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Abstract

:

Proceeding our prior studies of SARS-CoV-2, the inhibitory potential against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) has been investigated for a collection of 3009 clinical and FDA-approved drugs. A multi-phase in silico approach has been employed in this study. Initially, a molecular fingerprint experiment of Remdesivir (RTP), the co-crystallized ligand of the examined protein, revealed the most similar 150 compounds. Among them, 30 compounds were selected after a structure similarity experiment. Subsequently, the most similar 30 compounds were docked against SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2). Aloin 359, Baicalin 456, Cefadroxil 1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286 exhibited the most precise binding modes, as well as the best binding energies. To confirm the obtained results, MD simulations experiments have been conducted for Hyperoside 2109, the natural flavonoid glycoside that exhibited the best docking scores, against RdRp (PDB ID: 7BV2) for 100 ns. The achieved results authenticated the correct binding of 2109, showing low energy and optimum dynamics. Our team presents these outcomes for scientists all over the world to advance in vitro and in vivo examinations against COVID-19 for the promising compounds.
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1. Introduction


The WHO reported on 4 February 2022 that the confirmed global infected cases of SARS-CoV-2 were 386,548,962. Unfortunately, 5,705,754 of that total passed away [1]. To respond to these alarming numbers, extensive work is required from scientists globally to discover a cure.



The FDA approval of any drug means that the drug’s effect and side effects have been judged by the Center for Drug Evaluation and Research (CDER) in the FDA [2]. Accordingly, FDA approval indicates the efficacy and the general safety of that drug [3]. Hence, FDA-approved drugs could be an invaluable source in drug discovery, as they can be repurposed to be utilized for alternate functions [4]. Whereas the traditional drug discovery process costs an average of 2.6 billion USD over twelve years [5], computational or in silico screening can be utilized efficiently and effectively to discover new drugs [6,7].



Ligand-based virtual screening is an in silico approach in which the software utilizes the chemical structure of an active molecule as a reference. This reference is utilized and based on the principles of the Structure–Activity Relationship (SAR), which anticipates the activity of other molecules with unidentified or different known activity [8]. Ligand-based in silico methods have been employed across different fields of drug design and discovery, such as in molecular design [9,10], rational drug design [11,12,13,14,15,16], computational chemistry [17,18], docking [19,20], DFT [21,22,23] evaluation, toxicity [24,25,26], and ADME-Tox [27,28,29]. In addition, molecular dynamic simulation is considered one of the most efficient computational techniques that confirms the affinity of a compound to a particular receptor [30,31].



Our team utilized ligand-based in silico methods to discover potential inhibitors for COVID-19 essential enzymes. We described the potential inhibitions of a big group of isoflavonoids [32] in addition to the natural metabolites that were isolated from Monanchora sp. [33] and Artemisia sublessingiana [34]. Likewise, we reported a multi-stage in silico method (ligand- and structure-based) to identify the best potential SARS-CoV-2 nsp10 inhibitor of 310 antiviral natural compounds [35]. The same method decided the most potential semisynthetic compound of 69 ligands against SARS-CoV-2 PLpro [36].



In this manuscript, 3009 clinical and FDA-approved drugs have been utilized as an exam group to explore the most potent SARS-CoV-2 RdRp inhibitors, depending on a multi-stage in silico method (ligand- and structure-based). All the tested drugs were obtained from approved institutions such as the FDA (U.S. Food and Drug Administration, Sliver Spring, MD, USA), EMA (European Medicines Agency, Amsterdam, The Netherlands, European), HMA (Heads of Medicines Agency, Amsterdam, The Netherlands, European), CFDA (China Food and Drug Administration, Beijing, China), PMDA (Pharmaceuticals and Medical Devices Agency, Tokyo, Japan), pharmacopeias such as USP, BP, EP, JP, and Ph, or from Selleckchem.com (https://www.selleckchem.com/screening/fda-approved-drug-library.html, accessed on 1 October 2021) The employed method started with the similarity detection of the test group with the co-crystallized ligand (RTP) of SARS-CoV-2 RdRp, utilizing molecular fingerprint and structure similarity studies. Then, the binding modes of the selected compounds were examined by molecular docking and confirmed by molecular dynamic (MD) simulation experiments.




