Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Fingerprint Study
2.2. Molecular Similarity
2.3. Docking Studies
2.4. Molecular Dynamic Simulations
3. Methods
3.1. Molecular Similarity Detection
3.2. Fingerprint Studies
3.3. Docking Studies
3.4. Molecular Dynamics Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Ciociola, A.A.; Cohen, L.B.; Kulkarni, P.; Kefalas, C.; Buchman, A.; Burke, C.; Cain, T.; Connor, J.; Ehrenpreis, E.D.; Fang, J.; et al. How drugs are developed and approved by the FDA: Current process and future directions. Am. J. Gastroenterol. 2014, 109, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Wobst, H.J. A decade of FDA-approved drugs (2010–2019): Trends and future directions. J. Med. Chem. 2021, 64, 2312–2338. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019, 40, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hagler, A. Chemoinformatics and drug discovery. Molecules 2002, 7, 566–600. [Google Scholar] [CrossRef]
- Engel, T. Basic overview of chemoinformatics. J. Chem. Inf. Model. 2006, 46, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021, 137, 104851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pei, J.; Lai, L. Computational multitarget drug design. J. Chem. Inf. Model. 2017, 57, 403–412. [Google Scholar] [CrossRef]
- Youssef, M.I.; Zhou, Y.; Eissa, I.H.; Wang, Y.; Zhang, J.; Jiang, L.; Hu, W.; Qi, J.; Chen, Z. Tetradecyl 2,3-dihydroxybenzoate alleviates oligodendrocyte damage following chronic cerebral hypoperfusion through IGF-1 receptor. Neurochem. Int. 2020, 138, 104749. [Google Scholar] [CrossRef]
- Zhong, F.; Xing, J.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Lu, D.; Wu, X.; Zhao, J.; Tan, X.; et al. Artificial intelligence in drug design. Sci. China Life Sci. 2018, 61, 1191–1204. [Google Scholar] [CrossRef]
- Hagras, M.; El Deeb, M.A.; Elzahabi, H.S.A.; Elkaeed, E.B.; Mehany, A.B.M.; Eissa, I.H. Discovery of new quinolines as potent colchicine binding site inhibitors: Design, synthesis, docking studies, and anti-proliferative evaluation. J. Enzym. Inhib. Med. Chem. 2021, 36, 640–658. [Google Scholar] [CrossRef]
- Eissa, I.H.; Dahab, M.A.; Ibrahim, M.K.; Alsaif, N.A.; Alanazi, A.; Eissa, S.I.; Mehany, A.B.; Beauchemin, A.M. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg. Chem. 2021, 112, 104965. [Google Scholar] [CrossRef]
- Eissa, I.H.; El-Helby, A.-G.A.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; El Sohly, M.A.; et al. Discovery of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem. 2020, 105, 104380. [Google Scholar] [CrossRef]
- El-Adl, K.; El-Helby, A.-G.A.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Elnagar, H.A.; Mehany, A.B.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; et al. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg. Med. Chem. 2021, 29, 115872. [Google Scholar] [CrossRef]
- El-Helby, A.-G.A.; Ayyad, R.R.A.; El-Adl, K.; Sakr, H.; Abd-Elrahman, A.A.; Eissa, I.H.; Elwan, A. Design, molecular docking and synthesis of some novel 4-acetyl-1-substituted-3,4-dihydroquinoxalin-2(1H)-one derivatives for anticonvulsant evaluation as AMPA-receptor antagonists. Med. Chem. Res. 2016, 25, 3030–3046. [Google Scholar] [CrossRef]
- Kairys, V.; Baranauskiene, L.; Kazlauskiene, M.; Matulis, D.; Kazlauskas, E. Binding affinity in drug design: Experimental and computational techniques. Expert Opin. Drug Discov. 2019, 14, 755–768. [Google Scholar] [CrossRef]
- Al-Warhi, T.; El Kerdawy, A.M.; Aljaeed, N.; Ismael, O.E.; Ayyad, R.R.; Eldehna, W.M.; Abdel-Aziz, H.A.; Al-Ansary, G.H. Synthesis, biological evaluation and in silico studies of certain oxindole–indole conjugates as anticancer CDK inhibitors. Molecules 2020, 25, 2031. [Google Scholar] [CrossRef]
