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Abstract: The k-nearest neighbor (kNN) method only uses samples’ paired distance to perform fault
detection. It can overcome the nonlinearity, multimodality, and non-Gaussianity of process data.
However, the nearest neighbors found by kNN on a data set containing a lot of outliers or noises
may not be actual or trustworthy neighbors but a kind of pseudo neighbor, which will degrade
process monitoring performance. This paper presents a new fault detection scheme using the mutual
k-nearest neighbor (MkNN) method to solve this problem. The primary characteristic of our approach
is that the calculation of the distance statistics for process monitoring uses MkNN rule instead of
kNN. The advantage of the proposed approach is that the influence of outliers in the training data
is eliminated, and the fault samples without MkNNs can be directly detected, which improves
the performance of fault detection. In addition, the mutual protection phenomenon of outliers is
explored. The numerical examples and Tenessee Eastman process illustrate the effectiveness of the
proposed method.

Keywords: k-nearest neighbor; outliers; pseudo-neighbors; mutual nearest neighbor; fault detection;
process monitoring

1. Introduction

Data are being generated all the time in industrial processes. Since industry became
a separate category from social production, data collection and use in industrial produc-
tion has gradually increased. In this context, data-driven multivariate statistical process
monitoring (MSPM) methods have developed leaps and bounds [1,2], where principal com-
ponent analysis (PCA) methods are the most widely used [3–6]. However, there are cases
where PCA-based fault detection methods do not perform well. For example, the detection
threshold of Hotelling-T2 and squared prediction error (SPE) are calculated based on the
premise that process variables satisfy a normal or Gaussian distribution. Due to the nonlin-
earity, non-Gaussianity, and multimodality in industrial processes, it is not easy to meet this
assumption in practice [7–11]. Therefore, the traditional PCA-based process monitoring
method has poor monitoring performance when facing the above problems [12–16].

He and Wang [11] proposed a non-parametric lazy fault detection method based on
the k-nearest neighbor rule (FD-kNN) to deal with the above problems. The main idea is
to measure the difference between samples by distance; that is the online normal samples
and training samples are similar, but fault samples and training samples are significantly
different. It only uses samples’ paired distance to perform fault detection and has no strict
requirements for data distribution. Hence, this method provide an alternative way to
overcome the nonlinearity, non-Gaussianity, multimodality in industrial processes.

However, the data collected in the actual industrial process usually contain a certain
amount of noise and even outliers, and the quality of the data cannot be guaranteed [17,18].
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Outliers are generally those samples that are far from the normal training samples and
tend to behave statistically inconsistent with the other normal samples [19,20]. In the actual
industrial processes, outliers are usually introduced when measurement or recording errors
are made. In addition, the considerable process noise is also one of the main reasons for the
generation of outliers [20].

The neighbors of the samples found by kNN from a data set containing noises or
outliers may not be actual neighbors but a pseudo-nearest neighbor (PNN). For example,
in Figure 1, the samples x2, x3, and x4 are the 3-NNs of x1, but sample x1 is not one of the
3-NNs of x2, x3, and x4. In other words, x2, x3, and x4 are the PNNs of x1. This interesting
phenomenon can be explained with an example from human interaction: I regard you
as one of my best friends, but I am not among your best friends. As can be seen from
Figure 1, the sample x1 is far away from its pseudo-neighbors so that the detection threshold
calculated by the pseudo-neighbors in the training phase will have a significant deviation,
which will seriously degrade the detection performance of the FD-kNN.
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Figure 1. Samples x1, y1, z1, p1 and their 3-nearest neighbors.

While there are many techniques for removing outliers, these data preprocessing meth-
ods make the model building extraordinarily time-consuming and labor-intensive [21,22].

