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Abstract: Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable
for early-stage process development, design, and feasibility studies. Conventional analytic methods
typically require reference data to regress parameters, which may not be available or limited for novel
systems. Molecular simulation is a promising alternative, but is computationally intensive. Here,
we demonstrate the ability to use a small number of molecular simulation free energy calculations
to generate reference data to regress model parameters for the analytical MOSCED (modified sep-
aration of cohesive energy density) model. The result is an efficient analytical method to predict
the equilibrium solubility of nonelectrolyte solids. The method is demonstrated for the wastewater
contaminants monuron, diuron, atrazine and atenolol. Predictions for monuron, diuron and atrazine
are in reasonable agreement with MOSCED parameters regressed using experimental solubility
data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted molecular
models, or the solvents selected to generate the necessary reference data.

Keywords: solubility; activity coefficient; solvation free energy; chemical potential; molecular simulation

1. Introduction

The ability to predict the equilibrium solubility of nonelectrolyte solids is important
for a wide range of chemical, biological, and environmental processes. In the present study,
we consider the environmental contaminants monuron, diuron, atrazine, and atenolol (see
Figure 1). The herbicides monuron, diuron and atrazine make their way into surface- and
ground-water sources typically as agricultural runoff. Although their toxicity is known,
their low concentration makes removal and treatment problematic [1–3]. Atenolol is a
commonly prescribed cardio-selective beta-blocker which is unable to be metabolized
by the human body. Consequently, approximately half of the administered dose enters
wastewater streams [4–6]. Conventional wastewater treatments plants are not designed to
remove these contaminates as their concentration is typically considered low, and below
toxic exposure levels. However, concerns exist over long-term exposure [5,7–10].
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Figure 1. The chemical structure of the studied solutes.

The development of novel processes to capture and remove contaminants from the
environment is highly desirable. Central to the design of novel separations processes is the
underlying phase equilibrium, here specifically the equilibrium solubility. Given the range
of both potential contaminants and solvents, predictive methods are necessary. Given the
importance of being able to predict the solubility of nonelectrolyte solids, considerable
work has been done in this area. We can place this work in two camps. First are efficient
analytic-based equations. Promising predictions have been made using the theoretically
based NRTL-SAC model [11], MOSCED (modified separation of cohesive energy density)
model [12], and the PC-SAFT equation of state [13,14]. However, reference data are first
required to determine the necessary model parameters for the solute or mixing rules.
Second is the use of molecular simulation [15–18]. With molecular simulation one may not
only predict solubility devoid of reference data, but molecular simulation may additionally
be used to probe the underlying intermolecular interactions. However, blind predictions
using molecular simulation are computationally expensive and may not be feasible for
design applications.

Recent efforts have been made to combine molecular simulation with the theoretically
based, analytical, MOSCED model [19–21]. The result is a novel method combining the
strength of both MOSCED and molecular simulation, while eliminating their shortcomings.
Specifically, a limited number of molecular simulation solvation free energy calculations
may be used to generate reference data from which MOSCED parameters may be regressed.
Once MOSCED parameters are regressed, MOSCED may be used to efficiently make pre-
dictions in a range of solvents and over a range of temperatures. Moreover, previous work
has suggested these predictions are improved as compared to using molecular simulation
alone due to the implicit inclusion of reference data via the reference MOSCED parameters
used during the regression.

The equilibrium solubility of a nonelectrolyte solid solute may be described by the
classical equations of solid–liquid equilibrium. For the case of a solid solute (component 2)
in a pure solvent (component 1) we have [22]:
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ln x2 = − ln γ2,1(T, P, x2) + ln
f S
2 (T, P)

f 0
2 (T, P)

(1)

where x2 and γ2,1 are the solute mole fraction and Lewis–Randall (or Raoult’s Law) nor-
malized activity coefficient at equilibrium, T is the temperature, P is the pressure, and
f S
2 and f 0

2 are the fugacity of the pure solid solute and pure subcooled liquid solute, re-
spectively. The latter term is a property only of the pure solute, while the former term
accounts for solute-solvent relative to solute-solute interactions. As a pure component
property, the term f S

2 / f 0
2 may readily be estimated using limited properties of the solute at

the melting point [22–26] or may be predicted using molecular simulation so long as the
solute solid crystal structure is known [15–18]. The focus in this work will therefore be on
computing γ2,1.

In the present study we will use the solubility parameter method
MOSCED [12,19–21,27–44]. The use of solubility parameter-based methods is advanta-
geous because they allow one to not only predict phase behavior using a simple analytic
equation, but they can help offer an explanation in terms of the responsible molecular-level
interactions. Analogous to UNIQUAC (universal quasichemical activity coefficient model),
the limiting activity coefficient of component 2 in 1, γ∞

2,1, can be written as the sum of a
combinatorial (COMB) and residual (RES) contribution [22,45]:

ln γ∞
2,1 = ln γ∞,COMB

2,1 + ln γ∞,RES
2,1 (2)

where COMB refers the entropic contribution which results from the size and shape dissim-
ilarity of the components, and RES refers to the enthalpic contribution which results from
intermolecular interactions. The advantage of MOSCED over similar solubility parameter-
based methods is in its treatment of association interactions, allowing for both negative
and positive values of ln γ∞,RES

2,1 in agreement with reality. Further discussion of MOSCED
and the treatment of association interactions is provided in the supporting information
accompanying the electronic version of this manuscript.