2. Results and Discussion


2.1. Molecular Fingerprint Study


Molecular fingerprinting is a type of ligand-based in silico study that links the biological activities of the tested molecules to their chemical structures [37]. It is based on the scientific basics of the Structure–Activity Relationship (SAR). Agreeing with the principle of SAR, the likeness in the chemical structure of two molecules is predicted to be linked to a likeness in bioactivity [38]. We herein considered the co-crystallized ligand, RTP, as a reference due to its high binding affinity with SARS-CoV-2 RdRp (PDB ID: 7BV2). Consequently, molecules that have similar chemical structures to RTP are predicted to exhibit a high binding affinity that inhibits the target protein.



In the fingerprint study, the software extracts chemical and physical descriptors of the examined and reference molecules, and the presence and/or the absence of these descriptors is calculated for all atoms. The calculation of the tested descriptors is performed by converting it to bit strings (mathematical symbols). The obtained strings are used to compare and expect the likeness [39,40]. Discovery Studio software has been employed to reveal the similarity of the fingerprints of RTP with 3009 FDA-approved drugs. The experiment was adapted to select the highest 5% (150) of compounds in similarity (Table 1). The following descriptors were investigated in the atoms as well as fragments of the examined molecules and RTP: H-bond acceptors [41], H-bond donors [42], charges [43], hybridization [44], positive ionizable atoms [45], negative ionizable atoms [46], halogens [47], and aromatic groups [48] aligned with the ALogP [49].




2.2. Molecular Similarity


Molecular similarity is also another kind of ligand-based in silico study. The molecular similarity study examines the whole chemical structure of both the reference molecule and the experiment set. The study computes different descriptors, which may be topological, electronic, steric, and/or physical [50]. In contrast, the fingerprint study computes the descriptors in atoms or substructures [51]. The selected 150 FDA-approved drugs, after the molecular fingerprint experiment, were subjected to the molecular similarity study of RTP, using Discovery studio software. The tested descriptors (Figure 1 and Table 2) were partition coefficient (ALog p) [52], molecular weight (M. W) [53], H-bond donors (HBA) [54], H-bond acceptors (HBD) [55], rotatable bonds number (RB) [56], number of rings (R) and aromatic rings (AR) [57], minimum distance (MD) [58], and the molecular fractional polar surface area (MFPSA) [59]. The study revealed the most similar 1% compounds (30) (Figure 2).




2.3. Docking Studies


The thirty most similar FDA-approved drugs to Remdesivir, the co-crystallized ligand of SARS-CoV-2 RdRp, were docked against the target protein. The carried-out study aims to examine the ability of the selected compounds to bind to and inhibit SARS-CoV-2 RdRp (PDB ID: 7BV2). The study also investigated the binding free energies as well as the binding modes of the examined FDA-approved drugs. Table 3 illustrates the calculated ΔG (binding free energies) of the tested compounds and the reference drug (Remdesivir) against SARS-CoV-2 RdRp.



The docking approach was validated by re-docking Remdesivir against the RdRp- active site. The validation step established the protocol’s applicability, as demonstrated by the small RMSD (1.29 Å) between the re-docked pose and the co-crystallized one (Figure 3).



At first, to understand the docking modes, we have to understand the structure of the SARS-CoV-2 RdRp enzyme. RdRp consists of three main parts. Firstly, an ATP-binding site that is represented by a network of different amino acids, including the key amino acid residue (Arg555). Secondly, an RNA primer that is represented by many nucleotides including uridine 20 (U20), uridine 10 (U10), and adenine 11 (A11). Finally, a pyrophosphate group (POP1003).