In this paper, a novel fault detection method using the mutual kNN rule (FD-MkNN) is
proposed. Finding nearest neighbors using the mutual k-nearest neighbor rule will exclude
the influence of PNNs (see Section 2.2.1 for the definition of mutual k-nearest neighbor
(MkNN)). Before the model is established, the outliers in the training set are eliminated by
the MkNN method, and the data quality for monitoring is improved. In the stage of fault
detection, if the test sample does not have mutual neighbors, it is judged to be faulty. For
test samples with mutual neighbors, the corresponding distance statistics are calculated
to perform process monitoring. Compared with the FD-kNN, MkNN uses more valuable
and truthful information (i.e., neighbors of the sample’s neighbors), which improves the
performance of process monitoring. The main contributions of this paper are as follows:

• To our best knowledge, the MkNN method is proposed to perform fault detection of
industrial processes with outliers for the first time;

• The proposed method simultaneously realizes the elimination of outliers and the
fault detection;

• The mutual protection problem of outliers is solved.

This paper will proceed as follows. In Section 2, the FD-kNN method is first briefly
reviewed and then the proposed FD-MkNN approach is presented in detail. In Section 3,
the experiments on numerical examples and Tenessee Eastman process (TEP) illustrate
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the superiority of the proposed monitoring method. Sections 4 and 5 are Discussion and
Conclusions, respectively.

2. Methods
2.1. Process Monitoring Based on kNN Rule

The kNN method is widely used in pattern classification due to its simplicity. In
December 2006, the top ten classic algorithms in data mining included kNN. FD-kNN
was first proposed by He and Wang [11]. The main principle is to measure the difference
between samples by distance; that is, normal samples and training samples are similar, but
fault samples and training samples are significantly different.

• Training phase (determine the detection control limit):

(1) Use Euclidean distance to get the kNNs of each training sample.

dp,q =
∥∥xp − xq

∥∥, p = 1, . . . , n, q 6= p (1)

(2) Calculate the distance statistic D2
p.

D2
p =

1
k

k

∑
q=1

d2
p,q (2)

where D2
p represents the average squared distance between the pth sample and its

k neighbors, d2
p,q denotes the squared Euclidean distance between the pth sample

and its qth nearest neighbor.
(3) Establish the control limit D2

α for fault detection. There are many ways to esti-
mate D2

α, such estimation using a noncentral chi-square distribution [11], kernel
density estimation (KDE). The method proposed in this paper uses the (1− α)-
empirical [23] quartile of D2

p as the threshold.

D2
α = D2

(bn(1−α)c) (3)

• Detection phase:

(1) For a sample x to be tested, find its kNNs from the training set.
(2) Calculate D2

x between x and its k neighbors using Equation (2).
(3) Compare D2

x with the threshold D2
α. If D2

x > D2
α, x is considered abnormal.

Otherwise, it is normal.

2.2. Fault Detection Based on Mutual kNN Method

Since the nearest neighbors found by the kNN rule in the training set containing
outliers may be pseudo-nearest neighbors, the fault detection threshold seriously deviates
from the average level, resulting in the degradation or even failure of the monitoring
performance of FD-kNN. To overcome the above problems, the concept of the mutual k-
nearest neighbor (MkNN) is introduced. This section first defines MkNN and then provides
the detailed steps of the proposed fault detection method.

2.2.1. MkNN

The MkNN of sample x can be defined by Equation (4). Given a sample x, if x has xi
in its kNNs, xi should also have x in its kNNs [18]. According to the above definition, in
Figure 1, M3(x1) = Φ, M3(y1) = {y2}, M3(z1) = {z2, z3} and M3(p1) = {p2, p3, p4}.

Mk(x) = {xi ∈ D|xi ∈ Nk(x) ∧ x ∈ Nk(xi)} (4)
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where Nk(x) denotes the kNNs of x, Nk(xi) represent the kNNs of xi. If Mk(x) = Φ, that is,
x does not exist mutual kNNs. In other words, the kNNs of x are all pseudo-neighbors,
and x is an outlier.

2.2.2. Proposed Fault Detection Scheme Based on Mutual kNN Method (FD-MkNN)

Before the model was established, outliers in the training set were eliminated by the
MkNN method. This improves the data quality for modeling. In the fault detection stage,
the relationship between samples was determined by looking for mutual nearest neighbors.
If a test sample did not have mutual neighbors, this test sample was judged to be faulty. For
test samples with mutual neighbors, the corresponding distance statistics were calculated
to perform process monitoring. Compared with the kNN method, the proposed method
uses more valuable and truthful information, improving fault detection performance. The
flow chart of the proposed fault detection method is shown in Figure 2.