However, a shortcoming of MOSCED has always been a limitation of available param-
eters. Most recently, MOSCED was subject to a “revision” in 2005 [12] where parameters
were regressed using reference limiting activity coefficients for 130 organic solvents, water,
two room temperature ionic liquids (ILs), and five non-condensable gases. They addition-
ally demonstrated the ability to obtain parameters for nonelectrolyte solids by fitting to
experimental solubility data. However, for all these cases, experimental reference data
are first needed for a compound of interest to regress parameters. For a novel compound,
early in the design process, or for feasibility studies, such data are likely not available. As
a result, recent efforts have been focused on developing techniques to predict MOSCED
parameters devoid of experimental reference data. This work has included the use of
molecular simulation [19–21], electronic structure calculations [20,21,37–39,42], and group
contribution methods [35,37]. Here we demonstrate the use of molecular simulation to pre-
dict MOSCED parameters for the environmental contaminants: monuron, diuron, atrazine
and atenolol. Parameters are regressed using reference data predicted using molecular
simulation, and then used to predict solubility in a range of non-aqueous solvents. Using a
relatively small number of molecular simulations we can parameterize MOSCED, allowing
us to extrapolate to other solvents, solvent mixtures, and temperatures. The result is an
efficient tool for early-stage process development and design applications. In support
of this work, we have devolved an interactive MOSCED calculator capable of predicting
limiting activity coefficients for a binary pair at a given temperature. (See Appendix A).
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2. Method
2.1. MOSCED

Using MOSCED ln γ∞,RES
2,1 is calculated using the following system of equations [12,27]:

ln γ∞,RES
2,1 =

v2

RT

[
(λ1 − λ2)

2 +
q2

1q2
2(τ

(T)
1 − τ

(T)
2 )2

ψ1
+

(α
(T)
1 − α

(T)
2 )(β

(T)
1 − β

(T)
2 )

ξ1

]

α
(T)
i = αi

(
293 K

T

)0.8
, β

(T)
i = βi

(
293 K

T

)0.8
, τ

(T)
i = τi

(
293 K

T

)0.4

ψ1 = POL + 0.002629 α
(T)
1 β

(T)
1

ξ1 = 0.68(POL− 1) +
[
3.4− 2.4 exp

(
−0.002687(α1β1)

1.5
)](293 K/T)2

POL = q4
1

[
1.15− 1.15 exp

(
−0.002337

(
τ
(T)
1

)3
)]

+ 1

(3)

where R is the molar gas constant, T is the absolute temperature, v2 is the (liquid) molar
volume of the solute, λi, τi, αi and βi are the solubility parameters due to dispersion,
polarity, and hydrogen bond acidity and basicity, respectively, and the induction parameter,
qi, reflects the ability of the nonpolar part of a molecule to interact with a polar part, where
i = {1, 2}. The terms ψ1 and ξ1 are (solvent dependent) asymmetry terms; these terms are
not adjustable but are a function of the solvent solubility parameters. The superscript (T)
is used to indicate temperature dependent parameters, where the temperature dependence
is computed using the empirical correlations provided in Equation (3) with a reference
temperature of 293 K (20 ◦C). The combinatorial contribution is calculated using a modified
Flory-Huggins equation [12,27]:

ln γ∞,COMB
2,1 = ln

(
v2

v1

)aa2

+ 1−
(

v2

v1

)aa2

aa2 = 0.953− 0.002314
[(

τ
(T)
2

)2
+ α

(T)
2 β

(T)
2

] (4)

where v1 is the molar volume of the solvent, and aa2 is an empirical (solute dependent)
term to modify the size dissimilarity for polar and hydrogen bonding interactions. The
term aa2 is not adjustable, but is a function of the solubility parameters of the solute. For
all cases aa2 ≤ 0.953, effectively reducing the size dissimilarity and magnitude of the
combinatorial contribution, with the value smaller for polar and associating compounds.
An equivalent expression for the residual and combinatorial contribution to the limiting
activity coefficient for component 1 in 2 (γ∞,RES

1,2 and γ∞,COMB
1,2 ) can be written by switching

the subscript indices in Equations (3) and (4).
Using MOSCED we are restricted predicting limiting activity coefficient. Nonetheless,

the predicted limiting activity coefficients can be used directly to obtain parameters for
a binary interaction excess Gibbs free energy model, which in turn can be used to make
composition dependent predictions [22,34,46,47]. Refs. [12,33] compared the use of Wilson’s
equation and UNIQUAC with MOSCED to model the solubility of nonelectrolyte solids,
and recommend the use of Wilson’s equation [22]. We will therefore adopt the use of
Wilson’s equation in the present study. Further discussion of MOSCED and Wilson’s
equation is provided in the supporting information accompanying the electronic version of
this manuscript.

Molecular Simulation

In the present study, we will use molecular simulation to predict MOSCED parameters.
In general, we will generate a set of reference data from which MOSCED parameters
may be regressed. Using molecular simulation, we can calculate the solvation free energy
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of a solute (component i) at infinite dilution in a solvent (component j), ∆Gsolv
i,j , where

i ={1 or 2} and j ={1 or 2} [48]. The solvation free energy in this context is defined as taking
a solute from a non-interacting ideal-gas state to solution at the same molecular density (or
concentration). The solvation free energy is readily related to the limiting activity coefficient
(γ∞

i,j) as [19,49–51]:

ln γ∞
i,j(T, P) =

1
RT

[
∆Gsolv

i,j (T, P)− ∆Gself
i,i (T, P)

]
+ ln

vi(T, P)
vj(T, P)

(5)

where ∆Gself
i,i is the solute “self”-solvation free energy, and vi and vj correspond to the pure

liquid molar volume of component i and j, respectively. The difference ∆Gsolv
i,j − ∆Gself

i,i
is equivalent to the transfer free energy of i from a solution of pure i to pure j (in which
it is infinitely dilute). When i = j we obtain the correct limiting behavior that γ∞

i,i = 1.
The self-solvation free energy, ∆Gself

i,i , may be calculated by performing a solvation free
energy calculation for component i in itself. Although such a calculation may readily be
performed when component i is a liquid at the conditions of interest, in the present study
we are interested in components which are solid at the conditions of interest for which
we would have a subcooled liquid. Molecular simulation of a subcooled liquid should be
avoided [52]. Nonetheless, we have proposed several schemes to overcome this limitation.