The mode of binding of RTP inside the SARS-CoV-2 RdRp is illustrated in Figure 4. It was noticed that RTP interacted with the active site via the formation of four hydrogen bonds (H-bonds), four hydrophobic interactions, and five electrostatic interactions. In detail, the pyrrolo[2,1-f][1,2,4]triazin-4-amine moiety interacted with RNA primer, forming four hydrophobic interactions with A11 and U20 and one H-bond with U10. Moreover, the 5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methyl moiety formed one H- bond with U20. Finally, the dihydrogen phosphate moiety occupied the ATP-binding site, forming one H-bond and one electrostatic interaction with Arg555. Additionally, it formed one H-bond with U20 and two electrostatic interactions with the pyrophosphate group.



The proposed binding mode of 359 revealed an affinity value of −23.11 kcal/mol. The 3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran moiety was buried in the ATP binding site to form one H-bonds with the key amino acid Arg555. It also interacted with the RNA primer via the formation of two H-bonds with U10. On the other hand, 1,8-dihydroxyanthracen-9(10H)-one interacted with the pyrophosphate group via a couple of H-bonds. Moreover, it formed one electrostatic interaction with Arg555 and one pi–pi interaction with U20 (Figure 5).



Compound 456 exerted a binding affinity of -20.52 kcal/mol. It was noticed that 3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid moiety formed two H-bonds with the key amino acid residues in the ATP binding site (Arg555 and Asp760). Additionally, it formed one H-bond with U20 in the RNA primer and another H-bond with pyrophosphate group. Moreover, the 5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen moiety was incorporated in the RNA primer, forming two H-bonds and two hydrophobic interactions with U10 and A11, respectively. Additionally, it formed two electrostatic interactions with Arg555 in the ATP-binding site (Figure 6).



The docking simulation of compound 2109 revealed that it fit well into the enzyme active site, with a docking score of -24.46 kcal/mol. The ATP-binding site was occupied by the 3-(3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy) moiety through the formation of four H-bonds with Arg555, Asp760, Asp691, and Ser759. Moreover, the RNA primer was occupied with 2-(3,4-dihydroxyphenyl)4H-chromen-4-one moiety via formation of one H-bond, one electrostatic, and one hydrophobic interaction with U10 and U20, respectively. Likewise, the later moiety formed one H-bond with the pyrophosphate group via its 7-hydroxy group. Such a binding pattern encourages us to study the MD simulation of this member over the rest of the candidates (Figure 7).



Compound 2286 displayed the highest binding energy score among the series with ΔG = −25.00 kcal/mol. This high binding affinity is presumably attributed to the formation of many hydrophobic, electrostatic, and H-bonding interactions. The chromen-4-one moiety interacted with the RNA primer via the formation of four pi–pi interactions with the key nucleotide U20 and A11. Moreover, it reacted with Arg555 and Ser682, forming two electrostatic interactions and one H-bond, respectively. The sugar moiety (2H-pyran) formed two extra H-bonds with Asn691 and the pyrophosphate group (Figure 8).



The docking poses accomplished by compound 1273 (ΔG = −21.24 kcal/mol) produced key interactions in the RdRp active sites via the formation of seven H-bonds with U20, U10, Arg555, Asn691, and the Pyrophosphate group. Additionally, it formed one electrostatic with Arg555 and one pi–pi interaction with U20 (Figure 9).



As illustrated in Figure 10, compound 1459 (ΔG = −21.43 kcal/mol) possessed a significant potential binding affinity to the RdRp. It was buried in the ATP-binding site to form three H-bonds with Arg555, Thr680, and Cys622 and one pi–pi interaction with Cys622. Moreover, compound 1459 interacted with the RNA primer to form three H-bonds with U10 and U20. Finally, it formed one electrostatic interaction with the pyrophosphate group.