- Suleimen, Y.M.; Metwaly, A.M.; Mostafa, A.E.; Elkaeed, E.B.; Liu, H.-W.; Basnet, B.B.; Suleimen, R.N.; Ishmuratova, M.Y.; Turdybekov, K.M.; Van Hecke, K. Isolation, crystal structure, and in silico aromatase inhibition activity of ergosta-5, 22-dien-3β-ol from the Fungus Gyromitra esculenta. J. Chem. 2021, 2021, 5529786. [Google Scholar] [CrossRef]
- March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol. 2017, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Suleimen, Y.M.; Jose, R.A.; Suleimen, R.N.; Arenz, C.; Ishmuratova, M.Y.; Toppet, S.; Dehaen, W.; Alsfouk, B.A.; Elkaeed, E.B.; Eissa, I.H.; et al. Jusanin, a New Flavonoid from Artemisia commutata with an In Silico Inhibitory Potential against the SARS-CoV-2 Main Protease. Molecules 2022, 27, 1636. [Google Scholar] [CrossRef]
- Mikherdov, A.S.; Katkova, S.A.; Novikov, A.S.; Efremova, M.M.; Reutskaya, E.Y.; Kinzhalov, M.A.J.C. (Isocyano group)⋯lone pair interactions involving coordinated isocyanides: Experimental, theoretical and CSD studies. CrystEngComm 2020, 22, 1154–1159. [Google Scholar] [CrossRef]
- Baykov, S.V.; Mikherdov, A.S.; Novikov, A.S.; Geyl, K.K.; Tarasenko, M.V.; Gureev, M.A.; Boyarskiy, V.P. π–π noncovalent interaction involving 1,2,4- and 1,3,4-oxadiazole systems: The combined experimental, theoretical, and database study. Molecules 2021, 26, 5672. [Google Scholar] [CrossRef]
- El-Metwally, S.A.; Abou-El-Regal, M.M.; Eissa, I.H.; Mehany, A.B.; Mahdy, H.A.; Elkady, H.; Elwan, A.; Elkaeed, E.B. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg. Chem. 2021, 112, 104947. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Eissa, I.H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Alasmari, A.F.; Albassam, H.; Elkady, H.; Elwan, A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J. Enzym. Inhib. Med. Chem. 2021, 36, 1760–1782. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Elwan, A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Taghour, M.S.; Eissa, I.H. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: Design, synthesis, and in silico studies. J. Enzym. Inhib. Med. Chem. 2021, 36, 1732–1750. [Google Scholar] [CrossRef]
- Alsaif, N.A.; Taghour, M.S.; Alanazi, M.M.; Obaidullah, A.J.; Al-Mehizia, A.A.; Alanazi, M.M.; Aldawas, S.; Elwan, A.; Elkady, H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J. Enzym. Inhib. Med. Chem. 2021, 36, 1093–1114. [Google Scholar] [CrossRef]
- Alsaif, N.A.; Dahab, M.A.; Alanazi, M.M.; Obaidullah, A.J.; Al-Mehizia, A.A.; Alanazi, M.M.; Aldawas, S.; Mahdy, H.A.; Elkady, H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg. Chem. 2021, 110, 104807. [Google Scholar] [CrossRef]
- El-Adl, K.; Ibrahim, M.-K.; Alesawy, M.S.; Eissa, I.H. [1,2,4]triazolo[4,3-c]quinazoline and bis([1,2,4]triazolo)[4,3-a:4′,3′-c]quinazoline derived DNA intercalators: Design, synthesis, in silico ADMET profile, molecular docking and anti-proliferative evaluation studies. Bioorg. Med. Chem. 2021, 30, 115958. [Google Scholar] [CrossRef]
- Nesterov, P.; Shilovskikh, V.; Sokolov, A.; Gurzhiy, V.; Novikov, A.; Timralieva, A.; Belogub, E.; Kondratyuk, N.; Orekhov, N.; Skorb, E. Encapsulation of rhodamine 6G dye molecules for affecting symmetry of supramolecular crystals of melamine-barbiturate. Symmetry 2021, 13, 1119. [Google Scholar] [CrossRef]
- Imoro, N.; Shilovskikh, V.V.; Nesterov, P.V.; Timralieva, A.A.; Gets, D.; Nebalueva, A.; Lavrentev, F.V.; Novikov, A.S.; Kondratyuk, N.D.; Orekhov, N.D.; et al. Biocompatible pH-degradable functional capsules based on melamine cyanurate self-assembly. ACS Omega 2021, 6, 17267–17275. [Google Scholar] [CrossRef] [PubMed]
- Alesawy, M.; Abdallah, A.; Taghour, M.; Elkaeed, E.; Eissa, I.H.; Metwaly, A. In silico studies of some isoflavonoids as potential candidates against COVID-19 targeting human ACE2 (hACE2) and viral main protease (Mpro). Molecules 2021, 26, 2806. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, A.; Metwaly, A.M.; Hassan, A.; El-Aziz, A.; Mohamed, T.; Elkaeed, E.B.; Eissa, I.H.; Arafa, R.K.; Stockand, J.D. Comprehensive virtual screening of the antiviral potentialities of marine polycyclic guanidine alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021, 11, 460. [Google Scholar] [CrossRef]