First, we can relate ∆Gself
i,i to the pure liquid fugacity of component i, f 0

i , as [52]:

ln f 0
i (T, P) =

1
RT

∆Gself
i,i (T, P) + ln

RT
vi(T, P)

(6)

We can expand f 0
i as [22]:

f 0
i (T, P) = φsat

i (T)Psat
i (T) exp

{∫ P

Psat

vi(T, P)
RT

dP
}

(7)

where φsat
i and Psat

i are the fugacity coefficient and vapor pressure of pure component i at
saturation at T, and the term in brackets is the Poynting correction, and accounts for the
change in fugacity in going from Psat to P at constant T. If we assume that the vapor phase
is an ideal gas and that the Poynting correction is negligible, we have [22,52–54]:

ln f 0
i (T, P) = ln Psat

i (T) =
1

RT
∆Gself

i,i (T, P) + ln
RT

vi(T, P)
(8)

If we are at low pressures well removed from the critical point, and we have a non-self-
associating fluid (i.e., no carboxylic acid), use of this expression is generally reasonable. The
significance of this expression is that from the Clapeyron equation we expect ln f 0

i to scale
linearly with respect to 1/T [22]. This presents a means by which molecular simulations
may be used to compute ∆Gself

i,i and vi at elevated temperatures where the component
exists as a liquid, and then extrapolate to the conditions of interest below the melting point.
Additionally, from these simulations at elevated temperatures one can extrapolated the
computed liquid molar volume to 293 K to obtain MOSCED parameter v2.

Although it is possible to obtain f 0
i from molecular simulation, alternatively one might

attempt to use reference data (via Psat
i ). However, it is important that the quantities of

interest be computed in a consistent fashion [49]. Although not used in the present study, if
the calculation of f 0

i is not possible or undesirable, in our previous work we have proposed
two related schemes which are described in the Appendix B.

2.2. f S
2 / f 0

2

The solubility of a nonelectrolyte solid solute (component 2) in a pure solvent (com-
ponent 1) is given by Equation (1). The latter term is a property only of the pure solute,
while the former term (γ2,1) accounts for solute-solvent relative to solute-solute interactions.
The focus of the present study is on the calculation of the term γ2,1. The pure component
property f S

2 / f 0
2 necessary to compute the equilibrium solubility via Equation (1) is therefore
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computed using experimental data and the method of Nordström and Rasmuson [25]. In
summary, assuming there are no solid/solid phase transitions between the melting point
and the conditions of interest we have [22–26]:

ln
f S
2 (T, p)

f 0
2 (T, p)

= −∆Gm
2 (T, p) =

∆Hm
2 (Tm

2 )

R

[
1

Tm
2
− 1

T

]
− 1

RT

∫ T

Tm
2

∆Cp,2dT +
1
R

∫ T

Tm
2

∆Cp,2

T
dT (9)

where ∆Gm
2 is the molar Gibbs free energy of melting (or fusion), Tm

2 is the normal melting
point temperature, and ∆Hm

2 is the molar enthalpy of melting (or fusion) at Tm
2 . ∆Cp,2 is

the difference in the isobaric heat capacity between the liquid and solid solute. Accurately
determining ∆Cp,2 is challenging because it involves a subcooled liquid phase below the
melting point. A common approximation is to assume [25]:

∆Cp,2 = σ
∆Hm

2 (Tm
2 )

Tm
2

(10)

where σ is a constant. When σ = 0 we recover the common engineering assumption that
∆Cp,2 = 0 and the enthalpy of fusion is constant and equal to its value at the melting
point [22]. When σ = 1 we recover the assumption that ∆Cp,2 is constant and equal to the
molar entropy of melting (or fusion) at the melting point [23], ∆Sm

2 = ∆Hm
2 (Tm

2 )/Tm
2 . Re-

cently, Nordström and Rasmuson [25] took σ to be an adjustable parameter and optimized
its value at 10, 15, 20, 25 and 30 ◦C using temperature dependent equilibrium solubility
data for solutes of a range of chemical complexities. Taking ∆Cp,2 to be constant and given
by Equation (10), we obtain:

ln
f S
2 (T, p)

f 0
2 (T, p)

=
∆Hm

2 (Tm
2 )

RTm
2

[(
1−

Tm
2
T

)
(1− σ) + σ ln

Tm
2
T

]
(11)

The reference value of σ at 10, 15, 20, 25 and 30 ◦C is 1.958, 1.940, 1.922, 1.897 and 1.868, re-
spectively [25]. Although here we will adopt experimental values of ∆Hm

2 and Tm
2 , their val-

ues could readily be predicted using group contribution methods or other means [15–18,55].