2.4. Molecular Dynamic Simulations


Compound 2109, Hyperoside, is a natural flavonoid of galactoside (Quercetin 3-galactoside) (Figure 11). Interestingly, the inhibitory effect of hyperoside against COVID-19 has recently been reported as a key molecule in the Chinese Qing-Fei-Pai-Du herbal formula [60]. Additionally, hyperoside inhibited HBV in vivo and in vitro through the inhibition of inhibitors of HBsAg and HBeAg, and decreased DHBV-DNA levels [61]. Additionally, hyperoside showed anti-inflammatory activities via the inhibition of the NF-κB signaling pathway [62].



The trajectory obtained from the 100 ns MD simulation was analyzed using GROMACS and VMD to check the integrity of the system and examine the stability and strength of hyperoside-SARS-CoV-2 RdRp binding throughout the simulation. Firstly, the radius of gyration of SARS-CoV-2 RdRp was estimated to range from 2.85 to 2.92 nm (Figure 12). The obtained values indicate that SARS-CoV-2 RdRp remained compact and stably folded throughout the simulation.



The RMSD profile of SARS-CoV-2 RdRp was found to be nearly invariable (Figure 13), implying that its structure is relatively stable during the simulation. The RMSD profile of hyperoside (Figure 14) implies only minor conformational and positional changes relative to the protein backbone. These results were confirmed by visualizing the trajectory using VMD.



Additionally, the SARS-CoV-2 RdRp-hyperoside interaction was analyzed to measure its strength as an indication of the ligand’s affinity towards the protein.



The Coulomb interaction (Coulomb force or electrostatic force) is a physical parameter that describes the magnitude of the electrostatic interaction force between two charged points. The Coulomb interaction is directly proportional to the electrical charge magnitudes and inversely proportional to the distance between them [63]. The energetics analysis showed that the average Coulombic interaction energy between hyperoside and SARS-CoV-2 RdRp was −131.994 kJ/mol (Figure 15).



Furthermore, Lennard-Jones energy was proposed by Sir John Edward Lennard-Jones and describes the potential interaction energy between two non-bonding molecules. Lennard-Jones energy computes the difference between several attractive forces, such as dipole–dipole and London interactions, as well as repulsive forces [64]. The average Lennard-Jones energy between hyperoside and SARS-CoV-2 RdRp was computed to be -67.0503 kJ/mol (Figure 16), indicating that hyperoside has a high affinity towards the RNA-dependent RNA polymerase.



For a closer look at the electrostatic interactions between hyperoside and SARS-CoV-2 RNA-dependent RNA polymerase, the VMD program was used to calculate the number of H-bonds formed over the course of the simulation. The analysis showed that during most of the simulation time, the number of stable H-bonds varies between 2 and 3, and reaches 4 during the last 35 ns of the simulation (Figure 17), indicating the strength of the SARS-CoV-2 RdRp-ligand binding.





3. Methods


3.1. Molecular Similarity Detection


Discovery studio 4.0 software was used (see method part in Supplementary data).




3.2. Fingerprint Studies


Discovery studio 4.0 software [65,66,67] was used (see method part in Supplementary data).




3.3. Docking Studies


Docking studies were performed with target enzymes using Discovery studio software [68,69] (see method part in Supplementary data).




3.4. Molecular Dynamics Simulation


The system was prepared using the web-based CHARMM-GUI [70,71,72,73] interface utilizing CHARMM36 force field and NAMD 2.13 packages [74]. The TIP3P explicit solvation model was used (See Supplementary data).