Remove sample x from training  

set X if                     ，return Y 

as the final traing data

 Find MkNNs for each 

sample in Y

Calculate their MkNN 

average squared distance

Determine the threshold      of 

the MkNN average squared 

distance

A testing sample z

Determine whether 

z has MkNNs in  Y?

Calculate its MkNN 

average squared

distance 

Part 1: Model Building

Yes

No

Part 2:Fault Detection

z is labeled as normal

Yes

No

z is labeled as fault

 

( )kM = x

2D

2

zD

2 2 ?zD D

Figure 2. Flow chart of proposed fault detection method.

• Model building:

(1) Finding MkNNs for each sample in the training data set X. Eliminate the training
samples that do not have any MkNNs in X using Equation (4). For example, if
Mk(x) = Φ, remove sample x from X and return Y as the final training data.

(2) Calculate the MkNN average squared distance statistics of each sample in Y using
Equation (2).

(3) Determine the threshold D2
α for fault detection using Equation (3).

• Fault detection:

(1) For a sample z to be tested, determine whether z has MkNNs in Y using
Equation (4).

(2) If z has no MkNNs, z is judged as a fault sample; otherwise, go to the next step.
(3) Calculate D2

z between z and its MkNNs using Equation (2).
(4) Compare D2

z with the threshold D2
α. If D2

z > D2
α, z is considered faulty. Otherwise,

z is detected as a normal sample.

2.3. Remarks

• If x is in the q1th nearest neighbor of y, y is in the q2th nearest neighbor of x and
k = max(q1, q2), x is the kth MNN of y and y is the kth MNN of x [24].

• The number of kNNs of sample x is k, and the number of MkNNs of x is an integer
between [0, k]. Therefore, the average cumulative distance is used to calculate the
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distance statistics. The values of k in the outlier elimination process and fault detection
stages are different, denoted as k1 and k2, respectively. The k1 and k2 are chosen
according to the best cross-validation [11]. Since the value of k is more significant, the
probability that the sample has MkNNs is higher. Therefore, MkNN can more easily
identify outliers when the value of k1 is generally smaller than k2.

3. Results

In this section, numerical examples and TEP are used to explore the effectiveness of the
proposed method in fault detection. In addition, the mutual protection phenomenon of out-
liers is explored and solved using the elbow method to improve the detection performance
of FD-MkNN.

3.1. Numerical Simulation

The number of generated training samples is 300. The outliers follow the Gaussian
with mean 2 and variance 2 [25], the proportion of outliers compared to the training samples
is set to 0%, 1%, 2%, 3%, 4%, and 5%, respectively. In addition, there are 100 testing samples,
of which the first 50 samples are normal, and the rest are faulty.

x =t1 + e1,

y =t2 + e2 (5)

where ti, i = 1, 2 is a latent variable with zero mean and unit variance, and ei, i = 1, 2 is a
zero-mean noise with variance 10−4.

FD-kNN is first applied to detect the faults in the data set. The number of nearest
neighbors is 3. At the confidence level of 99%, the detection result is shown in Figure 3.
It can be seen that, as the proportion of outliers increases, the detection performance of
the FD-kNN method degrades seriously. As shown in Table 1, when the ratio of outliers
is 5%, the fault detection rates (FDR) of the FD-kNN approach is only 20.00%. Due to
outliers in the training samples, part of the neighbors of the samples found using kNN rule
in the training phase are pseudo-neighbors. These pseudo-neighbors seriously affect the
determination of the control threshold (that is, the control limit will be much greater than
the average level) and result in poor fault detection performance.

For FD-MkNN, the parameters k1 and k2 are set to 3 and 5, respectively. At the same
confidence level (that is, 99%), the detection result is shown in Figure 4. As shown in
Table 1, when the proportion of outliers increases from 0 to 2%, the detection performance
of the FD-MkNN method is not significantly affected, and the FDR always remains above
90%. When the proportion of outliers increases from 2% to 5%, the FDR of the FD-MkNN
method is significantly reduced but the FDR is always better than that of FD-kNN.