3. Computational Details
3.1. Molecular Simulation

Interactions were modeled using a “class I” potential energy function where all
non-bonded intermolecular interactions were accounted for using a combined Lennard-
Jones (LJ) plus fixed-point charge model [56,57]. The solvents studied were: n-hexane,
2,5-dimethylhexane, 1-hexene, 1-octene, methanol, ethanol, 1-propanol, 2-propanol, di-
ethylether, acetone, butanone, benzene and water. Benzene was modeled using the Explicit
Hydrogen Transferable Potentials for Phase Equilibria (TraPPE-EH) force field [58] and all
other organic solvents were modeled with the United Atom TraPPE (TraPPE-UA) force
field [59–64]. Here benzene (and aromatic rings in general) is modeled using TraPPE-EH,
and TraPPE-UA is used in all other cases. Although a 6-site TraPPE-UA model exists for ben-
zene, the 12-site TraPPE-EH model has been shown to more accurately represent benzene
dimer energetics which we expect to be important for accurately modeling solvation [58,61].
Although in the original TraPPE-EH work, benzene is modeled as completely rigid, here
we adopt angle-bending and dihedral parameters from the General AMBER Force Field
(GAFF) [65,66]. Additionally, while TraPPE-UA and TraPPE-EH treat bonds as rigid, here
we will only constrain bonds involving hydrogens; missing bond stretching parameters
were taken from the united atom force field file gmx.ff in GROMACS 4.6.3 [67–69] for use
with TraPPE-UA, and from GAFF for benzene. Water was modeled with TIP4P [70], which
has been shown to work well with TraPPE force field models [71,72]. This is exactly the
same set of solvent models used in our previous work [20].

The force fields for monuron, diuron, atrazine and atenolol (the studied solutes) were
all constructed based on the TraPPE-EH force field [58,62–64,73,74], and follow our previous
work [20,52,75]. Partial atomic charges for the solutes were obtained in a similar fashion
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as the original TraPPE-EH parameterization [58,73,74] and follow our previous work [75].
First, the gas-phase structure for each solute was optimized at the M06-2X/cc-pVTZ level
of theory/basis set [76,77]. Second, a single point energy calculation was performed on the
gas-phase optimized structure at the M06-2X/6-31G(d) level of theory/basis set [76,77] in
the SM8 universal solvation model for 1-octanol [78]. Partial atomic charges were computed
using the CM4 charge model [79,80] obtained during the single point energy calculation
in SM8 1-octanol. TraPPE-EH adopted 1-octanol as the reference solvent for determining
partial charges as it possesses both polar and nonpolar character [58]. All the electronic
structure calculations were performed using QChem 4.0.1 [81]. The force field for atrazine
and atenolol are the same as in our previous work [75].

For the case of monuron and diuron, we additionally investigated the use of a second,
similar set of partial atomic charges. Again, we first performed a gas-phase optimization for
the solute at the M06-2X/cc-pVTZ level of theory/basis set. Second, a single point energy
calculation was performed on the gas-phase optimized structure at the M06-2X/6-31G(d)
level of theory/basis set in the SMD universal solvation model for 1-octanol [82]. All the
electronic structure calculations were performed using Gaussian 09 [83]. Third, partial
atomic charges were then obtained from the electrostatic potential (obtained in step 2) using
the restrained electrostatic potential (RESP) [84,85] method in ANTECHAMBER (part of
the AMBER 12 simulation suite) [66,86,87].

We emphasize that in the original TraPPE-EH work for aromatics [58,73,74] partial
charges were obtained using CM4 charges with the SM8 universal solvation model for
1-octanol. Here the motivation for the additional use of SMD is two-fold. First, to assess the
sensitivity of the results on the charge parameterization method, where here we anticipate
that the behavior of SMD will be similar SM8. Second, and closely related, the SM8 universal
solvation model may not be available in the software accessible to an interested user [88].
This is demonstrated here only for monuron and diuron because of the availability of
reference solubility data in a much larger number of unique solvents. Additional continuum
solvent models and charge parameterization methods are available [89]. However, a
thorough evaluation is beyond the scope of the present study.

All the intramolecular parameters for the solutes were taken from the General Amber
Force Field (GAFF) [65]. Parameters were generated using ANTECHAMBER and converted
from AMBER to GROMACS format using ACPYPE [90,91]. Throughout the present study,
all solute bonds involving hydrogens were held fixed.

The present study requires the calculation of configurational properties, allowing one
to use either Monte Carlo or molecular dynamics (MD) simulations to sample configura-
tional phase space. Here we used MD and performed all calculations with GROMACS
4.6.3, following the procedure used in our previous work [20]. Solvation free energies were
computed using the multi-state Bennett’s acceptance ratio method (MBAR) [92], using the
soft-core potential method to couple/decouple intermolecular LJ interactions [93,94]. The
GROMACS trajectory files were analyzed using the script distributed with the Python
implementation of MBAR (PyMBAR) [95–97].

All the GROMACS force field files used in the present study along with additional
discussion of the solute force fields are provided as supporting information accompanying
the electronic version of this manuscript. A detailed discussion of the simulation procedure
and details may be found in the supporting information accompanying the electronic
version of our previous work [20].

3.2. Regressing MOSCED Parameters

Using molecular simulation, for each solute the infinite dilution activity coefficient
(γ∞

2,1) was computed in 13 different solvents (n-hexane, 2,5-dimethylhexane, 1-hexene,
1-octene, methanol, ethanol, 1-propanol, 2-propanol, diethylether, acetone, butanone, ben-
zene and water) at 298.15 K, by means of Equations (5) and (8). The solvents were chosen
because both MOSCED and force field parameters were available, and they offered a va-
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riety of chemical functionalities. MOSCED parameters were obtained by minimizing the
objective function (OBJ)

OBJ =
N=13

∑
i=1

(
ln γ∞,sim

2,i − ln γ∞,MOSCED
2,i

)2
(12)

the squared difference between ln γ∞
2,i computed using molecular simulation (“sim”) and

using MOSCED (Equations (3) and (4)), as indicated by the superscript, where the sum-
mation is over all N = 13 solvents. Log terms are used as it is the log value that is
directly related to the solvation free energy which is computed (see Equation (5)). The
optimization was performed using the differential evolution method [98] as implemented
in GNU Octave [99]. Only values of the λ2, τ2, α2 and β2 solute MOSCED parameters were
made adjustable; v2 was fixed as the solute liquid molar volume at 293 K estimated by
extrapolating liquid molar volumes computed at elevated temperatures and q2 was set
to 0.9 as suggested in ref. [12] for aromatic centered solutes. The differential evolution
method is a global optimization technique and does not require or use initial estimates of
the parameters. We specify only that the parameters are bound between 0 and 100 to limit
the search. The differential evolution method was used here because it is a global method
that has demonstrated good performance for a wide range of non-linear problems.