- Jalmakhanbetova, R.I.; Suleimen, Y.M.; Oyama, M.; Elkaeed, E.B.; Eissa, I.H.; Suleimen, R.N.; Metwaly, A.M.; Ishmuratova, M.Y. Isolation and in silico anti-COVID-19 main protease (Mpro) activities of flavonoids and a sesquiterpene lactone from Artemisia sublessingiana. J. Chem. 2021, 2021, 5547013. [Google Scholar] [CrossRef]
- Eissa, I.H.; Khalifa, M.M.; Elkaeed, E.B.; Hafez, E.E.; Alsfouk, A.A.; Metwaly, A.M. In silico exploration of potential natural inhibitors against SARS-CoV-2 nsp10. Molecules 2021, 26, 6151. [Google Scholar] [CrossRef]
- Alesawy, M.S.; Elkaeed, E.B.; Alsfouk, A.A.; Metwaly, A.M.; Eissa, I. In silico screening of semi-synthesized compounds as potential inhibitors for SARS-CoV-2 papain-like protease: Pharmacophoric features, molecular docking, ADMET, toxicity and DFT studies. Molecules 2021, 26, 6593. [Google Scholar] [CrossRef]
- Schneider, G.; Tanrikulu, Y.; Schneider, P. Self-organizing molecular fingerprints: A ligand-based view on drug-like chemical space and off-target prediction. Future Med. Chem. 2009, 1, 213–218. [Google Scholar] [CrossRef]
- Vidal, D.; Garcia-Serna, R.; Mestres, J. Ligand-based approaches to in silico pharmacology. In Methods in Pharmacology and Toxicology; Springer Science and Business Media LLC: Berlin, Germany, 2010; Volume 672, pp. 489–502. [Google Scholar]
- Briem, H.; Kuntz, I.D. Molecular similarity based on DOCK-generated fingerprints. J. Med. Chem. 1996, 39, 3401–3408. [Google Scholar] [CrossRef]
- Willett, P. Similarity searching using 2D structural fingerprints. Methods Pharmacol. Toxicol. 2010, 672, 133–158. [Google Scholar]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Chu, H.; He, Q.-X.; Wang, J.; Hu, Y.; Wang, Y.-Q.; Lin, Z.-H. In silico design of novel benzohydroxamate-based compounds as inhibitors of histone deacetylase 6 based on 3D-QSAR, molecular docking, and molecular dynamics simulations. New J. Chem. 2020, 44, 21201–21210. [Google Scholar] [CrossRef]
- Ieritano, C.; Campbell, J.L.; Hopkins, W.S. Predicting differential ion mobility behaviour in silico using machine learning. Analyst 2021, 146, 4737–4743. [Google Scholar] [CrossRef]
- Taha, M.; Ismail, N.H.; Ali, M.; Rashid, U.; Imran, S.; Uddin, N.; Khan, K.M. Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorg. Chem. 2017, 71, 192–200. [Google Scholar] [CrossRef]
- Heikamp, K.; Bajorath, J. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. J. Chem. Inf. Model. 2011, 51, 2254–2265. [Google Scholar] [CrossRef]
- Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep. 2021, 11, 4049. [Google Scholar] [CrossRef]
- Duan, J.; Dixon, S.L.; Lowrie, J.F.; Sherman, W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010, 29, 157–170. [Google Scholar] [CrossRef]
- Sastry, M.; Lowrie, J.F.; Dixon, S.L.; Sherman, W. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 2010, 50, 771–784. [Google Scholar] [CrossRef]
- Kogej, T.; Engkvist, O.; Blomberg, A.N.; Muresan, S. Multifingerprint based similarity searches for targeted class compound selection. J. Chem. Inf. Model. 2006, 46, 1201–1213. [Google Scholar] [CrossRef]
- Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. Molecular similarity in medicinal chemistry: Miniperspective. J. Med. Chem. 2014, 57, 3186–3204. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Mukherjee, P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin. Drug Discov. 2015, 11, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Turchi, M.; Cai, Q.; Lian, G. An evaluation of in-silico methods for predicting solute partition in multiphase complex fluids—A case study of octanol/water partition coefficient. Chem. Eng. Sci. 2019, 197, 150–158. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Enoch, S.J.; Ezendam, J.; Sewald, K.; Roggen, E.L. Cochrane, an adverse outcome pathway for sensitization of the respiratory tract by low-molecular-weight chemicals: Building evidence to support the utility of in vitro and in silico methods in a regulatory context. Appl. In Vitro Toxicol. 2017, 3, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Altamash, T.; Amhamed, A.; Aparicio, S.; Atilhan, M. Effect of hydrogen bond donors and acceptors on CO2 absorption by deep eutectic solvents. Processes 2020, 8, 1533. [Google Scholar] [CrossRef]
- Wan, Y.; Tian, Y.; Wang, W.; Gu, S.; Ju, X.; Liu, G. In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs using docking-based 3D-QSAR, molecular dynamics, and pharmacophore modeling approaches. RSC Adv. 2018, 8, 40529–40543. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Gutiérrez, A.; Ribas-Aparicio, R.M.; Córdova-Espinoza, M.G.; Castelán-Vega, J.A. In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets. Nucleosides Nucleotides Nucleic Acids 2021, 40, 798–807. [Google Scholar] [CrossRef]
- Kaushik, A.C.; Kumar, A.; Bharadwaj, S.; Chaudhary, R.; Sahi, S. Ligand-Based Approach for In-Silico Drug Designing; Springer Science and Business Media: Berlin, Germany, 2018; pp. 11–19. [Google Scholar]
- Jain, A.N. Morphological similarity: A 3D molecular similarity method correlated with protein-ligand recognition. J. Comput. Mol. Des. 2000, 14, 199–213. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, J.-X.; Ma, J.-X.; Ding, L. Development of an in silico prediction model for chemical-induced urinary tract toxicity by using naïve Bayes classifier. Mol. Divers. 2019, 23, 381–392. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, S.; Lu, D.; Yang, J.; Zeng, H.; Zhang, F.; Tu, D.; Ge, G.; Zheng, Y.; Shi, T.; et al. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 2021, 85, 153315. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Yang, X.-B.; Huang, Z.-M.; Liu, H.-Z.; Wu, G.-X. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol. Sin. 2007, 28, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Um, J.-Y.; Hong, S.-H.; Lee, J.-Y. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am. J. Chin. Med. 2011, 39, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D. The Kinetic Equation in the Case of Coulomb Interaction; General Dynamics/Astronautics: San Diego, CA, USA, 1958. [Google Scholar]
- Tahery, R.; Modares, H. Lennard-jones energy parameter for pure fluids from scaled particle theory. Iran. J. Chem. Chem. Eng. 2007, 26, 1–8. [Google Scholar]
- Yousef, R.G.; Sakr, H.M.; Eissa, I.H.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; El Sohly, M.A.; Abulkhair, H.S.; El-Adl, K. New quinoxaline-2(1H)-ones as potential VEGFR-2 inhibitors: Design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. New J. Chem. 2021, 45, 16949–16964. [Google Scholar] [CrossRef]
- Amer, H.H.; Alotaibi, S.H.; Trawneh, A.H.; Metwaly, A.M.; Eissa, I.H. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α-Aminophosphonate derivatives. Arab. J. Chem. 2021, 14, 103348. [Google Scholar] [CrossRef]
- Alesawy, M.S.; Al-Karmalawy, A.A.; Elkaeed, E.B.; Alswah, M.; Belal, A.; Taghour, M.S.; Eissa, I.H. Design and discovery of new 1,2,4-triazolo[4,3- c ]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch. Pharm. 2021, 354, e2000237. [Google Scholar] [CrossRef]
- Parmar, D.R.; Soni, J.Y.; Guduru, R.; Rayani, R.H.; Kusurkar, R.V.; Vala, A.G.; Talukdar, S.N.; Eissa, I.H.; Metwaly, A.M.; Khalil, A.; et al. Discovery of new anticancer thiourea-azetidine hybrids: Design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg. Chem. 2021, 115, 105206. [Google Scholar] [CrossRef]
- Protein Data Bank, 2020. 2021. Available online: https://www.rcsb.org/structure/4OW0 (accessed on 2 October 2021).