The false alarm rates (FAR) of the two methods are shown in Table 2 (Note that the
FAR is obtained based on the normal training samples). Due to outliers, the control limit or
threshold of the FD-kNN method seriously deviates from the average level. Therefore, the
FAR of the FD-kNN method is all zero.

The reason why the fault detection superiority of the FD-MkNN is better than that of
the FD-kNN is as follows:

• Before the training phase, part of the outliers in the training samples are removed
so that the outliers will not affect the determination of the control limit in the train-
ing phase;

• In the fault detection phase, MkNN carries more valuable and reliable information
than kNN. Furthermore, the effect of PNN is eliminated.
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Figure 3. Fault detection performance of FD-kNN for the numerical example with different propor-
tions of outliers. (a) no outlier; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%.
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Figure 4. Fault detection performance of FD-MkNN for the numerical example with different
proportions of outliers. (a) no outlier; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (f) 5%.
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Table 1. Fault detection rates (FDR) (%) of FD-kNN and FD-MkNN for the numerical example.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 100.00 98.00 74.00 62.00 46.00 20.00
FD-MkNN 100.00 100.00 94.00 84.00 80.00 76.00

Table 2. False alarm rates (FAR) (%) of FD-kNN and FD-MkNN for the numerical example.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.00 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.00 2.00 4.00 4.00 0.00 2.00

3.1.1. Experimental Results of FD-MkNN with Different Values of k

The values of k in the outlier elimination and fault detection stages are different and
can be denoted as k1 and k2, respectively. The larger the value of k, the higher the probability
that the query sample finds its mutual neighbors. Therefore, MkNN can more easily identify
outliers when the value of k1 is generally smaller than k2. However, the value of k1 cannot
be too small because the MkNN method will misidentify the normal training samples as
outliers and eliminate them. For example, as shown in Table 3, when the value of k1 is
set to 1, the MkNN method will eliminate all 300 training samples (the actual proportion
of outliers introduced is 5%), resulting in the failure of the MkNN fault detection stages.
As the value of k1 increases, the number of outliers removed decreases, which makes the
monitoring threshold deviate from the normal level, and the FDR decreases seriously.

Table 3. Fault detection results of MkNN with different values of k for the numerical example.

k1 k2 The Number of Outliers Removed FDR FAR

1 3 300 - -
3 5 33 98.00 4.00
5 7 5 86.00 0.00
7 9 2 64.00 0.00
9 11 1 52.00 0.00

3.1.2. Mutual Protection Phenomenon of Outliers

As shown in Figure 5, when two outliers are relatively close, an interesting phe-
nomenon will appear: they will become each other’s mutual nearest neighbors. Therefore,
the MkNN rule cannot identify them as outliers. For example, in Figure 5, b1, b2, and b3
are protected by 1, 2, and 3 outliers, respectively. When the outliers far from the normal
training samples are kept in the training set due to mutual protection, it will cause the
threshold or control limit calculated in the training phase to deviate seriously from the
average level. We call this phenomenon the “Mutual Protection of Outliers (MPO)”, which
is also the main reason why the detection performance of the FD-MkNN method decreases
when the proportion of outliers increases from 2% to 5%.

It can be observed from Figure 5 that, for outliers with mutual protection, the corre-
sponding MkNN distance statistic is significantly larger than that of the normal training
sample. Therefore, the elbow method [26] is used to eliminate outliers with mutual protec-
tion: first, arrange the MkNN distance statistics of the training samples in descending order,
then determine all samples before the elbow position as outliers with mutual protection,
and finally eliminate these outliers from the training set.

As shown in Figure 6, the outliers with mutual protection can be identified according
to the elbow method, that is, all samples before the elbow point. After determining the
outliers with mutual protection, these outliers need to be removed from the training set.
Finally, the process monitoring method was repeated. The detection results are shown in
Figure 7. After eliminating outliers with mutual protection, the recalculated threshold (that
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is, the red dotted line in Figure 7) is more reasonable, and the FDR has reached 100.00%, as
shown in Table 4.