4. Results and Discussion
4.1. Pure Component Fugacity

The results of the pure component fugacity calculations using molecular simulation
are shown in Figure 2 for the monuron and diuron and in Figure 3 for atrazine and atenolol.
The solutes are all solid at ambient conditions. Calculations were therefore performed at
elevated temperatures greater than the experimental normal melting point, and extrapo-
lated to 298.15 K. Although simulations of the subcooled liquid may be performed, caution
must be exercised as they may yield erroneous results [52]. All the computed fugacities
were on the order of 10 kPa or less, where we expect f 0 ≈ Psat. As a result, f 0 was fit
to and extrapolated using a Clausius-Clapeyron equation of the form ln f 0

2 = −aT−1 + b,
where a and b are constants, and the inverse of the uncertainty of ln f 0 was used to weight
each datum during the regression. In all cases the fit was excellent, with coefficients of
determination close to unity. The results are all tabulated in the supporting information
accompanying the electronic version of this manuscript.
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Figure 2. Pure liquid fugacity of monuron and diuron. Symbols are the pure liquid fugacity computed
using molecular simulation and the solid line is the Clausius-Clapeyron fit. Triangles up and black
correspond to results using SM8/CM4 partial atomic charges, and triangles down and red correspond
to results using SMD/RESP. The Clausius-Clapeyron parameters and corresponding coefficient of
determination (R2) is provided for each fit.
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Figure 3. Pure liquid fugacity of atrazine and atenolol. Triangles up are the pure liquid fugacity com-
puted using molecular simulation and the solid black line is the Clausius-Clapeyron fit. In all cases
we use SM8/CM4 partial atomic charges. The Clausius-Clapeyron parameters and corresponding
coefficient of determination (R2) is provided for each fit.

For monuron, diuron, atrazine, and atenolol, partial charges were obtained using
the CM4 charge model in SM8 1-octanol. For the case of monuron and diuron, we addi-
tional used RESP charges in SMD 1-octanol. As seen in Figure 2, we observe a noticeable
difference in the pure component fugacity when using the two charge models. The dif-
ference in general is on the order of one log unit. This result is not surprising and similar
to the variability in hydration free energy with various partial charge parameterization
schemes [89].

Likewise, the liquid molar volume was extrapolated to 293 K to obtain MOSCED
parameter v2 using the expression ln v = aT + b, where a and b are constants and the
inverse of the uncertainty of ln v was used to weight each datum during the regression.
In all cases the fit was again excellent, and we obtain a coefficient of determination close
to unity. The results are all tabulated in the supporting information accompanying the
electronic version of this manuscript.

4.2. MOSCED Parameters

The MOSCED parameters regressed using a limited number of molecular simulation
free energy calculations at 298.15 K are tabulated in Table 1 for monuron, diuron, atrazine
and atenolol. For all cases we consider partial atomic charges obtained using the SM8 sol-
vation model. For monuron and diuron we additionally considered partial atomic charges
obtained using the SMD solvation model, and we list MOSCED parameters regressed in
ref. [12] obtained from experimental solubility data.
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Table 1. The MOSCED parameters for the studied solutes obtained using reference data generated
using molecular simulation free energy calculations at 298.15 K. For all cases we consider partial
atomic charges obtained using the SM8 solvation model. For monuron and diuron we additionally
considered partial atomic charges obtained using the SMD solvation model, and we list MOSCED
parameters regressed in ref. [12] obtained from experimental solubility data (ref). v2 has units of
cm3/mol, and λ2, τ2, α2, and β2 all have units of (J/cm3)1/2. For all the solutes, q2 = 0.9. N
corresponds to the number of reference data used to regress the parameters, and R2, RMSE, and
AAPD are the resulting coefficient of determination, root mean squared error, and average absolute
percent deviation, respectively. The statistics for the reference parameters for monuron and diuron
were taken from ref. [12].

Solute Method v2 λ2 τ2 α2 β2 N R2 RMSE AAPD

monuron ref 152.80 16.44 5.48 7.16 9.65 32 22.0
SM8 164.75 15.65 1.38 13.11 7.42 13 0.985 0.430 34.5
SMD 162.98 12.49 0.00 18.63 6.87 13 0.931 1.233 156.7

diuron ref 164.80 16.99 4.12 7.88 9.88 37 36.3
SM8 176.94 17.07 3.00 12.37 8.26 13 0.900 1.282 98.0
SMD 176.32 17.14 2.72 14.91 9.83 13 0.984 0.607 56.6