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; MacKerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, D.A., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
Comp. | Similarity | SA | SB | SC | Comp. | Similarity | SA | SB | SC |
---|---|---|---|---|---|---|---|---|---|
RTP | 1 | 206 | 0 | 0 | 2140 | 0.513672 | 263 | 306 | −57 |
4 | 0.532394 | 189 | 149 | 17 | 1880 | 0.493976 | 205 | 209 | 1 |
42 | 0.522523 | 116 | 16 | 90 | 736 | 0.492163 | 157 | 113 | 49 |
50 | 0.589 | 136 | 25 | 70 | 2232 | 0.508159 | 218 | 223 | −12 |
56 | 0.682 | 161 | 30 | 45 | 1345 | 0.51358 | 208 | 199 | −2 |
152 | 0.55 | 121 | 14 | 85 | 2483 | 0.498371 | 153 | 101 | 53 |
159 | 0.516129 | 160 | 104 | 46 | 2474 | 0.4875 | 117 | 34 | 89 |
186 | 0.571 | 128 | 18 | 78 | 1268 | 0.503937 | 192 | 175 | 14 |
199 | 0.515306 | 202 | 186 | 4 | |||||
241 | 0.586 | 130 | 16 | 76 | 537 | 0.507692 | 198 | 184 | 8 |
310 | 0.586 | 130 | 16 | 76 | 549 | 0.507519 | 135 | 60 | 71 |
365 | 0.606 | 154 | 48 | 52 | 51 | 0.513274 | 116 | 20 | 90 |
374 | 0.529617 | 152 | 81 | 54 | 2399 | 0.49359 | 154 | 106 | 52 |
410 | 0.601 | 155 | 52 | 51 | 2186 | 0.513253 | 213 | 209 | −7 |
435 | 0.52 | 143 | 69 | 63 | 2496 | 0.489971 | 171 | 143 | 35 |
446 | 0.585 | 162 | 71 | 44 | 1075 | 0.50646 | 196 | 181 | 10 |
447 | 0.54013 | 249 | 255 | −43 | 380 | 0.496575 | 145 | 86 | 61 |
450 | 0.577 | 138 | 33 | 68 | 1802 | 0.504785 | 211 | 212 | −5 |
458 | 0.557252 | 146 | 56 | 60 | 1807 | 0.5 | 196 | 186 | 10 |
461 | 0.541096 | 158 | 86 | 48 | 807 | 0.496711 | 151 | 98 | 55 |
502 | 0.606 | 154 | 48 | 52 | 1747 | 0.513274 | 174 | 133 | 32 |
539 | 0.559809 | 117 | 3 | 89 | 1411 | 0.501458 | 172 | 137 | 34 |
573 | 0.520661 | 189 | 157 | 17 | 1332 | 0.490476 | 206 | 214 | 0 |
621 | 0.518182 | 114 | 14 | 92 | 2573 | 0.488189 | 186 | 175 | 20 |
659 | 0.562963 | 152 | 64 | 54 | 470 | 0.501458 | 172 | 137 | 34 |
711 | 0.568 | 126 | 16 | 80 | 2286 | 0.5025 | 201 | 194 | 5 |
723 | 0.59 | 135 | 23 | 71 | 2009 | 0.508197 | 124 | 38 | 82 |
777 | 0.519313 | 121 | 27 | 85 | 1405 | 0.488889 | 132 | 64 | 74 |
788 | 0.521531 | 218 | 212 | −12 | 937 | 0.490617 | 183 | 167 | 23 |
856 | 0.52231 | 199 | 175 | 7 | 951 | 0.491525 | 145 | 89 | 61 |
874 | 0.535377 | 227 | 218 | −21 | 2111 | 0.495516 | 221 | 240 | −15 |
928 | 0.6 | 204 | 134 | 2 | 359 | 0.511002 | 209 | 203 | −3 |