4. Conclusions


Among 3009 clinical and FDA-approved drugs, 5 (Aloin 359, Baicalin 456, Cefadroxil 1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286) were determined as the most potent inhibitors of SARS-CoV-2 RdRp(PDB ID: 7BV2). The study depended on a multi-phase in silico approach that included molecular fingerprint studies of RTP (the co-crystallized ligand of the examined protein), structure similarity experiments of RTP, molecular docking experiments of SARS-CoV-2 RdRp, and MD-simulation experiments for Hyperoside 2109 against SARS-CoV-2 RdRp for 100 ns. These results open a window of hope to find treatment through further in vitro and in vivo examinations for the determined compounds against COVID-19.
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Figure 1. Structural similarity of the FDA-approved compounds and RTP. 
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Figure 2. The most similar thirty compounds to RTP. 
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Figure 3. Superimposition of the co-crystallized pose (orange) and the re-docking pose (turquoise) of RTP in the active site of the RdRp. 
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Figure 4. (A) 3D binding mode of Remdesivir in the active site of RNA-dependent RNA polymerase. (B) 2D binding mode of Remdesivir in the active site of RNA-dependent RNA polymerase. 
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Figure 5. (A) 3D binding mode of compound 359 into 7BV2 active site. (B) 2D binding mode of compound 359 in the 7BV2 active site. 
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Figure 6. (A) 3D binding mode of compound 456 into 7BV2 active site. (B) 2D binding mode of compound 456 in the 7BV2 active site. 
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Figure 7. (A) 3D binding mode of compound 2109 into 7BV2 active site. (B) 2D binding mode of compound 2109 in the 7BV2 active site. 
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Figure 8. (A) 3D binding mode of compound 2286 into 7BV2 active site. (B) 2D binding mode of compound 2286 in the 7BV2 active site. 
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Figure 9. (A) 3D binding mode of compound 1273 into 7BV2 active site. (B) 2D binding mode of compound 1273 in the 7BV2 active site. 






Figure 9. (A) 3D binding mode of compound 1273 into 7BV2 active site. (B) 2D binding mode of compound 1273 in the 7BV2 active site.



[image: Processes 10 00530 g009]







[image: Processes 10 00530 g010 550] 





Figure 10. (A) 3D binding mode of compound 1459 into 7BV2 active site. (B) 2D binding mode of compound 1459 in the 7BV2 active site. 
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Figure 11. Chemical structure of hyperoside. 
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Figure 12. Radius of gyration of SARS-CoV-2 RdRp when complexed with hyperoside, calculated over the course of a 100 ns MD simulation. 
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Figure 13. The RMSD of SARS-CoV-2 RdRp with reference to its backbone, calculated over the course of the 100 ns simulation. 
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Figure 14. The RMSD of hyperoside with reference to SARS-CoV-2 RdRp backbone, calculated over the course of the 100 ns simulation. 
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Figure 15. Coulombic electrostatic interaction energy between hyperoside and SARS-CoV-2 RdRp during MD simulation, showing an average value of −131.994 kJ/mol. 
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Figure 16. Lennard-Jones interaction energy between hyperoside and SARS-CoV-2 RdRp during the MD simulation, showing an average value of −67.0503 kJ/mol. 
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Figure 17. Changes in the number of H-bonds formed between hyperoside and SARS-CoV-2 RdRp. 
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Table 1. Fingerprint similarity between the FDA-approved compounds and RTP.
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	Comp.
	Similarity
	SA
	SB
	SC
	Comp.
	Similarity
	SA
	SB
	SC





	RTP
	1
	206
	0
	0
	2140
	0.513672
	263
	306
	−57



	4
	0.532394
	189
	149
	17
	1880
	0.493976
	205
	209
	1



	42
	0.522523
	116
	16
	90
	736
	0.492163
	157
	113
	49



	50
	0.589
	136
	25
	70
	2232
	0.508159
	218
	223
	−12



	56
	0.682
	161
	30
	45
	1345
	0.51358
	208
	199
	−2



	152
	0.55
	121
	14
	85
	2483
	0.498371
	153
	101
	53



	159
	0.516129
	160
	104
	46
	2474
	0.4875
	117
	34
	89



	186
	0.571
	128
	18
	78
	1268
	0.503937
	192
	175
	14



	199
	0.515306
	202
	186
	4
	
	
	