atrazine SM8 183.35 15.32 3.04 9.89 4.26 13 0.984 0.438 38.1

atenolol SM8 253.43 14.20 1.53 12.18 4.03 13 0.953 1.116 191.5

First, let us consider the case of monuron and diuron. For the case of monuron, we
find that the calculations with the SM8 partial charges result in both the greatest agreement
with the set of reference parameters, and are better correlated by MOSCED as compared to
the calculations with the SMD partial charges. For diuron, except for β2, the calculations
with the SM8 partial charges again result in the greatest agreement with the set of reference
parameters. Nonetheless, while SMD is in better agreement with the reference value of β2,
SM8 is in better agreement with the self-association term α2β2. On the other hand, we find
that the calculations with the SMD partial charges are better correlated by MOSCED. We
emphasize that here we are using MOSCED to correlate predicted data, which will exhibit
deviations from experiment [49,78,82]. Previously, we have found when training MOSCED
with predicted data that the predictions ultimately made with the trained MOSCED model
are superior to predictions made with the method used to generate the training data alone.
We believe this results from the implicit inclusion of the experimental data used to train the
original MOSCED model, and the resulting solvent parameters used here [19–21,38]. For
both monuron and diuron, the reference parameters have β2 > α2 indicating that monuron
and diuron are both stronger proton acceptors than donors. However, with the predicted
values we have α2 > β2 suggesting they are stronger proton donors than acceptors, and
further the difference is much larger.

In Table 2 we tabulate the computed dimensionless solvation free energies. For
monuron and diuron, the choice of partial charges noticeably effects the solvation free
energy in benzene, alcohols, ketones, diethylether, and water. We emphasize that in
comparing SM8 and SMD, the only difference is in the resulting partial charges of the
solute. Additionally, the TraPPE-UA models for n-hexane, 2,5-dimethylhexane, 1-hexene,
and 1-octene do not include the use of partial charges [59–61]. For this reason, the difference
between SM8 and SMD in the alkanes and alkenes is minor, and the effect is greatest in
solvents where we expect association (hydrogen bonding) to be important. Except for
benzene, the solvation free energies using SMD partial charges are all lower (more negative)
as compared to SM8. This is indicative of an increased affinity for the solvent relative to a
non-interacting ideal-gas state. The same was true when computing the pure component
fugacity; we found that with the SMD partial charges the self-solvation free energy was
lower (or more negative) as compared to SM8. This underlines the importance of computing
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the solvation free energy and self-solvation free energy in a consistent fashion [49], and the
results are sensitive to the force field and the associated partial charges.

Table 2. The computed dimensionless solvation free energy, ∆Gsolv
i,j /(RT), for solute i in solvent j at

298.15 K. For all cases we consider partial atomic charges obtained using the SM8 solvation model.
For monuron and diuron we additionally considered partial atomic charges obtained using the SMD
solvation model. The subscripts correspond to the uncertainty in the last two decimal places.

Monuron Diuron Atrazine Atenolol
Solvent SM8 SMD SM8 SMD SM8 SM8

n-hexane −15.3107 −15.5508 −16.8207 −16.9107 −15.6207 −22.0805
2,5-dimethylhexane −16.7211 −16.9111 −18.1812 −18.3812 −16.5211 −23.7007

1-hexene −15.3307 −15.6307 −16.7707 −16.9607 −15.6407 −22.0905
1-octene −15.2708 −15.3408 −16.6808 −16.8209 −15.6408 −22.0906
benzene −18.3809 −14.4909 −20.1611 −21.2610 −18.8309 −26.3906

methanol −22.9507 −26.6307 −24.4008 −28.6308 −20.7807 −30.6205
ethanol −23.2008 −26.0309 −24.5910 −28.5710 −20.2708 −30.2206

1-propanol −22.8009 −26.0310 −24.2812 −28.0512 −19.7809 −30.0507
2-propanol −22.5011 −25.3012 −23.6212 −27.4511 −19.4210 −29.2208

acetone −23.1907 −25.0007 −24.8007 −27.7707 −22.2207 −31.4204
butanone −22.7507 −24.5507 −24.2708 −26.9808 −21.9107 −30.6905

diethylether −21.3106 −22.8706 −22.6806 −25.2306 −21.1506 −29.6204
water −14.5311 −19.3812 −14.8213 −19.3614 −10.4113 −16.4805

For atrazine and atenolol, the ability of MOSCED to correlate the predicted limit-
ing activity coefficients is very good, and comparable to the best fits for monuron and
diuron. Moreover, the parameters appear reasonable. The force fields for atrazine and
atenolol were adopted from our recent molecular simulation study of the compounds in
1-n-butyl-3-methylimidazolium-based ionic liquids for potential wastewater treatment
applications [75]. In that work we found that the solutes had a large affinity for 1-n-butyl-
3-methylimidazolium acetate. This resulted from strong hydrogen bonding between the
solute and acetate anion, where the solute was the hydrogen bond donor and acetate was
the hydrogen bond acceptor. Moreover, we found that atenolol was the stronger hydrogen
bond donor, which is consistent with our results here where α2 for atenolol is greater than
for atrazine.

4.3. Solubility Predictions

Solubility predictions are made via Equation (1). MOSCED is used to predict γ∞
1,2 and

γ∞
2,1, which may then be used to parameterize Wilson’s equation to compute γ2,1. Although

the focus here is on MOSCED and predicting limiting activity coefficients, for the nonelec-
trolyte solids studied here only experimental solubility data are available for comparison.
For solubility prediction, an estimate of the pure component term f S