1017 | 0.543554 | 156 | 81 | 50 | 1789 | 0.497696 | 216 | 228 | −10 |
1163 | 0.523546 | 189 | 155 | 17 | 2988 | 0.492447 | 163 | 125 | 43 |
1232 | 0.533762 | 166 | 105 | 40 | 625 | 0.494949 | 196 | 190 | 10 |
1273 | 0.541139 | 171 | 110 | 35 | 1226 | 0.497238 | 180 | 156 | 26 |
1369 | 0.603 | 149 | 41 | 57 | 919 | 0.513274 | 116 | 20 | 90 |
1391 | 0.566 | 214 | 172 | −8 | 1911 | 0.501672 | 150 | 93 | 56 |
1445 | 0.542169 | 135 | 43 | 71 | 734 | 0.497653 | 212 | 220 | −6 |
1458 | 0.526144 | 161 | 100 | 45 | 1702 | 0.493548 | 153 | 104 | 53 |
1459 | 0.516291 | 206 | 193 | 0 | 2999 | 0.487524 | 254 | 315 | −48 |
1478 | 0.535503 | 181 | 132 | 25 | 2751 | 0.495751 | 175 | 147 | 31 |
1496 | 0.53211 | 116 | 12 | 90 | 371 | 0.493639 | 194 | 187 | 12 |
1569 | 0.519722 | 224 | 225 | −18 | 2023 | 0.488971 | 133 | 66 | 73 |
1595 | 0.577 | 120 | 2 | 86 | 2921 | 0.504043 | 187 | 165 | 19 |
1631 | 0.568 | 147 | 53 | 59 | 2886 | 0.502825 | 178 | 148 | 28 |
1651 | 0.566 | 291 | 308 | −85 | 618 | 0.501832 | 137 | 67 | 69 |
1728 | 0.516605 | 140 | 65 | 66 | 456 | 0.487864 | 201 | 206 | 5 |
1732 | 0.554264 | 143 | 52 | 63 | 1068 | 0.498812 | 210 | 215 | −4 |
1778 | 0.555556 | 180 | 118 | 26 | 1723 | 0.498812 | 210 | 215 | −4 |
1812 | 0.518395 | 155 | 93 | 51 | 189 | 0.488889 | 110 | 19 | 96 |
1858 | 0.5179 | 217 | 213 | −11 | 1490 | 0.488189 | 186 | 175 | 20 |
1917 | 0.598 | 171 | 80 | 35 | 1839 | 0.509537 | 187 | 161 | 19 |
1918 | 0.577 | 138 | 33 | 68 | 1662 | 0.504098 | 123 | 38 | 83 |
2017 | 0.678 | 183 | 64 | 23 | 997 | 0.51358 | 208 | 199 | −2 |
2031 | 0.545455 | 132 | 36 | 74 | 638 | 0.498084 | 130 | 55 | 76 |
2042 | 0.6 | 150 | 44 | 56 | 1669 | 0.51046 | 122 | 33 | 84 |
2056 | 0.553191 | 130 | 29 | 76 | 786 | 0.498623 | 181 | 157 | 25 |
2176 | 0.601 | 176 | 87 | 30 | 2024 | 0.512121 | 169 | 124 | 37 |
2233 | 0.675 | 185 | 68 | 21 | 1610 | 0.513441 | 191 | 166 | 15 |
2268 | 0.55157 | 123 | 17 | 83 | 1584 | 0.498567 | 174 | 143 | 32 |
2376 | 0.575 | 138 | 34 | 68 | 1642 | 0.503979 | 190 | 171 | 16 |
2463 | 0.520776 | 188 | 155 | 18 | 2109 | 0.490476 | 206 | 214 | 0 |
2488 | 0.55625 | 178 | 114 | 28 | 2764 | 0.499006 | 251 | 297 | −45 |
2501 | 0.519713 | 145 | 73 | 61 | 2850 | 0.488889 | 264 | 334 | −58 |
2523 | 0.524476 | 150 | 80 | 56 | 883 | 0.492823 | 206 | 212 | 0 |