	
	



	241
	0.586
	130
	16
	76
	537
	0.507692
	198
	184
	8



	310
	0.586
	130
	16
	76
	549
	0.507519
	135
	60
	71



	365
	0.606
	154
	48
	52
	51
	0.513274
	116
	20
	90



	374
	0.529617
	152
	81
	54
	2399
	0.49359
	154
	106
	52



	410
	0.601
	155
	52
	51
	2186
	0.513253
	213
	209
	−7



	435
	0.52
	143
	69
	63
	2496
	0.489971
	171
	143
	35



	446
	0.585
	162
	71
	44
	1075
	0.50646
	196
	181
	10



	447
	0.54013
	249
	255
	−43
	380
	0.496575
	145
	86
	61



	450
	0.577
	138
	33
	68
	1802
	0.504785
	211
	212
	−5



	458
	0.557252
	146
	56
	60
	1807
	0.5
	196
	186
	10



	461
	0.541096
	158
	86
	48
	807
	0.496711
	151
	98
	55



	502
	0.606
	154
	48
	52
	1747
	0.513274
	174
	133
	32



	539
	0.559809
	117
	3
	89
	1411
	0.501458
	172
	137
	34



	573
	0.520661
	189
	157
	17
	1332
	0.490476
	206
	214
	0



	621
	0.518182
	114
	14
	92
	2573
	0.488189
	186
	175
	20



	659
	0.562963
	152
	64
	54
	470
	0.501458
	172
	137
	34



	711
	0.568
	126
	16
	80
	2286
	0.5025
	201
	194
	5



	723
	0.59
	135
	23
	71
	2009
	0.508197
	124
	38
	82



	777
	0.519313
	121
	27
	85
	1405
	0.488889
	132
	64
	74



	788
	0.521531
	218
	212
	−12
	937
	0.490617
	183
	167
	23



	856
	0.52231
	199
	175
	7
	951
	0.491525
	145
	89
	61



	874
	0.535377
	227
	218
	−21
	2111
	0.495516
	221
	240
	−15



	928
	0.6
	204
	134
	2
	359
	0.511002
	209
	203
	−3



	1017
	0.543554
	156
	81
	50
	1789
	0.497696
	216
	228
	−10



	1163
	0.523546
	189
	155
	17
	2988
	0.492447
	163
	125
	43



	1232
	0.533762
	166
	105
	40
	625
	0.494949
	196
	190
	10



	1273
	0.541139
	171
	110
	35
	1226
	0.497238
	180
	156
	26



	1369
	0.603
	149
	41
	57
	919
	0.513274
	116
	20
	90



	1391
	0.566
	214
	172
	−8
	1911
	0.501672
	150
	93
	56



	1445
	0.542169
	135
	43
	71
	734
	0.497653
	212
	220
	−6



	1458
	0.526144
	161
	100
	45
	1702
	0.493548
	153
	104
	53



	1459
	0.516291
	206
	193
	0
	2999
	0.487524
	254
	315
	−48



	1478
	0.535503
	181
	132
	25
	2751
	0.495751
	175
	147
	31



	1496
	0.53211
	116
	12
	90
	371
	0.493639
	194
	187
	12



	1569
	0.519722
	224
	225
	−18
	2023
	0.488971
	133
	66
	73



	1595
	0.577
	120
	2
	86
	2921
	0.504043
	187
	165
	19



	1631
	0.568
	147
	53
	59
	2886
	0.502825
	178
	148
	28



	1651