1b
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Figure 5. Mutual protection of outliers (MPO) (triangles represent outliers).
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Figure 6. The descent curve of distance statistic for the numerical example with different proportions
of outliers. (a) 2%; (b) 3%; (c) 4%; (d) 5%.
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Figure 7. Fault detection performance of FD-MkNN of the numerical example that eliminates outliers
with mutual protection phenomenon. (a) 2%; (b) 3%; (c) 4%; (d) 5%.

Table 4. FDR (%) and FAR (%) of FD-MkNN of the numerical example that eliminates outliers with
mutual protection phenomenon.

2% Outliers 3% Outliers 4% Outliers 5% Outliers

FDR 100.00 100.00 100.00 100.00
FAR 4.00 2.00 4.00 4.00

3.2. The Tennessee Eastman Process

When comparing the performance or effectiveness of process monitoring methods,
the TEP [27] is a benchmark choice. In [28,29], Downs and Vogel proposed the simulation
platform. There are five major operating units in the TEP, namely, a product stripper, a
recycle compressor, a vapor–liquid separator, a product condenser, and a reactor. The
process has four kinds of reactants (A, C, D, E), two products (G, H), contains catalyst
(B), and byproducts (F). There are 11 manipulated variables (No.42–No.52), 22 process
measurements (No.1–No.22), and 19 composition variables (No.23–No.41). For detailed
information on the 52 monitoring variables and 21 fault patterns, see ref. [27]. The flowchart
of the process is given in Figure 8.

The number of training samples and the number of validation samples are 960 and
480, respectively. In addition, there are 960 testing samples where the fault is introduced
from the 161st sample. To simulate the situation that the training data contains outliers,
outliers whose magnitude is twice the normal data are randomly added to the training
data. The thresholds of different methods are all calculated at a confidence level of 99%.
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Figure 8. Flowchart of Tennessee Eastman process.

These three faults are chosen to demonstrate the effectiveness of the proposed method.
The parameter k of FD-kNN is 3. The parameters k1 and k2 of FD-MkNN are 42 and 45,
respectively. For the FD-MkNN method, the outliers with mutual protection phenomenon
are first eliminated by the elbow method, as shown in Figure 9.

According to [29,30], fault 1 is a step fault with a significant amplitude change. When
fault 1 occurs, eight process variables are affected.

Figures 10 and 11 are the monitoring results of fault 1 by FD-kNN and FD-MkNN,
respectively. As the proportion of outliers increases, the detection results of kNN and
MkNN for fault 1 are not significantly affected. For example, the FDR of MkNN for fault 1
remains at 99.00%, as shown in Table 5. Because fault 1 is a step fault with a significant
amplitude change, the outliers introduced in this experiment are insignificant in the face
of this fault. Although these outliers also deviate the control limits from normal levels,
they do not have much impact on the fault detection phase. The fault false alarm rate of
FD-kNN and FD-MkNN is shown in Table 6.

The fault 7 is also a step fault, but its magnitude changes are small, and only one
process variable (i.e., variable 45) is affected.

Figures 12 and 13 are the monitoring results of fault 7 by FD-kNN and FD-MkNN,
respectively. As shown in Table 7, as the proportion of outliers increases, the FDR of
FD-kNN drops from 100.00% to 18.75%, while the FDR of FD-MkNN does not decrease
significantly and remains above 90.00%. The fault false alarm rate of FD-kNN and FD-
MkNN is shown in Table 8.

According to the detection results of fault 1 and fault 7, it can be seen that FD-MkNN
is suitable for the processing of incipient faults. Because outliers will significantly increase
the threshold, the detection statistic of incipient faults is lower than the threshold. The
proposed method eliminates outliers by judging whether the samples have MkNNs, thereby
improving the fault detection performance.

Fault 13 is a slow drift in the reaction kinetics. Figures 14 and 15 are the monitoring
results of fault 13 by FD-kNN and FD-MkNN, respectively. In Tables 9 and 10, as the
proportion of outliers increases, the FDR of the FD-MkNN is always better than that of
FD-kNN, while the FAR is higher than that of kNN. Due to the appearance of outliers, the
threshold of the kNN is increased so the FAR of FD-kNN is always 0.00%.
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Figure 9. The descent curve of distance statistic for the TEP with different proportions of outliers.
(a) 1%; (b) 2%; (c) 3%; (d) 4%; (e) 5%.

