, P.O.; Danner, A.J.; Wirth, R.; Streubel, K.; Choquette, K.D. Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED. IEEE Photonics Technol. Lett. 2006, 18, 1876–1878. [Google Scholar]
- Wong, M.S.; Kearns, J.A.; Lee, C.; Smith, J.M.; Lynsky, C.; Lheureux, G.; Choi, H.; Kim, J.; Kim, C.; Nakamura, S.; et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express 2020, 28, 5787–5793. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.Y.; Shin, D.S.; Shim, J.I. Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material. Appl. Phys. Lett. 2012, 100, 131109. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.; Gu, E.; Chen, Z.; Sun, Y.; Zhang, G.; Dawson, M.D.; Liu, R. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays. Opt. Express 2016, 24, 699–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akasaki, I. Key inventions in the history of nitride-based blue LED and LD. J. Cryst. Growth 2007, 300, 2–10. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, J. Nitride micro-LEDs and beyond-a decade progress review. Opt. Express 2013, 21, A475–A484. [Google Scholar] [CrossRef]
- Wierer, J.J., Jr.; Tansu, N. III-Nitride Micro-LEDs for Efficient Emissive Displays. Laser Photonics Rev. 2019, 13, 1900141. [Google Scholar] [CrossRef]
- Hwang, D.; Mughal, A.; Pynn, C.D.; Nakamura, S.; DenBaars, S.P. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express 2017, 10, 032101. [Google Scholar] [CrossRef]
- Shen, H.T.; Weisbuch, C.; Speck, J.S.; Wu, Y.R. Three-Dimensional Modeling of Minority-Carrier Lateral Diffusion Length Including Random Alloy Fluctuations in (In, Ga) N and (Al, Ga) N Single Quantum Wells. Phys. Rev. Appl. 2021, 16, 024054. [Google Scholar] [CrossRef]
- der Maur, M.A.; Pecchia, A.; Di Carlo, A. Influence of random alloy fluctuations in InGaN/GaN quantum wells on LED efficiency. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 153–156. [Google Scholar]
- Der Maur, M.A.; Pecchia, A.; Penazzi, G.; Rodrigues, W.; Di Carlo, A. Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations. Phys. Rev. Lett. 2016, 116, 027401. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.J.; Shivaraman, R.; Speck, J.S.; Wu, Y.R. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior. J. Appl. Phys. 2014, 116, 113104. [Google Scholar] [CrossRef]
- Ho, C.H.; Speck, J.S.; Weisbuch, C.; Wu, Y.R. Efficiency and Forward Voltage of Blue and Green Lateral LEDs with V-defects in Quantum Wells. Phys. Rev. Appl. 2022, 17, 014033. [Google Scholar] [CrossRef]
- Li, C.K.; Wu, Y.R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs. IEEE Trans. Electron Devices 2011, 59, 400–407. [Google Scholar] [CrossRef]
- Wu, Y.R.; Singh, M.; Singh, J. Sources of transconductance collapse in III-V nitrides-consequences of velocity-field relations and source/gate design. IEEE Trans. Electron Devices 2005, 52, 1048–1054. [Google Scholar] [CrossRef]
- Chin, H.; Cheng, I.; Li, C.; Wu, Y.; Chen, J.; Lu, W.; Lee, W. Electrical properties of modulation-doped rf-sputtered polycrystalline MgZnO/ZnO heterostructures. J. Phys. D Appl. Phys. 2011, 44, 455101. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, A.; Pecchia, A.; Di Carlo, A.; Auf der Maur, M. Simulating random alloy effects in III-nitride light emitting diodes. J. Appl. Phys. 2020, 128, 041102. [Google Scholar] [CrossRef]
- Chen, H.H.; Speck, J.S.; Weisbuch, C.; Wu, Y.R. Three dimensional simulation on the transport and quantum efficiency of UVC-LEDs with random alloy fluctuations. Appl. Phys. Lett. 2018, 113, 153504. [Google Scholar] [CrossRef]