2585 | 0.548673 | 124 | 20 | 82 | 2420 | 0.498099 | 131 | 57 | 75 |
2612 | 0.566 | 159 | 75 | 47 | 781 | 0.501475 | 170 | 133 | 36 |
2618 | 0.525773 | 153 | 85 | 53 | 679 | 0.492908 | 139 | 76 | 67 |
2732 | 0.532468 | 123 | 25 | 83 | 404 | 0.494186 | 170 | 138 | 36 |
2786 | 0.556522 | 128 | 24 | 78 | 1873 | 0.5 | 157 | 108 | 49 |
2831 | 0.588 | 141 | 34 | 65 | 1185 | 0.508143 | 312 | 408 | −106 |
2844 | 0.542986 | 120 | 15 | 86 | 2980 | 0.497674 | 107 | 9 | 99 |
2876 | 0.631 | 210 | 127 | −4 | 2104 | 0.513308 | 135 | 57 | 71 |
2879 | 0.577 | 138 | 33 | 68 | 663 | 0.505291 | 191 | 172 | 15 |
2991 | 0.581 | 312 | 331 | −106 | 498 | 0.506143 | 206 | 201 | 0 |
Comp. | ALog p | M. W | HBA | HBD | RB | R | AR | MFPSA | M D |
---|---|---|---|---|---|---|---|---|---|
RTP | −1.5 | 371.24 | 11 | 5 | 4 | 3 | 2 | 0.612 | 0 |
50 | −1.38 | 297.27 | 9 | 4 | 3 | 3 | 2 | 0.508 | 0.516 |
56 | −1.38 | 365.21 | 11 | 5 | 4 | 3 | 2 | 0.602 | 0.04 |
152 | −0.77 | 287.21 | 8 | 3 | 5 | 2 | 2 | 0.502 | 0.769 |
186 | −1.31 | 285.23 | 8 | 4 | 2 | 3 | 2 | 0.52 | 0.638 |
241 | −1.88 | 267.24 | 8 | 4 | 2 | 3 | 2 | 0.539 | 0.656 |
310 | −1.88 | 267.24 | 8 | 4 | 2 | 3 | 2 | 0.539 | 0.656 |
359 | −0.4 | 418.39 | 9 | 7 | 3 | 4 | 2 | 0.438 | 0.775 |
446 | −0.51 | 340.28 | 9 | 5 | 3 | 3 | 1 | 0.476 | 0.702 |
456 | 0.61 | 446.36 | 11 | 6 | 4 | 4 | 2 | 0.463 | 0.695 |
458 | −0.85 | 328.27 | 9 | 5 | 2 | 3 | 1 | 0.489 | 0.719 |
461 | −0.34 | 354.31 | 9 | 6 | 5 | 2 | 1 | 0.487 | 0.775 |
498 | 0.21 | 432.38 | 10 | 6 | 4 | 4 | 2 | 0.424 | 0.724 |
659 | −1.61 | 295.29 | 8 | 5 | 2 | 3 | 1 | 0.521 | 0.765 |
723 | −2.38 | 283.24 | 8 | 5 | 2 | 3 | 1 | 0.587 | 0.76 |
997 | 0.45 | 416.38 | 9 | 5 | 4 | 4 | 2 | 0.384 | 0.811 |
1017 | −0.43 | 442.22 | 11 | 6 | 5 | 3 | 2 | 0.459 | 0.565 |
1273 | −2.7 | 381.4 | 8 | 5 | 4 | 3 | 1 | 0.501 | 0.718 |
1332 | −0.3 | 464.38 | 12 | 8 | 4 | 4 | 2 | 0.499 | 0.83 |
1459 | 0.21 | 432.38 | 10 | 6 | 4 | 4 | 2 | 0.424 | 0.724 |
1917 | −3.25 | 398.44 | 10 | 4 | 7 | 3 | 2 | 0.481 | 0.657 |
2017 | −2.16 | 365.24 | 12 | 6 | 4 | 3 | 2 | 0.655 | 0.284 |
2042 | −2.09 | 285.26 | 9 | 5 | 2 | 3 | 2 | 0.589 | 0.491 |
2109 | −0.3 | 464.38 | 12 | 8 | 4 | 4 | 2 | 0.499 | 0.83 |
2176 | −1.93 | 390.35 | 10 | 5 | 4 | 4 | 3 | 0.491 | 0.675 |
2233 | −2.24 | 427.2 | 14 | 6 | 6 | 3 | 2 | 0.678 | 0.582 |
2286 | 0.02 | 432.38 | 10 | 7 | 3 | 4 | 2 | 0.455 | 0.75 |