Table 5. FDR (%) of FD-kNN and FD-MkNN for fault 1 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 99.50 98.75 98.50 98.75 98.50 98.50
FD-MkNN 99.50 99.00 99.00 99.00 99.00 99.00
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Figure 10. Fault detection results of FD-kNN for fault 1 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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Figure 11. Fault detection results of FD-MkNN for fault 1 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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Figure 12. Fault detection results of FD-kNN for fault 7 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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Figure 13. Fault detection results of FD-MkNN for fault 7 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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Figure 14. Fault detection results of FD-kNN for fault 13 of TEP. (a) no outlier; (b) 1%; (c) 2%; (d) 3%;
(e) 4%; (f) 5%.
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Figure 15. Fault detection results of FD-MkNN for fault 13 of TEP. (a) no outlier; (b) 1%; (c) 2%;
(d) 3%; (e) 4%; (f) 5%.
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Table 6. FAR (%) of FD-kNN and FD-MkNN for fault 1 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.63 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.63 0.00 0.00 0.00 0.00 0.00

Table 7. FDR (%) of FD-kNN and FD-MkNN for fault 7 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 100.00 79.75 25.25 25.25 20.38 18.75
FD-MkNN 100.00 99.63 97.63 94.75 93.63 92.75

Table 8. FAR (%) of FD-kNN and FD-MkNN for fault 7 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 0.00 0.00 0.00 0.00 0.00 0.00
FD-MkNN 0.00 0.00 0.00 0.00 0.00 0.00

Table 9. FDR (%) of FD-kNN and FD-MkNN for fault 13 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 95.38 90.50 84.88 85.00 82.25 80.25
FD-MkNN 95.38 92.75 91.88 91.63 91.75 92.00

Table 10. FAR (%) of FD-kNN and FD-MkNN for fault 13 of TEP.

Method No Outlier 1% Outliers 2% Outliers 3% Outliers 4% Outliers 5% Outliers

FD-kNN 1.25 0.00 0.00 0.00 0.00 0.00
FD-MkNN 1.25 0.63 0.63 0.63 0.63 0.63

4. Discussion

The neighbors of the samples found by kNN on a data set containing outliers may not
be true neighbors, but a kind of pseudo neighbor. If such pseudo-nearest neighbors are
used to calculate the threshold, the threshold or control limit will deviate significantly from
the normal level, thereby degrading the fault detection performance.

The MkNN method determines outliers through checking whether the samples have
MkNNs, which simultaneously realizes the elimination of outliers and the fault detection
by using the same rule. Through the detection of fault 1 and fault 7 in the TEP, it can be
seen that the FD-MkNN has obvious advantages for detecting incipient faults because the
incipient faults are more sensitive to outliers.

This work stresses the superiority and promise of the MkNN rule for fault detection,
especially for industrial processes with outliers. The MkNN-method-based fault isolation
or diagnosis part is currently underway.

5. Conclusions

In this paper, a novel fault detection approach based on the mutual k-nearest neighbor
method is proposed. The primary characteristic of our method is that the calculation of the
distance statistics for fault detection uses the MkNN rule instead of kNN. The proposed
method simultaneously realizes the elimination of outliers and the fault detection using
Mutual kNN rule. Specifically, before the training phase, part of the outliers in the training
samples are removed so that the outliers will not affect the determination of the control
limit in the training phase; in the fault detection phase, MkNN carries more valuable and
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reliable information than kNN. Furthermore, the effect of PNN is eliminated. Furthermore,
the mutual protection problem of outliers is solved using the elbow rule, which improves
the performance of fault detection. The experiments on numerical examples and TEP verify
the effectiveness of the proposed method.

The proposed FD-MkNN can be seen as an alternative method in monitoring the
industrial processes with outliers. In addition, the MkNN method based fault isolation or
diagnosis part is currently underway.
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