2 / f 0
2 is necessary, which

we compute here using Equation (11). In the present study, we used a piecewise cubic
Hermite interpolating polynomial (pchip) as implemented in the function interp1 within
GNU Octave [99] to compute σ at a specific temperature over the range 10–30 ◦C. We will
refer to this value of σ as “opt” (optimal). We additionally make comparison to the common
approximations of σ =0 and 1. The resulting solubility predictions in non-aqueous organic
solvents are summarized in Table 3, and the predictions are tabulated in the supporting
information accompanying the electronic version of this manuscript.
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Table 3. A summary of the predicted solubility (x2) in non-aqueous solvents. For all cases we
consider partial atomic charges obtained using the SM8 solvation model. For monuron and diuron
we additionally considered partial atomic charges obtained using the SMD solvation model, and we
list the results using MOSCED parameters regressed in ref. [12] using experimental solubility data
(ref). N systems and N solvents corresponds to the number of systems and solvents, respectively,
and AAPD and RMSE are resulting average absolute percent deviation and root mean squared
error, respectively. R2 and slope are the resulting coefficient of determination and slope of the
corresponding parity plot. Please note that N systems ≥ N solvents because of the possibility of
multiple temperatures.

x2 ln x2
Solute N Systems N Solvents Method σ AAPD RMSE × 102 RMSE R2 Slope

monuron 32 31 ref 0 21.97 0.26 0.53 0.94 0.93
1 110.15 0.91 0.81 0.94 0.93

opt 325.15 2.68 1.44 0.95 0.94

SM8 0 95.83 1.29 1.30 0.82 1.17
1 190.63 3.01 1.29 0.82 1.16

opt 401.98 5.86 1.59 0.83 1.14

SMD 0 125.15 1.56 2.96 0.73 1.59
1 227.99 3.38 2.60 0.73 1.58

opt 404.31 6.30 2.39 0.74 1.56

diuron 36 36 ref 0 35.94 0.35 0.59 0.95 0.95
1 98.80 0.70 0.73 0.95 0.95

opt 281.92 1.97 1.32 0.95 0.95

SM8 0 74.02 0.59 1.50 0.91 1.27
1 120.38 1.54 1.15 0.92 1.27

opt 218.97 3.24 1.19 0.92 1.26

SMD 0 76.75 0.40 3.48 0.88 1.70
1 114.17 0.93 2.95 0.88 1.70

opt 196.85 2.36 2.55 0.88 1.70

atrazine 63 6 SM8 0 64.79 1.02 0.53 0.93 1.06
1 277.12 2.65 1.32 0.91 0.79

opt 720.13 5.05 2.04 0.75 0.47

atenolol 54 6 SM8 0 6506.42 8.92 3.02 0.69 0.58
1 11,513.77 11.51 3.39 0.73 0.55

opt 19,679.49 14.49 3.73 0.76 0.52

For monuron, the non-aqueous experimental solubility data used for comparison is all
the single component solubility data available in Part 1 and 2 of DECHEMA’s “Solubility
and Related Properties of Large Complex Chemicals” [100,101] for which MOSCED solvent
parameters exist. This resulted in 32 reference solubilities in 31 unique solvents. The data
from Part 1 was all at 298 K, and the data from Part 2 was all at 298.15 K [100,101]. The
pure component values of Tm,2 and ∆Hfus

2 for monuron were taken from Part 1.
For diuron, the non-aqueous experimental solubility data used for comparison is

all the single component solubility data available in Part 1 of DECHEMA’s “Solubility
and Related Properties of Large Complex Chemicals” [100] for which MOSCED solvent
parameters exist. This resulted in 36 reference solubilities in 36 unique solvents. The
experimental data were all at 298.15 K. The pure component values of Tm,2 and ∆Hfus

2 were
also taken from Part 1.

For atrazine, the non-aqueous experimental solubility data used for comparison is
all from Jia et al. [102]. Data are available for atrazine in methanol, ethanol, 1-propanol, 2-
propanol, 1-butanol, and ethyl acetate over the range 283.15–343.15 K. The pure component
values of Tm,2 and ∆Hfus

2 were taken from Donnelly et al. [103].
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For atenolol, the non-aqueous experimental solubility data used for comparison is all
the single component solubility data available from refs. [104–106] for which MOSCED
solvent parameters exist. This resulted in 54 reference solubilities in six unique solvents.
The solvents are: ethanol, 1-octanol, 1,4-dioxane, dichloromethane, ethyl acetate, and
n-hexane. The pure component values of Tm,2 and ∆Hfus

2 were taken from ref. [106].
First, let us consider the case of monuron and diuron. For these cases we make

predictions using MOSCED parameters regressed in ref. [12] using experimental solubility
data (ref). Having been regressed directly using experimental solubility data, we take this
to be a limit on the level of accuracy we can achieve. For both monuron and diuron, the
best set of predictions is made using σ = 0. With our predicted MOSCED parameters, for
both cases the best predictions are made using parameters regressed using SM8 partial
charges and likewise with σ = 0. The results for monuron and diuron are similar. Although
when using the reference set of MOSCED parameters, our error in x2 is on the order
of 1× 10−3 mole fracs, with our predicted MOSCED parameters the errors are on the
order of 1× 10−2 and 1× 10−3 mole fracs for monuron and diuron, respectively. To give
perspective, for monuron the experimental reference values of x2 span the range 5.09× 10−5

to 2.64× 10−2 mole fracs, with an average value of 6.83× 10−3 mole fracs. The only solvent
for which reference data are available in Part 1 (at 298 K) and Part 2 (at 298.15 K) is ethyl
acetate, with values of 9.96× 10−3 and 1.01× 10−2 mole fracs, respectively, for a difference
of 1.14× 10−4. Similar for diuron the experimental reference values of x2 span the range
1.83 × 10−5 to 3.06× 10−2 mole fracs, with an average value of 5.42 × 10−3 mole fracs.
Although the agreement is not perfect, we emphasize the efficiency of the proposed method.
Conventional solvation free energy calculations were performed for the solvent in 13 unique
solvents, all at 298.15 K. This limited set of data was used to parameterized MOSCED,
which allows extrapolation to additional solvents and temperatures. In fact, we can make
predictions in any solvent for which MOSCED parameters exists; predictions were made
in 31 unique solvents for monuron and 36 unique solvents for diuron. We would expect
that the accuracy can be improved with additional optimization of the force fields and
solvents used here, but this is beyond the scope of the present work. Here we demonstrate
the sensitivity of the predictions on the solute partial charges adopted. Moreover, the
accuracy of the predictions parameterized using molecular simulation generated data is
not unreasonable as compared to the set of reference predictions (ref).