- Oh, J.T.; Lee, S.Y.; Moon, Y.T.; Moon, J.H.; Park, S.; Hong, K.Y.; Song, K.Y.; Oh, C.; Shim, J.I.; Jeong, H.H.; et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 2018, 26, 11194–11200. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Y.; Liu, Z.; Ma, J.; Lau, K.M. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2015, 106, 181110. [Google Scholar] [CrossRef]
- Masui, H.; Nakamura, S.; DenBaars, S.P.; Mishra, U.K. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Trans. Electron Devices 2009, 57, 88–100. [Google Scholar] [CrossRef]
Epi-Layer | p-GaN | p-AlGaN | p-GaN Cladding Layer | GaN QB/InGaN QW | n-GaN Cladding Layer | n-GaN |
---|---|---|---|---|---|---|
Thickness (nm) | 140 | 20 | 10 | 10/3 | 10 | 2500 |
Bandgap (eV) | 3.437 | 3.7194 | 3.437 | 3.437/2.8724 | 3.437 | 3.437 |
Doping ( cm) | 30 | 20 | 2 | 0.01/0.01 | 5 | 5 |
Activation energy (meV) | 180 | 264 | 180 | 25/25 | 25 | 25 |
coefficient ( cm/s) | 2 | 2 | 2 | 2/2 | 2 | 2 |
coefficient ( cm/s) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
(ns) | 100 | 100 | 100 | 100 | 100 | 100 |
(ns) | 100 | 100 | 100 | 100 | 100 | 100 |
at sidewall (ns) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
at sidewall (ns) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Epi-Layer | p-GaP | p-AlGaInP | i-AlGaInP QB/QW | n-AlGaInP | n-GaAs |
---|---|---|---|---|---|
Thickness (nm) | 2500 | 600 | 9/9 | 3500 | 100 |
Bandgap (eV) | 2.26 | 2.21 | 2.21/1.97 | 2.21 | 1.42 |
Doping ( cm) | 1 | 1 | ... | 1 | 1 |
Activation energy (meV) | 20 | 12.3 | ... | 12.3 | 10 |
coefficient ( cm/s) | 0.01 | 8.25 | (8.25/6.50) | 8.25 | 70 |
coefficient ( cm/s) | 1 | 1 | 1 | 1 | 1 |
(ns) | 100 | 100 | 100 | 100 | 100 |
(ns) | 100 | 100 | 100 | 100 | 100 |
at sidewall (ns) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
at sidewall (ns) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Parameter/Case Number | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
---|---|---|---|---|---|---|
Piezoelectric effect | Yes ⇒ No | No | No | No | No | No |
Fluctuation | Yes | Yes ⇒ No | No | No | No | No |
mobility in QWs (cm/Vs) | 150 | 150 | 150 ⇒ 4500 | 4500 | 4500 | 4500 |
mobility in QWs (cm/Vs) | 10 | 10 | 10 ⇒ 190 | 190 | 190 | 190 |
effective mass in QWs () | 0.157 | 0.157 | 0.157 | 0.157 ⇒ 0.0832 | 0.0832 | 0.0832 |
effective mass in QWs () | 1.82 | 1.82 | 1.82 | 1.82 ⇒ 0.576 | 0.576 | 0.576 |
effective mass in QWs () | 0.1338 | 0.1338 | 0.1338 | 0.1338 ⇒ 0.131 | 0.131 | 0.131 |
mobility in QBs (cm/Vs) | 350 | 350 | 350 | 350 | 350 ⇒ 4000 | 4000 |
mobility in QBs (cm/Vs) | 10 | 10 | 10 | 10 | 10 ⇒ 180 | 180 |
mobility in n layer (cm/Vs) | 350 | 350 | 350 | 350 | 350 | 350 ⇒ 4000 |
mobility in p layer (cm/Vs) | 10 | 10 | 10 | 10 | 10 | 10 ⇒ 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-H.; Chen, S.-M.; Wu, Y.-R. Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs. Processes 2022, 10, 489. https://doi.org/10.3390/pr10030489
Ho C-H, Chen S-M, Wu Y-R. Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs. Processes. 2022; 10(3):489. https://doi.org/10.3390/pr10030489
Chicago/Turabian StyleHo, Cheng-Han, Shih-Min Chen, and Yuh-Renn Wu. 2022. "Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs" Processes 10, no. 3: 489. https://doi.org/10.3390/pr10030489
APA StyleHo, C. -H., Chen, S. -M., & Wu, Y. -R. (2022). Study of the Factors Limiting the Efficiency of Vertical-Type Nitride- and AlInGaP-Based Quantum-Well Micro-LEDs. Processes, 10(3), 489. https://doi.org/10.3390/pr10030489