2376 | −1.32 | 269.26 | 8 | 4 | 2 | 3 | 2 | 0.54 | 0.649 |
2612 | −1.98 | 460.77 | 10 | 4 | 8 | 2 | 2 | 0.572 | 0.735 |
2732 | −0.82 | 299.22 | 8 | 3 | 5 | 3 | 2 | 0.504 | 0.69 |
2831 | −0.98 | 305.23 | 9 | 4 | 5 | 2 | 2 | 0.55 | 0.545 |
Comp. | ΔG (kcal/mol) | Comp. | ΔG (kcal/mol) |
---|---|---|---|
Remdesivir | −18.65 | Brimonidine Tartrate (1017) | −15.95 |
Nelarabine (50) | −18.36 | Cefadroxil (1273) | −21.24 |
Fludarabine Phosphate (56) | −17.73 | Isoquercitrin (1332) | −23.40 |
Ramelteon (152) | −17.74 | Sophoricoside (1459) | −21.43 |
Fludarabine (186) | −15.99 | Ademetionine (1917) | −22.70 |
Adenosine (241) | −16.36 | Adenosine 5’−monophosphate monohydrate (2017) | −17.73 |
vidarabine (310) | −16.63 | Vidarabine monohydrate (2042) | −16.63 |
Aloin (359) | −23.11 | Hyperoside (2109) | −24.46 |
Esculin (446) | −19.26 | Regadenoson (2176) | −22.85 |
Baicalin (456) | −20.62 | ADP (2233) | −17.42 |
Bergenin (458) | −19.18 | Vitexin (2286) | −25.00 |
Chlorogenic Acid (461) | −19.38 | 2’−Deoxyadenosine monohydrate (2376) | −16.33 |
Puerarin (498) | −22.35 | Thiamine−pyrophosphate−hydrochloride (2612) | −17.78 |
Entecavir hydrate (659) | −18.30 | Besifovir (2732) | −17.50 |
Guanosine (723) | −16.14 | Tenofovir hydrate (2831) | −17.26 |
Daidzin (997) | −21.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkaeed, E.B.; Elkady, H.; Belal, A.; Alsfouk, B.A.; Ibrahim, T.H.; Abdelmoaty, M.; Arafa, R.K.; Metwaly, A.M.; Eissa, I.H. Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes 2022, 10, 530. https://doi.org/10.3390/pr10030530
Elkaeed EB, Elkady H, Belal A, Alsfouk BA, Ibrahim TH, Abdelmoaty M, Arafa RK, Metwaly AM, Eissa IH. Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes. 2022; 10(3):530. https://doi.org/10.3390/pr10030530
Chicago/Turabian StyleElkaeed, Eslam B., Hazem Elkady, Amany Belal, Bshra A. Alsfouk, Tuqa H. Ibrahim, Mohamed Abdelmoaty, Reem K. Arafa, Ahmed M. Metwaly, and Ibrahim H. Eissa. 2022. "Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs" Processes 10, no. 3: 530. https://doi.org/10.3390/pr10030530
APA StyleElkaeed, E. B., Elkady, H., Belal, A., Alsfouk, B. A., Ibrahim, T. H., Abdelmoaty, M., Arafa, R. K., Metwaly, A. M., & Eissa, I. H. (2022). Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes, 10(3), 530. https://doi.org/10.3390/pr10030530