	0.566
	291
	308
	−85
	618
	0.501832
	137
	67
	69



	1728
	0.516605
	140
	65
	66
	456
	0.487864
	201
	206
	5



	1732
	0.554264
	143
	52
	63
	1068
	0.498812
	210
	215
	−4



	1778
	0.555556
	180
	118
	26
	1723
	0.498812
	210
	215
	−4



	1812
	0.518395
	155
	93
	51
	189
	0.488889
	110
	19
	96



	1858
	0.5179
	217
	213
	−11
	1490
	0.488189
	186
	175
	20



	1917
	0.598
	171
	80
	35
	1839
	0.509537
	187
	161
	19



	1918
	0.577
	138
	33
	68
	1662
	0.504098
	123
	38
	83



	2017
	0.678
	183
	64
	23
	997
	0.51358
	208
	199
	−2



	2031
	0.545455
	132
	36
	74
	638
	0.498084
	130
	55
	76



	2042
	0.6
	150
	44
	56
	1669
	0.51046
	122
	33
	84



	2056
	0.553191
	130
	29
	76
	786
	0.498623
	181
	157
	25



	2176
	0.601
	176
	87
	30
	2024
	0.512121
	169
	124
	37



	2233
	0.675
	185
	68
	21
	1610
	0.513441
	191
	166
	15



	2268
	0.55157
	123
	17
	83
	1584
	0.498567
	174
	143
	32



	2376
	0.575
	138
	34
	68
	1642
	0.503979
	190
	171
	16



	2463
	0.520776
	188
	155
	18
	2109
	0.490476
	206
	214
	0



	2488
	0.55625
	178
	114
	28
	2764
	0.499006
	251
	297
	−45



	2501
	0.519713
	145
	73
	61
	2850
	0.488889
	264
	334
	−58



	2523
	0.524476
	150
	80
	56
	883
	0.492823
	206
	212
	0



	2585
	0.548673
	124
	20
	82
	2420
	0.498099
	131
	57
	75



	2612
	0.566
	159
	75
	47
	781
	0.501475
	170
	133
	36



	2618
	0.525773
	153
	85
	53
	679
	0.492908
	139
	76
	67



	2732
	0.532468
	123
	25
	83
	404
	0.494186
	170
	138
	36



	2786
	0.556522
	128
	24
	78
	1873
	0.5
	157
	108
	49



	2831
	0.588
	141
	34
	65
	1185
	0.508143
	312
	408
	−106



	2844
	0.542986
	120
	15
	86
	2980
	0.497674
	107
	9
	99



	2876
	0.631
	210
	127
	−4
	2104
	0.513308
	135
	57
	71



	2879
	0.577
	138
	33
	68
	663
	0.505291
	191
	172
	15



	2991
	0.581
	312
	331
	−106
	498
	0.506143
	206
	201
	0







SA: The number of shared bits in both RTP and the examined molecule. SB: The number of present bits in the examined molecule but not RTP. SC: The number of present bits in RTP but not the examined molecule.
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Table 2. Similarity descriptors of the FDA-approved compounds and RTP.






Table 2. Similarity descriptors of the FDA-approved compounds and RTP.