The results for atrazine are consistent with monuron and diuron. The results using
SM8 partial charges and σ = 0 are the top performer, and are the best of all the predictions
made. The error in x2 is on the order of 1× 10−2 mole fracs, and for ln x2 we obtain both
an R2 and slope close to unity. As compared to monuron and diuron, reference solubility
data is available only in six unique solvents: methanol, ethanol, 1-propanol, 2-propanol,
1-butanol and ethyl acetate. Although this does not represent a diverse set of solvents, it
does span a range of temperatures from 283.15 K to 343.15 K. We emphasize that despite
only performing solvation free energy calculations for atrazine in 13 solvents at 298.15 K,
here we can make predictions over a range of temperatures. The experimental reference
values of x2 span the range 1.64× 10−3 to 5.42× 10−2 mole fracs, with an average value of
1.02× 10−2 mole fracs. Interestingly, despite the larger minimum value (and hence smaller
range) as compared to monuron and diuron, the predictions exhibit a similar accuracy.

Finally, let us consider the case of atenolol. The best set of predictions again corre-
sponds to σ = 0. Although the error in x2 is again on the order of 1× 10−2 mole fracs, the
predictions are inferior to that of the other solutes. Please note that the very large value
of AAPD is the result of the predictions in hexane; the experimental reference values are
on the order of 1× 10−7 mole fracs while the predictions are on the order of 1× 10−4 to
1× 10−5 mole fracs. The cause for the inferior performance is unclear. Based on the struc-
ture of atenolol, we expect that will have a greater conformational dependence as compared
to the other solutes, and therefore may be a limitation in the molecular models used.
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5. Summary and Conclusions

The ability to model the underlying phase equilibrium is crucial for the design of
novel separation processes. For early-stage process development, design, and feasibility
studies, or for processes involving novel components, predictive methods are required. In
the present study we are concerned with the ability to predict the equilibrium solubility of
nonelectrolyte solids. Specifically, we consider the wastewater contaminants: monuron,
diuron, atrazine, and atenolol. Given the importance of being able to predict the equilibrium
solubility of nonelectrolyte solids, significant work has been done in this area.

Most common for design applications is the use of efficient analytic models. However,
their use may be limited for novel systems as they typically first require reference data
to determine the necessary model parameters for the solute or mixing rules. Recently,
promising predictions have been made using molecular simulation. However, the use of
molecular simulation is computationally expensive and may not be suitable for design ap-
plications. In the present study we demonstrated the ability to marry the analytic MOSCED
(modified separation of cohesive energy density) model with molecular simulation to
create an efficient method to predict the solubility of nonelectrolyte solids. Although we
used the MOSCED model here, the use of other models is possible. A limited number
of molecular simulation free energy calculations were used to generate reference data to
regress solute MOSCED parameters. MOSCED can then be used to extrapolate and make
predictions in additional solvents and temperatures. Here we performed solvation free en-
ergy calculations in 13 unique solvents at 298.15 K from which MOSCED parameters were
regressed. Solubility predictions could then be made in any solvent for which MOSCED
parameters exist, and at any temperature. Predictions for monuron, diuron and atrazine are
in reasonable agreement with MOSCED parameters regressed using experimental solubility
data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted
molecular models, or the solvents selected to generate the necessary reference data. Future
work is necessary to improve the accuracy of the proposed method.
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Appendix A. MOSCED Calculator

In support of this work, we have devolved an interactive MOSCED calculator capable
of predicting limiting activity coefficients for a binary pair at a given temperature. MOSCED
parameters may be selected from a menu of components for which MOSCED parameters

https://www.mdpi.com/article/10.3390/pr10030538/s1
https://www.mdpi.com/article/10.3390/pr10030538/s1


Processes 2022, 10, 538 15 of 19

are known, or they may be manually entered by the user. The application is built primarily
using Python, and the Kivy Python framework was used to develop an interactive user
interface. Currently the application runs on the Windows operating system without any
additional software requirements; work is ongoing to extend to additional operating
systems. The application is available for free, with additional details provided in the text
file “READ_ME.txt” in the supporting information accompanying the electronic version of
this manuscript.

Appendix B. Alternative to Calculating f 0
i

Although not used in the present study, if the calculation of f 0
i is not possible or unde-

sirable, in our previous work we have proposed two related schemes. In the first approach,
in Equation (5) we acknowledge that ∆Gself

i,i and vi are pure component properties [37].
This is analogous to our MOSCED parameters which we seek to regress. We can re-write
Equation (5) as:

ln γ∞
i,j(T, P) =

1
RT

∆Gsolv
i,j (T, P)− ln vj(T, P) + ci(T, P) (A1)

where ci is a pure component property which may be regressed along with our MOSCED
parameters λi, τi, αi, and βi. In our earlier work we alternatively adopted a reference
solvent, and computed values of γ∞

i,j relative to the value in the reference solvent. In doing
so, ci cancels out of the expression [20,21,38]. Both methods are correct, but here we prefer
the first approach as it frees us from the choice of the reference solvent. Use of these
expression is desirable when using methods wherein the calculation of f 0

i is not possible,
such as when using electronic structure calculations.
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