	Comp.
	ALog p
	M. W
	HBA
	HBD
	RB
	R
	AR
	MFPSA
	M D





	RTP
	−1.5
	371.24
	11
	5
	4
	3
	2
	0.612
	0



	50
	−1.38
	297.27
	9
	4
	3
	3
	2
	0.508
	0.516



	56
	−1.38
	365.21
	11
	5
	4
	3
	2
	0.602
	0.04



	152
	−0.77
	287.21
	8
	3
	5
	2
	2
	0.502
	0.769



	186
	−1.31
	285.23
	8
	4
	2
	3
	2
	0.52
	0.638



	241
	−1.88
	267.24
	8
	4
	2
	3
	2
	0.539
	0.656



	310
	−1.88
	267.24
	8
	4
	2
	3
	2
	0.539
	0.656



	359
	−0.4
	418.39
	9
	7
	3
	4
	2
	0.438
	0.775



	446
	−0.51
	340.28
	9
	5
	3
	3
	1
	0.476
	0.702



	456
	0.61
	446.36
	11
	6
	4
	4
	2
	0.463
	0.695



	458
	−0.85
	328.27
	9
	5
	2
	3
	1
	0.489
	0.719



	461
	−0.34
	354.31
	9
	6
	5
	2
	1
	0.487
	0.775



	498
	0.21
	432.38
	10
	6
	4
	4
	2
	0.424
	0.724



	659
	−1.61
	295.29
	8
	5
	2
	3
	1
	0.521
	0.765



	723
	−2.38
	283.24
	8
	5
	2
	3
	1
	0.587
	0.76



	997
	0.45
	416.38
	9
	5
	4
	4
	2
	0.384
	0.811



	1017
	−0.43
	442.22
	11
	6
	5
	3
	2
	0.459
	0.565



	1273
	−2.7
	381.4
	8
	5
	4
	3
	1
	0.501
	0.718



	1332
	−0.3
	464.38
	12
	8
	4
	4
	2
	0.499
	0.83



	1459
	0.21
	432.38
	10
	6
	4
	4
	2
	0.424
	0.724



	1917
	−3.25
	398.44
	10
	4
	7
	3
	2
	0.481
	0.657



	2017
	−2.16
	365.24
	12
	6
	4
	3
	2
	0.655
	0.284



	2042
	−2.09
	285.26
	9
	5
	2
	3
	2
	0.589
	0.491



	2109
	−0.3
	464.38
	12
	8
	4
	4
	2
	0.499
	0.83



	2176
	−1.93
	390.35
	10
	5
	4
	4
	3
	0.491
	0.675



	2233
	−2.24
	427.2
	14
	6
	6
	3
	2
	0.678
	0.582



	2286
	0.02
	432.38
	10
	7
	3
	4
	2
	0.455
	0.75



	2376
	−1.32
	269.26
	8
	4
	2
	3
	2
	0.54
	0.649



	2612
	−1.98
	460.77
	10
	4
	8
	2
	2
	0.572
	0.735



	2732
	−0.82
	299.22
	8
	3
	5
	3
	2
	0.504
	0.69



	2831
	−0.98
	305.23
	9
	4
	5
	2
	2
	0.55
	0.545
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Table 3. ∆G values of the FDA-approved drugs and RTP.






Table 3. ∆G values of the FDA-approved drugs and RTP.











	Comp.
	ΔG (kcal/mol)
	Comp.
	ΔG (kcal/mol)





	Remdesivir
	−18.65
	Brimonidine Tartrate (1017)
	−15.95



	Nelarabine (50)
	−18.36
	Cefadroxil (1273)
	−21.24



	Fludarabine Phosphate (56)
	−17.73
	Isoquercitrin (1332)
	−23.40



	Ramelteon (152)
	−17.74
	Sophoricoside (1459)
	−21.43



	Fludarabine (186)
	−15.99
	Ademetionine (1917)
	−22.70



	Adenosine (241)
	−16.36
	Adenosine 5’−monophosphate monohydrate (2017)
	−17.73



	vidarabine (310)
	−16.63
	Vidarabine monohydrate (2042)
	−16.63



	Aloin (359)
	−23.11
	Hyperoside (2109)
	−24.46



	Esculin (446)
	−19.26
	Regadenoson (2176)
	−22.85



	Baicalin (456)
	−20.62
	ADP (2233)
	−17.42



	Bergenin (458)
	−19.18
	Vitexin (2286)
	−25.00



	Chlorogenic Acid (461)
	−19.38
	2’−Deoxyadenosine monohydrate (2376)
	−16.33



	Puerarin (498)
	−22.35
	Thiamine−pyrophosphate−hydrochloride (2612)
	−17.78



	Entecavir hydrate (659)
	−18.30
	Besifovir (2732)
	−17.50



	Guanosine (723)
	−16.14
	Tenofovir hydrate (2831)
	−17.26



	Daidzin (997)
	−21.34
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